
Mapping the Future of OAuth: Insights from the IETF WG
Michel Bonfim1, Marcelo Santos2, Julião Braga3

1Universidade Federal do Ceará (UFC) – Campus Quixadá
Quixadá – CE – Brasil

2Instituto Federal do Sertão Pernambucano – Campus Salgueiro
Salgueiro – PE – Brasil

3Universidade Federal do ABC (UFABC)
São Paulo – SP – Brasil

michelsb@ufc.br, marcelo.santos@ifsertao-pe.edu.br, j@braga.net.br

Abstract. This paper provides a systematic overview and in-depth analysis of
the key active Internet-Drafts within the Internet Engineering Task Force (IETF)
OAuth Working Group (WG). By focusing on proposals that have achieved con-
sensus (WG Call for Adoption), we identify the core trends shaping the future of
the OAuth 2.0 protocol, with a strong emphasis on security enhancements, user
privacy, and granular authorization.

1. Introduction
OAuth 2.0, formalized in the specifications RFC 6749 (The Framework) and RFC 6750
(Bearer Token Usage) [Hardt 2012, Jones and Hardt 2012], has consolidated its position
as the industry-standard protocol for delegated authorization. Its modular and extensible
architecture has driven widespread adoption in scenarios ranging from large social and
financial platforms to microservices architectures and Internet of Things (IoT) (Internet
of Things) device ecosystems. However, the open nature of the internet and the rapid
pace of innovation and security threats demand a continuous evolution of its security
mechanisms and functionalities.

The OAuth WG1 of the IETF conducts this process of refinement and standard-
ization. The WG serves as the central forum responsible for identifying vulnerabili-
ties—such as the historical redirect security issue that led to the development of Proof
Key for Code Exchange (PKCE) (RFC 7636) [Sakimura et al. 2015]—and for creat-
ing new extensions, such as Demonstration of Proof-of-Possession (DPoP) (RFC 9449)
[Fett et al. 2023]. This work ensures the protocol remains secure against emerging threats
and supports new use cases and operating environments.

The OAuth WG has a rich history of standardization, with the turning point
being the publication of OAuth 2.0 in 2012 (RFC 6749 and RFC 6750) [Hardt 2012,
Jones and Hardt 2012]. Since then, the WG has actively worked on creating Best Current
Practices (BCPs) and launching the OAuth 2.1 initiative [Hardt et al. 2025] to unify and
simplify the core specification.

Despite this evolutionary trajectory, the inherent complexity of the base proto-
col and its vast ecosystem of 33 published RFCs and 14 active Internet-Drafts (as of

1https://datatracker.ietf.org/wg/oauth/about/

November 2025) presents a significant challenge for researchers and implementers. Fur-
thermore, the protocol’s development requires continuous engagement with other groups,
such as the Authentication and Authorization for Constrained Environments Working
Group (ACE WG)2 and the Drone Remote Identification Protocol Working Group (DRIP
WG)3, underscoring the challenge of satisfying new interoperability requirements, partic-
ularly regarding OpenID Connect (OIDC).

In the face of this documentation dispersion, this work provides a systematic,
prospective survey focused exclusively on the active Internet-Drafts within the WG, serv-
ing as a strategic guide to the evolution of OAuth 2.0, providing a structured overview of
its ongoing development. The analysis identifies the future trajectory of OAuth 2.0 based
on three core contributions:

1. Technological Trends: Mapping the evolution towards Security by Default (OAuth
2.1, PKCE) and Privacy by Design (Selective Disclosure for JSON Web Tokens
(SD-JWT), Verifiable Credentials (VCs)).

2. Security Challenges: Analyzing new mitigation strategies, including Software
Attestation, mandatory Proof-of-Possession (DPoP), and resolutions for critical
IETF 124 risks (e.g., Server-Side Request Forgery (SSRF) and Code Invalidation).

3. New Application Areas: Delimiting the protocol’s expansion into complex con-
texts, such as Cross-Domain Chaining [Schwenkschuster et al. 2025] and con-
strained IoT/Machine-to-Machine (M2M) environments (ACE WG, Transaction
Tokens (TTs)), while addressing Multi-instance Scalability challenges.

