
Smart Application Development and Deployment over the
IoT Computing Continuum

Carlos Kamienski1

1Federal University of ABC (UFABC)
Santo André – SP – Brazil

Abstract. Smart applications increasingly rely on the Internet of Things (IoT)
and the computing continuum to collect, process, and act on distributed data
streams. However, current development and deployment practices remain frag-
mented, requiring manual configuration to map application functions to hetero-
geneous infrastructure, limiting portability and dynamic reconfiguration. We
present DATUM, a framework for engineering distributed smart applications
using a monolith-distributed programming approach. Developers write logic
once, and DATUM compiles and distributes functions across the continuum.
A drone-delivery service demonstrates how functions are deployed across sen-
sors, edge, cloudlet, and cloud environments. Results show the potential for
systematic, portable, and scalable deployment of IoT-continuum applications,
supporting future automation and standardization.

Resumo. Aplicações inteligentes dependem cada vez mais da Internet das
Coisas (IoT) e do contı́nuo computacional para coletar, processar e atuar
sobre dados distribuı́dos. No entanto, práticas atuais de desenvolvimento
e implantação são fragmentadas e exigem configuração manual para ma-
pear funções da aplicação a camadas heterogêneas, limitando portabilidade
e reconfiguração. Este artigo apresenta o DATUM, um framework para en-
genharia de aplicações distribuı́das baseado em programação monolı́tica dis-
tribuı́da. A lógica é escrita uma vez, enquanto o DATUM compila e distribui
funções ao longo do continuum. Um serviço de entrega por drones ilustra a
distribuição entre sensores, névoa, cloudlet e nuvem. Os resultados demonstram
potencial para implantação portátil e escalável de aplicações no continuum IoT,
apoiando futuras iniciativas de automação e padronização.

1. Introduction
Smart applications are emerging as key enablers of data-driven services across domains
such as smart cities, precision agriculture, healthcare, and industry. These systems col-
lect, process, and act on continuous streams of data generated in the physical environment,
leveraging distributed computing resources spanning sensors, edge devices, cloudlets, and
cloud platforms. This vision has given rise to the concept of the IoT computing contin-
uum, a unified environment where computation and intelligence seamlessly transition
between highly constrained devices and large-scale cloud infrastructure. Such environ-
ments must accommodate heterogeneous hardware, diverse communication paths, and
strict requirements for latency, mobility, privacy, and resilience.

Despite advances in cloud-native technologies and edge-computing frameworks,
engineering smart applications for the continuum remains intricate and labor-intensive.

Current practices often rely on manual decision-making to determine how software com-
ponents should be distributed across different execution layers. Developers must navigate
a fragmented ecosystem of tools, middleware, orchestration mechanisms, and deploy-
ment pipelines, each tailored to specific environments. As a result, application porta-
bility, systematic deployment, and automatic reconfiguration across heterogeneous IoT
infrastructures remain limited. This gap between conceptual continuum architectures and
practical deployments restricts scalability, maintainability, and the widespread adoption
of distributed smart services.

To address these limitations, this paper introduces DATUM, a framework that pro-
vides an integrated model for the development, compilation, deployment, and execution
of distributed smart applications. DATUM adopts a monolith-distributed programming
paradigm, in which application logic is authored as a single program and subsequently
compiled into distributed execution units. These units can then be placed across con-
tinuum stages according to functional roles, resource constraints, and runtime needs.
The framework formalizes abstractions such as the D-Script, D-Graph, D-Node, and D-
Continuum, establishing a structured foundation for building and evolving smart appli-
cations independently of the underlying infrastructure. By separating application design
from deployment decisions, DATUM promotes transparency, portability, and adaptability
across heterogeneous IoT environments.

To illustrate the applicability of the approach, a smart drone-delivery service is
modeled as a representative use case. This scenario demonstrates how application func-
tions related to navigation, sensing, communication, coordination, and decision-making
can be systematically allocated across sensors, edge nodes, cloudlets, and cloud resources.
The example highlights the benefits of unified development and controlled distribution in
supporting complex, latency-sensitive, and collaborative IoT services.

The main contributions of this work are:

• A unified architecture and lifecycle for developing, compiling, deploying, and
executing smart applications over the IoT computing continuum.

• A monolith-distributed programming model, enabling single-source development
with transparent function distribution.

• Formal abstractions for representing continuum resources, execution nodes, and
distributed application graphs.

• A modeled use case demonstrating practical placement of distributed services
across sensors, edge, cloudlet, and cloud layers.

• A foundation for automation and standardization, promoting systematic, portable,
and scalable smart-application deployment.

2. Related Work
Recently, the existence of a processing, storage, and communication continuum between
sensors and the cloud, comprising a diverse set of infrastructure elements, has become
clear [Moreschini et al. 2022]. The IoTinuum (IoT Computing Continuum) is a frame-
work for understanding the choices and tradeoffs in developing and deploying smart ap-
plications [Kamienski et al. 2024]. It covers the end-to-end path of data acquisition, pro-
cessing, storage, and transmission, from devices through intermediate stages to the user
interface. The IoTinuum model comprises six stages that span from the physical world

to the user interface. At the foundation, S1-Thing includes devices, sensors, and actua-
tors that sense the environment and actuate changes, converting analog signals into digital
actions. Closest to them is S2-Mist, a system of low-power, field-deployed single-board
computers that act as radio gateways and often rely on energy harvesting. Further up-
stream, S3-Fog consists of more capable edge nodes—such as tower servers, equipment
in farm offices, or telecom cabinets—located tens of meters to kilometers away, providing
stable power and sheltered deployment. The S4-Cloudlet stage hosts micro-datacenters
positioned at telecom access points or industrial facilities to offer localized compute near
the core. At its core, S5-Cloud comprises large-scale public or private data centers with
vast computing and storage resources. Finally, S6-App represents the user endpoint where
smart applications run, and users interact with the system.

The Internet of Things (IoT) introduces additional complexity to software devel-
opment due to its inherent distribution and the inclusion of a massive number of het-
erogeneous devices (sensors and actuators) in its functionality and hardware architecture
[Borelli et al. 2020b]. Developing software architectures for IoT thus involves interact-
ing with various software components that play distinct roles. Although there are already
some initiatives to create these architectures, they still require widespread acceptance
within the software developer community [Zyrianoff et al. 2020]. Specific architectural
patterns are needed to develop an IoT smart application, which are classified into seven
categories [Borelli et al. 2020a]: data endpoint, data ingestion, data interaction, data inte-
gration, data storage, data processing, data visualization, and data security.

The deployment of smart applications for IoTinuum requires the efficient or-
chestration of resources allocated to services to achieve the intended quality levels
[Oliveira et al. 2024]. Orchestration involves fulfilling the application needs by carefully
matching services, resources, and workloads, including microservice placement, deploy-
ment, and migration.

IoTDeploy [Oliveira et al. 2024] is a strategy for static and dynamic service mi-
gration across IoTinuum, along with a set of derived tools to implement it. An IoT smart
application comprises various services (i.e., microservices) that may be deployed at dif-
ferent stages for distinct installations. Using a particular node within the continuum stage
involves deploying services. If this stage is not used in a given installation, this service
must be deployed elsewhere in another stage. IoTDeploy extends the traditional contin-
uous integration and continuous delivery (CI/CD) approach by implementing a pipeline
for deploying different configurations of the same application across the continuum.

3. Challenges in Application Development and Deployment

Application development for the IoTinuum presents several challenges. First, the dis-
tributed nature of the IoT ecosystem, the massive number of heterogeneous connected
devices, and their mobility patterns increase development complexity. Second, while
a microservice architecture offers advantages over monolithic designs, developers must
still define the number, roles, and boundaries of microservices and manage their commu-
nication. An increasing number of microservices leads to more complex orchestration.
Third, microservices must run across highly diverse environments, from constrained de-
vices to powerful cloud servers. Although containers (e.g., Docker) facilitate portability,
they remain limited on specific resource-constrained devices.

Application deployment across the IoTinuum introduces additional challenges.
Applications composed of multiple microservices must span infrastructure from S1-Thing
to S5-Cloud, requiring efficient resource orchestration to meet quality-of-service expec-
tations. Deployment configurations may vary depending on the available infrastructure
(e.g., with or without fog nodes). Furthermore, deployments can be static (where services
are placed at specific stages per installation) or dynamic (where services migrate between
stages, e.g., from S3-Fog to S5-Cloud) based on runtime conditions, while preserving
data integrity.