The rest of this paper is organized as follows. Section 2 establishes the method-
ology, centering on the 14 adopted Drafts. Section 3 then structures the organization of
drafts by category. Section 4 delivers a detailed analysis within each thematic group. Sec-
tion 5 describes key concepts such as SD-JWT and TTs. Section 6 presents a summary of
the identified trends and gaps. Finally, Section 7 concludes with a final synthesis.

2. Methodology and Scope
This survey is designed to reflect the most probable future trajectory of the OAuth proto-
col. The methodology focuses on documents that have achieved a formal level of consen-
sus within the OAuth WG.

2.1. Defining the Scope of Active Documents

This survey is strictly limited to the 14 active Internet-Drafts listed in the
IETF DataTracker [Hardt et al. 2025, Looker et al. 2025a, Kasselman et al. 2025,
Fett et al. 2025, Terbu et al. 2025, Tulshibagwale et al. 2025a, Looker et al. 2025c,
Parecki et al. 2025e, Parecki et al. 2025a, Parecki et al. 2025d, Parecki and Smith 2025b,
Schwenkschuster et al. 2025, Sheffer et al. 2025, Jones et al. 2025] under the OAuth
WG that have passed the WG Call for Adoption, and whose status was verified as of
November 2025. The decision to exclude individual drafts (those not formally adopted
by the WG) is justified because the WG adoption process signals that the proposal has
reached a minimum consensus and is considered essential for the protocol’s future.

2https://datatracker.ietf.org/group/ace/about/
3https://datatracker.ietf.org/group/drip/about/

https://datatracker.ietf.org/group/ace/about/
https://datatracker.ietf.org/group/drip/about/

Individual drafts, while numerous, represent ideas still in the initial discussion stages and
have a much lower probability of becoming a final RFC. These documents represent the
areas of greatest focus and time investment by the group. Each draft was categorized
thematically to facilitate trend analysis.

3. Draft Categorization

To facilitate the identification of key trends and innovation areas, the 14 adopted Internet-
Drafts were grouped into five main thematic categories. This categorization, presented in
Table 1, allows for a structured view of the WG’s primary areas of focus.

Table 1. Thematic Classification of Active Internet-Drafts in the OAuth WG

Category Main Focus Related Drafts
Core Consolidation
and Evolution

Updating and simplifying the
main framework (OAuth 2.0 to
2.1).

[Hardt et al. 2025]

Advanced Security
and Authentication

Client authentication mecha-
nisms and proof of possession.

[Looker et al. 2025a],
[Kasselman et al. 2025]

Advanced Tokens and
Credentials

Use of JSON Web Tokens
(JWTs), verifiable credentials,
and new token types.

[Fett et al. 2025],
[Terbu et al. 2025],
[Tulshibagwale et al. 2025a],
[Looker et al. 2025c]

Specific Use Cases
and Flows

Applications in browsers, de-
vices, and first-party apps.

[Parecki et al. 2025e],
[Parecki et al. 2025a]

Metadata and Interop-
erability

Discovery and chaining of
identity/authorization, RFC
updates.

[Parecki and Smith 2025b],
[Schwenkschuster et al. 2025],
[Sheffer et al. 2025], ,
[Parecki et al. 2025d],
[Jones et al. 2025]

4. Detailed Analysis by Category

This section provides a detailed analysis of the drafts within each thematic category, de-
scribing each document’s purpose, problem addressed, and proposed solution. The inclu-
sion of each draft is justified based on its primary focus area, which drives the current
evolution of OAuth 2.0.

4.1. Core Consolidation and Evolution

This category focuses on efforts to modernize and simplify the core OAuth 2.0 pro-
tocol, aiming for a single, unified standard. The OAuth 2.1 Authorization Frame-
work [Hardt et al. 2025] represents the mandatory consolidation of security best prac-
tices developed since the publication of the core OAuth 2.0 specifications [Hardt 2012,
Jones and Hardt 2012]. Its primary goal is to simplify the standard, enhance security by
default, and eliminate historically insecure patterns.

The following elements of the original OAuth 2.0 specification are explicitly dep-
recated and removed from OAuth 2.1:

• Implicit Grant Flow (RFC 6749, Section 4.2): Removed entirely due to its vulner-
ability to token leakage via the URL fragment and its inability to enforce PKCE
(Proof Key for Code Exchange).