These challenges are tightly interconnected: development influences deployment,
as complex microservice-based designs demand sophisticated static and dynamic deploy-
ment strategies; conversely, deployment constrains development, since the need to operate
across the IoTinuum drives finer-grained service decomposition. Thus, a unified approach
that jointly addresses development and deployment across the IoTinuum becomes essen-
tial.

These challenges are tightly interdependent: development shapes deployment, as
building applications composed of multiple microservices demands sophisticated static
and dynamic deployment strategies; conversely, deployment shapes development, since
the need to operate across the diverse stages of the IoTinuum pushes developers toward
increasingly complex microservice-based designs. Consequently, a unified solution that
integrates development and deployment across the IoTinuum becomes essential.

4. Distributed Applications for the IoT Computing Continuum
DATUM (Distributed Applications for the IoTinuum) [Kamienski et al. 2025] is a
framework for the integrated development and deployment of distributed smart appli-
cations for the IoTinuum. The DATUM Architecture (D-Architecture) introduces a
structured view of DATUM considering the challenges in the smart application devel-
opment and deployment. D-Architecture is contextualized by its environment, called
D-Environment.

4.1. DATUM Architecture and Lifecycle

The big picture of D-Architecture is represented by D-Environment (Figure 1), a com-
puting environment where a DATUM -enabled application runs in the dataplane and an
external controller. D-Environment is centered around the Life Cycle, the Applications,
the Platform, the Continuum, and the Controller.

D-LifeCycle represents the D-Architecture development and deployment life
cycle. Figure 2 depicts D-LifeCycle where rectangles represent processes (D-Process)
and ellipses represent artifacts (D-Artifact). D-LifeCycle comprises three processes
(or phases): D-Develop: the DATUM Development Process; D-Deploy: the DATUM
Deployment Process; D-Execute and D-Monitor: the DATUM Execution and Moni-
toring Processes.

4.2. D-Application: DATUM Smart Applications

A Smart Application is a runtime instance of all software components deployed within
a distributed computing infrastructure (hardware and communication), addressing a spe-
cific area or vertical, such as cities, agriculture, healthcare, or industry. Using various

D-Environment

D-Application

D-Platform

D-Controller D-ContinuumD-LifeCycle

Figure 1. DATUM Environment for Smart Applications

D-Graph

D-Develop

D-Script

D-Compile

D-Continuum

D-Map

D-Deploy

D-ExecuteD-Monitor

D-Running

D-SLA

Figure 2. DATUM Application Development, Deployment, Execution, and Moni-
toring Life Cycle

technologies combined, such as IoT, cloud computing, AI/ML, and network softwariza-
tion, enables the development of a myriad of new smart applications.

D-Application is the application logic for D-Architecture comprising all pieces
of code needed to implement the required functionality for a smart application. Like a da-
tum is a single piece of data, the abstract DATUM code is a single, logically centralized

entity that can be deployed and physically distributed across various nodes at different
stages of the D-Continuum. These codes enable the development and deployment of di-
verse Smart Applications (e.g., smart cities or smart farming) with varying requirements
(e.g., latency or privacy) and use cases spanning different categories (e.g., federated learn-
ing or autonomous operation).

The key feature of D-Application is its centralized nature: it is developed as
a monolith composed of a set of functions distributed across the continuum via static (at
compilation time) or dynamic (at deployment time) processes. In principle, any DATUM
piece of code can be deployed over any D-Continuum stage unless it plays a role that
depends on specific hardware or location (e.g., reading sensor data).

The D-Application centralized code is called D-Script which is a set of func-
tions called D-Function. The management of a D-Application belongs to the DATUM
Life Cycle (D-LifeCycle) and involves the processes for application development
(D-Develop) and deployment (D-Deploy).

Figure 3. The DATUM Architecture

4.2.1. D-Platform: The DATUM Platform

D-Platform is the DATUM underlying platform providing the environment that exe-
cutes a D-Application. D-Platform is composed by three sub-platforms, D-Engine,
D-Forward, and D-Monitor. D-Engine is the DATUM distributed Engine that runs
D-Application over D-Continuum, comprised of a set of D-Node. A D-Node has
multiple functions in D-Architecture, particularly running D-Graph composed of a set
of D-Serv. The implementation of D-Node varies depending on the language used for

D-Serv. For example, in case WebAssembly (WASM) [Rossberg 2024] is selected as the
D-Serv code (called D-Code), a D-Node may be a WASM runtime, e.g., WasmTime
[Alliance 2024], augmented with communication and management capabilities.