• Resource Owner Password Credentials (ROPC) Grant Flow (RFC 6749, Section
4.3): Removed because it requires the client application to handle the user’s plain-
text credentials, presenting a high security risk. It should be replaced by more
secure methods, such as the Authorization Code flow or OIDC.

• Bearer Token Usage in URL Query Parameters (RFC 6750): Transmitting Bearer
Tokens via URI query parameters is forbidden as it leaks tokens into server logs
and browser history. This prohibition, though existing, is made explicit and
mandatory in OAuth 2.1.

It is worth mentioning that, while technically an extension (RFC 7636) in OAuth
2.0, PKCE is mandatory for all public clients using the Authorization Code flow in OAuth
2.1, effectively removing the option for public clients to omit it. Moreover, OAuth 2.1 es-
sentially boils down the authorization process to two primary, secure flows: the Authoriza-
tion Code Grant with PKCE (for clients with a user interface) and the Client Credentials
Grant (for M2M authorization). We describe both flows below.

The Authorization Code flow is the recommended standard for clients capable of
interacting with the resource owner’s User Agent (UA) (browser), such as Single-Page
Applications (SPAs), mobile apps, and traditional web applications. The inclusion of
PKCE ensures security even for public clients that cannot maintain a confidential secret.
The flow, detailed in Figure 1, operates as follows:

Figure 1. Authorization Code Grant Flow with PKCE: The standard flow for del-
egated authorization in OAuth 2.1, securing public clients via the use of
code verifier and code challenge.

1. C → Authorization Server (AS): Authorization Request with Code Challenge
(H(S)). The Client (C) initiates the flow by redirecting the UA to the AS. The re-
quest includes the generated code challenge (H(S)) and a redirect uri.

2. AS → C: Authorization Code (Code). After the Resource Owner (RO) authen-
ticates and grants consent, the AS issues a short-lived Authorization Code and
redirects the UA back to the Client’s redirect uri.

3. C → AS: Token Exchange Request with Code Verifier (S). The Client sends a
back-channel request directly to the AS’s token endpoint. This request contains
the Code received in Step 2 and the original, unhashed code verifier (S).

4. AS → C: Access Token. The AS validates the Code, calculates the hash of the
received S, and verifies it matches the stored H(S). If validation succeeds, the AS
issues the Access Token (and optionally a Refresh Token).

Finally, the Client Credentials flow is designed exclusively for M2M authoriza-
tion, where the client (typically a server or backend service) is acting on its own behalf,
controlling resources it owns, or acting as an application layer. This flow is always used
by Confidential Clients (those capable of protecting a secret) and is not used for delegated
user authorization. Figure 2 illustrates this flow. It operates as follows:

Figure 2. Client Credentials Grant Flow. A simple M2M flow where the Confiden-
tial Client authenticates itself directly to the AS to obtain an Access Token.

1. C → AS: Token Request with Client Credentials. The Confidential Client (C)
sends a request directly to the AS’s token endpoint. This request is authenti-
cated using the Client’s own credentials (client id and client secret)
and specifies the grant type as client credentials.

2. AS → C: Access Token. The AS verifies the Client’s credentials. If valid, it
immediately issues an Access Token corresponding to the permissions granted to
the client application itself (and not a user).

4.2. Advanced Security and Authentication

These drafts seek to raise the security baseline by introducing robust client authentica-
tion mechanisms and improving practices for complex, high-risk flows, such as those
involving multiple devices. This category includes drafts that go beyond the basic PKCE
requirement.

The Attestation-Based Client Authentication draft [Looker et al. 2025a] addresses
the problem that traditional client authentication methods fail to prove the integrity of the
client software itself. Its proposed solution defines a method using software attestation
to provide cryptographic proof of client integrity, ensuring the client is genuine and not

a malicious imitation. This elevates authentication from proving identity to proving the
integrity of the client environment.

The Cross-Device Flows: Security Best Practices draft [Kasselman et al. 2025]
targets the security challenges inherent in multi-device authorization flows, which intro-
duce attack vectors like phishing and Denial-of-Service (DoS). The solution outlines best
practices for mitigating these risks in cross-device authorization flows, thereby enhancing
overall user security when interacting across multiple devices.

4.3. Advanced Tokens and Credentials

This category encompasses innovations focused on the format, use, and management of
access tokens, emphasizing privacy, fine-grained control, and efficient revocation in dis-
tributed systems.

The SD-JWT draft [Fett et al. 2025] solves the privacy problem where traditional
JWTs exposes all claims, even those unnecessary for the verification step. SD-JWT en-
ables selective disclosure of claims by the token holder, allowing the verifier to validate
only the necessary claims without accessing the full token payload, thereby preserving
privacy.

The SD-JWT-based VCs draft [Terbu et al. 2025] builds upon the SD-JWT work
by specifying formats and validation rules for using SD-JWT to structure VCs. This
addresses the need for a secure, standardized format that integrates selective disclosure
capabilities into VCs.

The TTs draft [Tulshibagwale et al. 2025a] addresses the limitation of broad au-
thorization scopes by defining a new token type. These tokens represent specific actions
(e.g., transfer $X to account Y) rather than broad scopes, enabling fine-grained, context-
aware authorization policies.

Finally, the Token Status List (TSL) draft [Looker et al. 2025c] tackles the issue
of inefficient token revocation in distributed environments. The proposed solution defines
a standardized format for publishing lists of revoked or suspended tokens, streamlining
the revocation status check.

4.4. Specific Use Cases and Flows

These drafts provide tailored security guidance and protocol definitions for specific ap-
plication environments, acknowledging that different client types have unique security
requirements and usage patterns.

The OAuth for Browser-Based Applications draft [Parecki et al. 2025e] specifi-
cally addresses the unique security challenges faced by SPAs running in web browsers. It
describes best practices and mandatory configurations for OAuth flows tailored to SPAs.

The OAuth for First-Party Applications draft [Parecki et al. 2025a] recognizes
that applications owned by the resource provider (first-party apps) have different secu-
rity needs and dynamics compared to third-party applications. The draft provides best
practices tailored to secure these first-party apps.

4.5. Metadata and Interoperability

This category encompasses efforts aimed at improving the discovery of client and AS
capabilities, enhancing interoperability, and updating existing security-critical specifica-
tions to reflect current best practices.

The Client ID Metadata Document draft [Parecki and Smith 2025b] addresses the
lack of a standardized way for clients to publish their metadata. The draft defines a
standard format and discovery mechanism for client metadata, which aids authorization
servers in client registration and management.

The Identity and Authorization Chaining draft [Schwenkschuster et al. 2025] fo-
cuses on the complexity involved in chaining identity and authorization across multiple
distinct domains or services. It specifies methods for securely linking and chaining these
processes.

The JWT Client Authentication and Assertion Grants Update draft
[Jones et al. 2025] updates RFC 7523 with improvements and clarifications regard-
ing the usage of JWTs in client authentication and assertion grants. This refinement is
decisive for systems relying on JWTs for client identity and delegation.

The Identity Assertion JWT Authorization Grant (ID-JAG) draft
[Parecki et al. 2025d] defines a standardized grant type using JWT identity asser-
tions. This addresses the need for a standardized flow that allows a client to request a
token based on an existing, verified identity assertion.

Finally, the JWT Best Practices Update draft [Sheffer et al. 2025] serves to update
RFC 8725 with new best practices and guidance related to the security of JWTs, reflecting
evolving security challenges.

5. Key Technical Concepts

The active drafts introduce or formalize several technical concepts fundamental to the
next generation of OAuth 2.0. The primary mechanisms driving innovation in security
and privacy are described in detail below.

5.1. PKCE (Proof Key for Code Exchange)

PKCE is a security mechanism introduced by RFC 7636 [Sakimura et al. 2015] and is
now mandatory in OAuth 2.1 [Hardt et al. 2025]. Its purpose is to mitigate authorization
code interception attacks common in public clients, such as mobile or SPAs. Figure 3
shows how PKCE works.