D-Forward is an IoT compound platform (or middleware) that forwards data
from S1-Thing to S5-Cloud and back, composed of a set of D-IoT running on different
D-Continuum stages. The function, placement, and chaining of different D-IoT over
D-Continuum make the end-to-end data path that interconnects the set of D-Serv be-
longing to a D-Graph. The multiple D-IoT composing D-Forward may have different
natures, such as brokers (e.g., MQTT or Zenoh) or LoRaWAN servers, which may or may
not be connected to IoT Platforms, such as FIWARE or ThingsBoard.

4.2.2. D-Controller: The DATUM Controller

D-Controller is a control plane entity that manages all DATUM centralized control-
plane processes, mainly D-Deploy described further in Section 6. The role of
D-Controller is similar to that of an SDN controller, which, by the way, is also used
in IoT and fog/edge computing to address IoT’s main challenges. Similarly to SDN,
D-Controller is logically centralized but can be physically distributed.

5. D-Develop: the DATUM Development Process

D-Develop is the process of D-Application software development that generates a
D-Script as its main outcome. IoT Smart Application developers may rely on a va-
riety of methods and tools to perform the D-Develop process, which is orthogonal to
D-Architecture. Therefore, we consider these methods to be related but outside the
scope of DATUM .

5.1. D-Script: the DATUM Script

D-Script is a monolith-distributed-style development for D-Continuumthat generates
serverless services as an output [De Palma et al. 2023]. The application development
process is similar to a monolith, with FaaS (Function as a Service) functions con-
nected. D-Script comprises a set of D-Function that run as distributed pieces of code.
D-Function may have annotations representing non-functional requirements, such as
SLA/QoS and security/privacy.

D-Script D-Function1

D-Function5

D-Function2 D-Function3 D-Function4

D-Function6

Figure 4. D-Script and D-Function

5.2. D-Graph: The DATUM Graph

A D-Graph is an application graph comprising a set of communicating D-Serv. For-
mally, a D-Graph is defined as G = (V,E) where V is a set of D-Serv =
(D-Serv1, . . . , D-Servs), s = |D-Serv| and E is a set of service invocations (aka
D-Call) between pairs of D-Serv in the form D-Callij = D-Servi → D-Servj ,
i, j = 1..s. A D-Serv is a serverless service that runs on different D-Continuum stages,
respecting its role. For example, a D-Serv that collects sensor data is intended to run in
S1-Thing. Also, different granularities of D-Serv may compose a D-Application such
as:

• Microservices: a traditional view of the microservice architecture, but with FaaS.
• Nanoservices: fine-grained microservices specialized for a single type of hard-

ware resource [Wang et al. 2021]
• Picoservices: tiny services that run in severely resource-constrained devices.
• Netservices: In-network services that run in switches and network interfaces via

data plane programming languages, such as P4, and collaborate with distributed
application processing in the IoTinuum.

D-Code is the D-Serv executable code in an architecture-independent language
that any D-Node can run in a DATUM Application. A strong candidate is We-
bAssembly (WASM) [Rossberg 2024], initially developed for web browsers, but increas-
ingly proposed for applications running in the continuum [Kakati and Brorsson 2023,
Zhang et al. 2024].

D-Graph D-ServD-Serv D-Serv D-Serv D-Serv

D-Serv

D-Serv

D-Serv

D-Serv

D-Serv

D-Code

Figure 5. D-Graph, D-Serv and D-Code

5.3. D-Compile: The DATUM Compiler

D-Compile compiles a D-Script, which contains a set of D-Function, into a D-Graph,
which contains a set of D-Serv. In addition to the straightforward task of generating
D-Code from D-Function D-Compile also maps D-Function to D-Serv according
to different styles, requirements, preferences, and constraints. Figure 6 depicts different
D-Function to D-Serv mapping styles, which may be as straightforward as 1 : 1, but

one D-Function may be split into N D-Serv (1 : N), several M D-Function may be
grouped to form a single D-Serv (M : 1), or even a group of M D-Function may be
mapped to a different group of N D-Serv (M : N).