The PKCE is a multi-step process involving the Client (C) and the AS. The
client starts the process by dynamically generating a highly secret, single-use string, the
code verifier (S) (Step 1). The client then calculates a hashed version of this secret,
the code challenge (H(S)), and sends this hash to the AS along with the authoriza-
tion request (Step 2). The AS securely stores the H(S) (Step 3) and redirects the user
back to the client with the Authorization Code (Code) (Step 4). To mitigate the risk of
interception, when the client attempts to exchange the code for an access token, it must
send the Code along with the original, unhashed code verifier (S) to the AS (Step
5). The AS performs a validation step by hashing the received code verifier (S) and

Figure 3. PKCE (Proof Key for Code Exchange) Flow: The client proves key pos-
session to prevent authorization code interception.

comparing the result with the stored H(S) (Step 6). Only if the hashes match does the AS
issue the Access Token to the client (Step 7), proving that the client receiving the token is
the same client that initiated the flow.

5.2. SD-JWT (Selective Disclosure for JWTs)
SD-JWT, detailed in draft [Fett et al. 2025], allows JWT token holders to selectively re-
veal only the necessary claims to a verifier, preserving privacy regarding the token’s re-
maining claims.

The Figure 4 illustrates the emission and selective disclosure process of an SD-
JWT. The flow begins when the Issuer creates the SD-JWT with certain claims crypto-
graphically hidden, then signs and emits it to the Holder (Step 1). The Holder decides
which specific claims are required by the Verifier and generates cryptographic proofs,
known as disclosures. The Holder then presents the SD-JWT along with these Selective
Disclosures to the Verifier (Step 2). The Verifier first checks the integrity of the credential
by verifying the SD-JWT Signature (Step 3). Simultaneously, the Verifier uses the pre-
sented Disclosures to reconstruct and validate the hashes of the selectively revealed claims
(Step 4). If both the signature and the integrity of the disclosed claims are proven to be
valid, the Verifier grants Access based on the necessary claims. If the proof is invalid,
access is denied.

This is particularly relevant for use in SD-JWT-based VCs [Terbu et al. 2025],
where privacy is paramount.

5.3. Attestation-Based Client Authentication
Attestation-Based Client Authentication, proposed in draft [Looker et al. 2025a], ad-
dresses the challenge of securely authenticating public clients by ensuring not only their

Figure 4. SD-JWT (Selective Disclosure for JWTs) Flow: Demonstrates the pro-
cess of issuing and selectively disclosing claims to preserve privacy.

identity but also their integrity. Traditional clients (like mobile or desktop apps) can have
their identity spoofed. Software attestation uses operating system security mechanisms
(e.g., Apple App Attest, Android Play Integrity) to generate cryptographic proof that the
client software is genuine and has not been tampered with. This proof is then used as
part of the client’s authentication to the AS. It ensures that the client is genuine and not a
malicious imitation.

Figure 5. Attestation-Based Client Authentication Flow: Use of cryptographic
proof of software integrity (Attestation) to authenticate the client.

The Figure 5 shows how attestation is incorporated into the authentication flow.

The flow starts with the Client (C) requesting an attestation from the operating system
or a trusted Attestation Service (OS) to confirm the application’s integrity (Step 1). The
OS returns a Cryptographic Proof (Attestation) to the Client (Step 2). The Client then
includes this Attestation Proof when requesting an access token from the AS (Step 3). The
AS first validates the authenticity of the Attestation Proof itself using the OS/Attestation
Service’s public key (Step 4). Next, the AS verifies that the proof specifically validates the
registered Client’s identity and software integrity (Step 5). If the integrity is proven, the
Access Token is issued; otherwise, an Authentication Error occurs, protecting the system
from spoofed clients.

5.4. Transaction Tokens TTs

The concept of TTs [Tulshibagwale et al. 2025a] is a response to the limitations of
broad scopes. Instead of a token granting general access (e.g., account.read or
account.write), a TT is tied to a specific action with exact parameters within a con-
textualized transaction (e.g., ”transfer $100.00 to account X”). This enables fine-grained,
context-aware authorization policies. This allows the Resource Server (RS) to apply much
more granular and contextual authorization policies, raising the security and auditability
level of operations.

Figure 6. TT Life Cycle: Life cycle of a TT, from the request (Rich Authorization
Request (RA)) to the transaction execution at the RS.