D-Function

D-Serv

D-Function

D-ServD-Serv D-Serv

D-Function D-Function

D-ServD-Serv D-ServD-Serv

D-Function D-Function

a) 1:1 b) 1:N c) M:1 d) M:N

Figure 6. Mappings from D-Function to D-Serv

6. D-Deploy: The DATUM Deployment Process
D-Deploy involves the process of D-Application deployment and dynamic redeploy-
ment over D-Continuum.

6.1. D-Continuum: The DATUM Continuum

D-Continuum is the specification of the supported IoTinnum configuration for a specific
D-Application, comprising stages, substages, and elements, together with their charac-
teristics, constraints, and requirements.

S3-FogS2-Mist S6-AppS4-Cloudlet S5-CloudS1-Thing

S11

S12

S13

S14

S15

S16

S21

S22

S23

S41

S42

S43

S51

S52

S31

S32

S33

S34

S61

S62

S63

Figure 7. D-Continuum: D-Stage and D-Substage

• D-Stage: Represent different locations, distance to devices, and number of ele-
ments.

• D-Substage: Represent categories of computing equipment for the same
D-Stage, for example: a) different devices implementing S1-Thing, such as Ar-
duino and ESP32, or b) different geographical coverage, such as areas of a city or
fields of a farm.

• D-Element: any instance of physical equipment or device that runs the DATUM
Architecture in a D-Stage. For example, if a D-Application uses 100 ESP32 for
S1-Thing, each device is a D-Element.

As an example, Figure 8 depicts an S1-Thing D-Stage with two D-Substage Ar-
duino and ESP32, each with four D-Elements.

S1-Thing

S11 Arduino

S12 ESP32

S1-Thing

S11 Arduino

S12 ESP32

D-Stage

D-Substage

D-Element

Figure 8. D-Continuum: example of D-Stage, D-Substage, and D-Element

6.2. D-Node vs. D-Serv
Each D-Node is associated with a specific D-Continuum D-Stage or D-Substage.
Since D-Continuum stages are not equal concerning their resources, D-Node must
comply with the underlying hardware (e.g., a D-Node running on S1-Thing differs from
another D-Node running on S5-Cloud).

Figure 9 depicts the three ways a group of D-Serv can communicate with each
other. Figure 9a) shows a scenario in which all D-Serv have APIs that others can access,
so communication is always direct between them. Figure 9b) shows the scenario in which
D-Serv lacks APIs, so all communication must go through the D-Node. Also, Figure
9c) depicts a hybrid situation in which some D-Serv have APIs, while others must rely
on their D-Node.

7. Use Case: Drone Delivery Service
A smart drone delivery application utilizes Unmanned Aerial Vehicles (UAVs), also
known as drones, to deliver packages in urban areas, replacing traditional terrestrial ve-
hicles [de Oliveira et al. 2023]. Fig. 10 illustrates a drone delivery service utilizing a 6-
stage IoTinuum, where the distributed computing stages collaborate to facilitate efficient
and safe flights. Drones are modeled at the edge as mobile S2-Mist components that ag-
gregate built-in sensors in S1-Thing (inside the drone), such as a camera, GPS, and Light
Detection and Ranging (Lidar) for detecting other drones. Drones can communicate with
the distribution center control (S3-Fog) using Wi-Fi for takeoff and landing sequencing
[Soares et al. 2023, Soares et al. 2025]. Also, they can communicate with drone support
units (DSU) provided by the 5G (or even 6G in the future) operator in the S4-Cloudlet. In
this use case, the S4-Cloudlet is crucial for enabling drones to avoid collisions and share
relevant information with each other. Distribution centers (S3-Fog) can also communicate
with DSUs (S4-Cloudlet) to coordinate the delivery service. End-users and management
personnel access the service via the S6-App. S3-Fog and S4-Cloudlet communicate with
S5-Cloud to collaborate on various activities, including collision avoidance.

We model the issue of collision avoidance in a smart drone delivery service to
exemplify the use of the IoTinuum and D-Architecturecan be a valuable tool for un-
derstanding the challenges of smart applications for urban computing. As this scenario

S5-CloudS3-FogS1-Thing

D-Node3D-Node2D-Node1

D-Serv3

A
P
I

D-Serv2

A
P
I

D-Serv1

A
P
I

S5-CloudS3-FogS1-Thing

D-Serv3D-Serv2D-Serv1

D-Node3

A
P
I

D-Node2

A
P
I

D-Node1

A
P
I

a) Direct communication between D-Serv via D-ServAPI

b) Indirect communication between D-Serv via D-NodeAPI

S5-CloudS3-FogS1-Thing

D-Serv3D-Serv2D-Serv1

D-Node3

A
P
I

D-Node2

A
P
I

D-Node1

A
P
I

c) Hybrid Direct/Indirect communication between D-Serv via D-ServAPI andD-NodeAPI

A
P
I

A
P
I

A
P
I

A
P
I

Figure 9. D-Serv Direct and Indirect Communication

represents a future service that is not yet implemented, only the set of D-Serv belonging
to D-Application is modeled. Fig. 11 expands the basic modeling of Fig. 10 with ex-
amples of D-Serv needed in each stage for delivery management and collision avoidance
activities. Services needed in all stages are:

• S1-Thing: control services for sensors and actuators: Engine control, Cargo con-
trol, Lidar collector, Battery collector;

• S2-Mist: services running in the drone’s single-board computer that control the
flight, operate the delivery, and perform collision avoidance: Flight Control, De-
livery Operation, Battery Control, Takeoff and Landing in Distribution Center,
Detour, Collaborative Detour, Collision Avoidance;

• S3-Fog: Manages the operations of the distribution center, i.e., delivery control
and takeoff and landing sequencing: Delivery Schedule, Takeoff and Landing
Management, Landing Operation, Takeoff operation;

• S4-Cloudlet: Processes functions to help drones engage in collaborative collision
avoidance: Collaboration Management, Swarm, Consensus, Collision Avoidance
Management;

• S5-Cloud: Contains functions for delivery and collision avoidance manage-

Figure 10. IoTinuum for Smart Drone Delivery

ment: Delivery Management, Collaboration Management, Path Planning, Colli-
sion Avoidance Management, Airspace Policy, Logistic Operator;

• S6-App: presents a graphical interface where a Delivery Controller supervises the
delivery management activities and interacts with Delivery Mgmt in S5-Cloud.

8. Considerations for Internet Standardization
The evolution of the IoT computing continuum and the DATUM framework demand
architectural and operational guidance to support seamless deployment, execution, and
adaptation of distributed smart applications. While the current Internet architecture,
protocols, and service orchestration mechanisms provide many foundational capabili-
ties, there is still limited standardization addressing how computation, data, and con-
trol should be consistently distributed from constrained devices to cloud and application
layers. Inspired by the architectural direction outlined in RFC 9556 [Hong et al. 2024],
which frames the computing continuum as an integral part of the Internet model, this work
proposes to advance a complementary view focused specifically on smart-application de-
ployment and execution across heterogeneous IoT environments.

To support this vision, an Internet-Draft is being prepared to formalize conceptual
models, terminology, and architectural components for function distribution, deployment,
and execution across the IoT continuum. This draft aims to establish common principles
for service decomposition, placement, portability, and lifecycle control that reflect opera-
tional realities encountered in multi-layer IoT environments. The intent is not to prescribe

S3-FogS1-Thing S2-Mist S5-Cloud S6-App

Drone
Sensor

Delivery
Engine

S4-Cloudlet

Distribution
Center

Cargo

D D 5G 6G

Drone
Support Unit Regulator

Battery
Another
Operator

Delivery
Controller

Figure 11. DATUM for Smart Drone Delivery

specific implementation mechanisms or technologies, but rather to provide an architec-
tural foundation and vocabulary upon which interoperable mechanisms, open interfaces,
and future protocols may be built.

By defining a reference model and clarifying deployment-oriented roles across
the continuum, this effort contributes to the broader goal of ensuring that IoT systems
evolve in a manner consistent with Internet architectural principles, promoting interoper-
ability, openness, and innovation while supporting a scalable, programmable application
deployment ecosystem.