Figure 6 illustrates the life cycle of a TT. The TT flow enables granular, action-
specific authorization using a RA. The Client (C) initiates the process by sending an RA
(detailing the specific transaction, e.g., ”Transfer $100 to X”) to the AS (Step 1). The AS
processes the RA and obtains the RO’s consent specifically for the detailed transaction
(Step 2). The AS then mints a TT containing the precise authorized transaction details
and returns it to the Client (Step 3). The Client uses the TT to request the execution of the
transaction at the RS (Step 4). The RS validates the token’s signature (Step 5) and then

performs a critical check to verify that the transaction requested EXACTLY matches the
authorization coded in the TT (Step 6). Only if the token is fully valid for the transaction
is the transaction executed; otherwise, an error indicates the transaction is Not Authorized
due to a mismatch.

5.5. ID-JAG
The ID-JAG [Parecki et al. 2025d] defines a new OAuth 2.0 grant type crucial for dele-
gated authorization in complex, multi-domain environments. This grant type standardizes
the process where a client uses a JWT-based identity assertion (often an ID Token ob-
tained via Single Sign-On (SSO), e.g., OIDC) to request an Access Token from a separate
AS (typically a RS AS). ID-JAG is a profile of the Identity and Authorization Chaining
specification, designed to facilitate secure and standardized cross-domain delegation. Key
architectural challenges addressed by this proposal include ensuring Proof-of-Possession
(PoP) binding across the entire assertion and token chain, and supporting Multi-tenancy
and Multi-instance environments [Parecki et al. 2025c].

6. Trends and Gaps
The analysis of the active Internet-Drafts clearly identifies the main development direc-
tions for the OAuth 2.0 protocol and, simultaneously, areas that still require more attention
from the WG.

6.1. Emerging Trends
The analysis of the adopted drafts reveals three major developmental trends reflecting the
industry’s response to security vulnerabilities and the demand for enhanced user control
in decentralized identity environments.

• Security by Default - Raising the Minimum Baseline: This trend is centered on
transforming optional security extensions into mandatory features, drastically re-
ducing the attack surface. The core driver is the OAuth 2.1 [Hardt et al. 2025]
consolidation, which mandates PKCE [Sakimura et al. 2015] for all public clients
and removes insecure flows (Implicit Grant, ROPC). Furthermore, security is be-
ing extended to the client’s execution environment through attestation-based au-
thentication [Looker et al. 2025a], a step that provides cryptographic proof of the
client software’s integrity against tampering. This shifts the responsibility from
developers manually implementing BCPs to making secure practices the proto-
col’s default setting;

• Privacy and Decentralized Identity - User Control over Data Disclosure: The
OAuth ecosystem is adapting to the privacy demands of decentralized identity
models. The primary mechanism is the SD-JWT [Fett et al. 2025], which al-
lows the data owner (Holder) to reveal only the minimal claims required by a
Verifier, thereby preventing unnecessary data exposure common with standard
JWTs. This capability is directly applied to VCs through SD-JWT-based VCs
[Terbu et al. 2025], facilitating secure and privacy-preserving data exchange in
contexts like digital identity wallets;

• Contextual Authorization - Moving Beyond Coarse Scopes: This trend addresses
the limitation of broad OAuth scopes, which historically provided excessive ac-
cess. The focus is on delivering permissions that are granular and tied directly

to the action being performed. The main development here is the TT draft
[Tulshibagwale et al. 2025a]. These tokens encode specific, rich authorization
details (often requested via a RA), ensuring that the resulting token grants per-
mission only for that exact action (e.g., a specific monetary transfer), making the
authorization process inherently more secure and easily auditable than traditional
generic scopes.

6.2. Gaps and Opportunities

While the WG is active on multiple fronts, important security and architectural gaps re-
main open issues for future work, often related to cross-protocol dependencies and re-
finement of foundational mechanisms. These gaps were frequently highlighted during the
IETF 124 discussions (November 2025). They are:

• Authorization Code Invalidation and Downgrade Attacks: The primary security
gap identified in Browser-Swapping Attack analysis is that PKCE alone fails to
prevent code theft after suspected CSRF injection [Primbs 2025]. This is exacer-
bated by the lack of a mechanism for a client to actively notify the AS to invalidate
codes suspected of CSRF attacks after initial issuance. Furthermore, the inability
to enforce the correct response mode makes the protocol vulnerable to down-
grade attacks (e.g., to response mode=query), which can lead to code leak-
age via logs and referrer headers [Primbs 2025];