9. Conclusion
This paper introduces DATUM, a framework that enables unified development, compila-
tion, and deployment of smart applications across the IoT computing continuum through a
monolith-distributed programming model and structured abstractions for application logic
and infrastructure. A drone-delivery scenario illustrated how DATUM distributes func-
tions across sensors, edge, cloudlets, and the cloud, demonstrating its potential to support
systematic, scalable continuum-based deployments. Future work includes implement-
ing and validating the framework in real environments, incorporating automated function
placement and orchestration, and advancing toward reference models and standards for
IoT continuum application deployment.

References
Alliance, B. (2024). Wasmtime: A fast and secure runtime for webassembly. Accessed

on June 17, 2024.

Borelli, F., Biondi, G., Horita, F., and Kamienski, C. (2020a). Architectural software pat-
terns for the development of iot smart applications. arXiv preprint arXiv:2003.04781.

Borelli, F. F., Biondi, G. O., and Kamienski, C. A. (2020b). Biota: A buildout iot appli-
cation language. IEEE Access, 8:126443–126459.

de Oliveira, F. M., Bittencourt, L. F., Bianchi, R. A., and Kamienski, C. A. (2023). Drones
in the big city: Autonomous collision avoidance for aerial delivery services. IEEE
Transactions on Intelligent Transportation Systems.

De Palma, G., Giallorenzo, S., Trentin, M., and Vjerdha, G. (2023). A framework for
bridging the gap between monolithic and serverless programming. In Microservices
2023: 5th International Conference on Microservices, pages 1–7. Microservices Com-
munity.

Hong, J., Hong, Y., de Foy, X., Kovatsch, M., Schooler, E., and Kutscher, D. (2024).
Internet of things (iot) edge challenges and functions: Rfc 9556. Internet Research
Task Force (IRTF).

Kakati, S. and Brorsson, M. (2023). Webassembly beyond the web: A review for the edge-
cloud continuum. In 2023 3rd International Conference on Intelligent Technologies
(CONIT), pages 1–8. IEEE.

Kamienski, C., Zyrianoff, I., Bittencourt, L., and Di Felice, M. (2024). Iotinuum: The iot
computing continuum. In 21st International Conference on Distributed Computing in
Smart Systems and the Internet of Things (DCOSS-IoT 2024), pages 1–6.

Kamienski, C. A., Zyrianoff, I., Xue, L., and Felice, M. D. (2025). Distributed smart
agriculture monitoring over the IoT computing continuum. In 2025 IEEE International
Workshop on Metrology for Agriculture and Forestry (MetroAgriFor), Italy.

Moreschini, S., Pecorelli, F., Li, X., Naz, S., Hästbacka, D., and Taibi, D. (2022). Cloud
continuum: the definition. IEEE Access, 10:131876–131886.

Oliveira, F. B., Di Felice, M., and Kamienski, C. (2024). Iotdeploy: Deployment of iot
smart applications over the computing continuum. Internet of Things, 28:101348.

Rossberg, A. (2024). Webassembly specification - release 2.0 (draft 2024-01-17).

Soares, L. D. P., De Oliveira, F. M., Kamienski, C. A., and Bittencourt, L. F. (2023).
Drone edge management system (drems): Sequencing drone takeoff and landing. In
2023 10th International Conference on Future Internet of Things and Cloud (FiCloud),
pages 114–121. IEEE.

Soares, L. D. P., De Oliveira, F. M. C., Kamienski, C. A., and Bittencourt, L. F. (2025).
Edge4drone: Managing landings and takeoffs in high-density distribution centers. In
IEEE INFOCOM 2025-IEEE Conference on Computer Communications Workshops
(INFOCOM WKSHPS), pages 1–6. IEEE.

Wang, X., Yuan, T., Huang, Y.-J., and van Renesse, R. (2021). Disaggregated applications
using nanoservices. In Second Workshop On Resource Disaggregation and Serverless
(WORDS 2021). ACM.

Zhang, Y., Liu, M., Wang, H., Ma, Y., Huang, G., and Liu, X. (2024). Research on
webassembly runtimes: A survey. arXiv preprint arXiv:2404.12621.

Zyrianoff, I., Heideker, A., Silva, D., Kleinschmidt, J., Soininen, J.-P., Salmon Cinotti,
T., and Kamienski, C. (2020). Architecting and deploying iot smart applications: A
performance–oriented approach. Sensors, 20(1):84.