• PoP Binding and Token Complexity: Achieving end-to-end security binding, es-
pecially in complex delegated flows, presents architectural difficulties. For in-
stance, the ID-JAG draft [Parecki et al. 2025d] requires a clearer definition of
PoP binding that spans the entire chain from initial SSO to the final Access
Token [Parecki et al. 2025c]. Additionally, while introducing separate DPoP
bindings for access and refresh tokens could mitigate large-scale compromise,
it raises concerns about implementation complexity. Furthermore, for TTs
[Tulshibagwale et al. 2025a], open issues remain regarding the need to define for-
mal mechanisms for extending the lifetime or modifying the context (tctx) of
the token [Tulshibagwale et al. 2025b];

• Metadata Trust and SSRF Mitigation: The mechanism defined in the Client
ID Metadata Document draft [Parecki and Smith 2025b] introduces new security
risks related to fetching external data, primarily the need for robust mitigation
against SSRF vulnerabilities during metadata fetching [Parecki and Smith 2025a].
Mitigation strategies include prohibiting redirects and checking DNS resolution
against private IP addresses. Furthermore, the WG needs to provide explicit guid-
ance on incrementally establishing client ID reputation and mandating that all URI
properties within the metadata (e.g., logo uri) be restricted to HTTPS URLs
[Parecki and Smith 2025a];

• Architectural Scalability and Deployment Challenges: Issues related to the broad
deployment and migration of OAuth standards in enterprise environments remain
open, particularly concerning architectural scalability. The primary challenge
is supporting Multi-tenancy and Multi-instance RS AS, which requires explicit
clarification on how user and client IDs are mapped across these disparate sys-
tems [Parecki et al. 2025c]. A key, unresolved architectural migration hurdle is
how an AS can support both OAuth 2.0 and 2.1 clients simultaneously with-

out breaking older behavior [Parecki et al. 2025b]. Moreover, the ambiguity sur-
rounding whether the client id should represent a family (class) or an indi-
vidual instance requires immediate clarification to stabilize dependent standards
[Looker et al. 2025b];

• Client Authentication Scheme Definition and Compliance: The specification faces
difficulty in clearly defining how an AS should signal supported authentication
methods on an invalid client error response (HTTP 401). This ambiguity
stems from the lack of defined challenge schemes for newer authentication meth-
ods, such as private key jwt, which leaves the compliance path unclear for
implementers.

• Bridging JSON Object Signing and Encryption (JOSE) and CBOR Object Signing
and Encryption (COSE) for IoT: The security standards defined by the OAuth WG
are adapted by the ACE WG to be viable in resource-limited IoT contexts. This
adaptation is fundamentally cryptographic, as the ACE WG utilizes the COSE4

(Concise Binary Object Representation (CBOR) Object Signing and Encryption)
format — significantly more efficient in size and processing than JOSE5 (used
by the OAuth WG) — to implement the same security concepts. This technical
boundary reveals an opportunity: the OAuth WG must ensure its advanced secu-
rity concepts (like DPoP and Attestation) are designed with portability in mind,
actively collaborating with the ACE WG to bridge the JOSE/COSE gap.

7. Conclusion
Analysis of the active IETF OAuth WG drafts indicates that OAuth 2.0’s future rests on
three pillars: Mandatory Security (via OAuth 2.1 and Attestation), Privacy by Design (us-
ing SD-JWT for selective disclosure), and Contextual Authorization (through TT for gran-
ular permissions). However, IETF 124 discussions highlighted critical gaps, including the
lack of a mechanism for proactive authorization code invalidation to mitigate browser-
swapping attacks, risks of SSRF in metadata fetching, and significant multi-tenancy scal-
ability challenges. In essence, the protocol is evolving from a simple framework to a
complex, context-aware security layer, and resolving these gaps is decisive for its ability
to protect increasingly distributed and privacy-sensitive digital ecosystems.

References
Fett, D., Campbell, B., Bradley, J., Lodderstedt, T., Jones, M. B., and Waite, D. (2023).

OAuth 2.0 Demonstrating Proof of Possession (DPoP). RFC 9449.

Fett, D., Yasuda, K., and Campbell, B. (2025). Selective Disclosure for JWTs (SD-JWT).
Work in Progress.

Hardt, D. (2012). The OAuth 2.0 Authorization Framework. RFC 6749.

Hardt, D., Parecki, A., and Lodderstedt, T. (2025). The OAuth 2.1 Authorization Frame-
work. Work in Progress.

Jones, M. B., Campbell, B., Mortimore, C., and Skokan, F. (2025). Updates to OAuth 2.0
JSON Web Token (JWT) Client Authentication and Assertion-Based Authorization
Grants. Work in Progress.
4https://datatracker.ietf.org/wg/cose/about/
5https://datatracker.ietf.org/wg/jose/about/

Jones, M. B. and Hardt, D. (2012). The OAuth 2.0 Authorization Framework: Bearer
Token Usage. RFC 6750.

Kasselman, P., Fett, D., and Skokan, F. (2025). Cross-Device Flows: Security Best Cur-
rent Practice. Work in Progress.

Looker, T., Bastian, P., and Bormann, C. (2025a). OAuth 2.0 Attestation-Based Client
Authentication. Work in Progress.

Looker, T., Bastian, P., and Bormann, C. (2025b). OAuth 2.0 Attestation-Based Client
Authentication (IETF 124 OAuth Session). Presentation Slides. Presented at IETF
124, Montreal.

Looker, T., Bastian, P., and Bormann, C. (2025c). Token Status List (TSL). Work in
Progress.

Parecki, A., Fletcher, G., and Kasselman, P. (2025a). OAuth 2.0 for First-Party Applica-
tions. Work in Progress.

Parecki, A., Hardt, D., and Lodderstedt, T. (2025b). OAuth 2.1 (IETF 124 OAuth Ses-
sion). Presentation Slides. Presented at IETF 124, Montreal.

Parecki, A., McGuinness, K., and Campbell, B. (2025c). Identity Assertion Authoriza-
tion Grant (IETF 124 OAuth Session). Presentation Slides. Presented at IETF 124,
Montreal.

Parecki, A., McGuinness, K., and Campbell, B. (2025d). Identity Assertion JWT Autho-
rization Grant. Work in Progress.

Parecki, A., Ryck, P. D., and Waite, D. (2025e). OAuth 2.0 for Browser-Based Applica-
tions. Work in Progress.

Parecki, A. and Smith, E. (2025a). Client ID Metadata Document (IETF 124 OAuth
Session). Presentation Slides. Presented at IETF 124, Montreal.

Parecki, A. and Smith, E. (2025b). OAuth Client ID Metadata Document. Work in
Progress.

Primbs, J. (2025). Browser-Swapping Attacks (IETF 124 OAuth Session). Presentation
Slides. Presented at IETF 124, Montreal.

Sakimura, N., Bradley, J., and Agarwal, N. (2015). Proof Key for Code Exchange by
OAuth Public Clients. RFC 7636.

Schwenkschuster, A., Kasselman, P., Burgin, K., Jenkins, M. J., and Campbell, B. (2025).
OAuth Identity and Authorization Chaining Across Domains. Work in Progress.

Sheffer, Y., Hardt, D., and Jones, M. B. (2025). JSON Web Token Best Current Practices.
Work in Progress.

Terbu, O., Fett, D., and Campbell, B. (2025). SD-JWT-based Verifiable Credentials (SD-
JWT VC). Work in Progress.

Tulshibagwale, A., Fletcher, G., and Kasselman, P. (2025a). Transaction Tokens. Work
in Progress.

Tulshibagwale, A., Fletcher, G., and Kasselman, P. (2025b). Transaction Tokens (IETF
124 OAuth Session). Presentation Slides. Presented at IETF 124, Montreal.

	Introduction
	Methodology and Scope
	Defining the Scope of Active Documents

	Draft Categorization
	Detailed Analysis by Category
	Core Consolidation and Evolution
	Advanced Security and Authentication
	Advanced Tokens and Credentials
	Specific Use Cases and Flows
	Metadata and Interoperability

	Key Technical Concepts
	pkce (Proof Key for Code Exchange)
	sdjwt (Selective Disclosure for jwt)
	Attestation-Based Client Authentication
	Transaction Tokens tt
	idjag

	Trends and Gaps
	Emerging Trends
	Gaps and Opportunities

	Conclusion

