
A set of data bases to support intelligent agents in Internet
Infrastructure routing domains

Juliao Braga1,2, Joao Nuno Silva1, Nizam Omar2

1INESC-ID, Lisbon University, Lisbon, PT

2Mackenzie University, Sao Paulo, SP, Brazil

{juliao.braga,joao.n.silva}@tecnico.ulisboa.pt

nizam.omar@mackenzie.br

Abstract. This paper presents a set of three data bases that make up the In-
ternet Infrastructure Data Base (IIDB). IIDB has three data bases – iidb.rfc,
iidb.person, and iidb.acronym – that are key pieces to support the development
of machine learning techniques by the intelligent elements of the Autonomous
Architecture Over Restricted Domains (A2RD). The data contained in iidb.rfc
and iidb.person were created after processing the contents available at the RFC
Index web page. While the data contained in the iidb.acronym was created af-
ter processing the contents of the files available at the Request for Comments
(RFC) repository, produced and maintained by the RFC Editor. The data format
of IIDB data is JavaScript Object Notation (JSON), whose templates are avail-
able in the same site where the data bases are deposited, making them accessible
through any programming language.

Resumo. Este artigo apresenta um conjunto de três bases de dados que
compõem o Internet Infrastructure Data Base (IIDB). O IIDB é um conjunto
formado pelas bases iidb.rfc, iidb.person e iidb.acronym, peças-chave para
apoiar o desenvolvimento do aprendizado de máquina desejado aos elemen-
tos inteligentes do projeto Arquitetura Autônoma Sobre Domı́nios Restritos
(A2RD). Os dados contidos em iidb.rfc e iidb.person foram criados após o pro-
cessamento do conteúdo disponı́vel na página web do RFC Index. Enquanto
os dados contidos no iidb.acronym foram criados após o processamento do
conteúdo dos arquivos disponı́veis no repositório Request for Comments (RFC)
produzido e mantido pelo RFC Editor. Todos os dados no IIDB são formata-
dos em JavaScript Object Notation (JSON), cujos respectivos modelos estão
disponı́veis no mesmo site onde as bases de dados são depositadas, acessı́veis
através de qualquer linguagem de programação.

1. Introduction
There is a permanent concern to convey enough intelligence to Autonomous Architec-
ture Over Restricted Domains (A2RD) agents to make them autonomous. This re-
quires an organized integration of the resources shown in Figure 1, where the A2RD
model that can be implemented in each Autonomous System AS (or routing domain)
[Colel et al. 1994, Hares and Katz 1989], is represented as item (11) in the Figure 1, in-
tegrated to the Structure for Knowledge Acquisition, Use, Learning, and Collaboration
(SKAU) model.

Figure 1. Structure for Knowledge Acquisition, Use, Learning and Collaboration
model (SKAU)

The SKAU model components and activities are:

• Each RFC is captured/updated and stored locally and transformed in a corpus,
ready to be process by the Python Natural Language Tool Kit1 (NLTK), (1)
[Bird et al. 2009];
• A set of tools is responsible for acting lexical and syntactically on RFCs (2), trans-

forming them into intermediary data bases (3);
• Other tools (4), like Semantic Distillation, act on the intermediary data bases pro-

ducing inputs for Domain Data Sets (DDS) construction (6) and supporting the
data set production that forms the Training Data Sets (TDS) (8). Also, these tools
will support part of the Knowledge Base (KB) (9) [Isotani and Bittencourt 2015].
A relevant part of DDS is the Internet Infrastructure Data Base (IIDB), whose
construction description is the goal of this paper;
• Learning algorithms (7) support the construction and use of TDS to renew the

knowledge base and meet the demand A2RD agents in the process of developing
and applied intelligent actions. The efficient use of TDS will respond to the classic
algorithms of Machine Learning (ML): (a) supervised learning, (b) unsupervised
learning, (c) reinforcement learning and (d) semi-supervised learning, that com-
bines (a) and (b). [Musumeci et al. 2018] in Section II has an appropriate ML
overview, with a focus on optical networks;
• Each implemented A2RD model build a data base, named IIBlockchain (10)

and stored it together, in the Git Hub (i.e. in the cloud). This then supports
the process of collaboration and effective interaction, inter/intra agents of the
models [Braga et al. 2018]. The IIBlockchain cloud interacts with the learning
algorithm and KB allowing agents to exercise offline and online computation2

[Poole and Mackworth 2010].

Each AS can implement an A2RD, which is then controlled by the IE – IE Con-
troller – and receives the identification x:0, where x is the AS Number (ASN).

1https://www.nltk.org
2Offline computation is the computation done by the agent before it has to act, and online computation

is the computation done by the agent between observing the environment and acting in the environment

2. IIDB

IIDB evolved from the efforts to build WordNet [Fellbaum 1998]. It was later realized
that its usefulness would be amplified if it represented not only words (from the domain
of the Internet Infrastructure) and their lexical equivalents but also any representation
associated with it meaning (proper names, numbers, dates, acronyms, etc.). Table 1 shows
an example of the IIDB contents (excluding implementation details).

Table 1. Partial contents of IIDB
Representation Meaning Ext Sub

IETF Internet Engineering Task Force - ietf
3978 RFC - doc
3978 OpenTTD game (masterserver and con-

tent service)
TCP;UDP tcp

Jon Postel RFC00001 img:lnk;text:url human
protocol rules determining the format and trans-

mission of data
- wordnet

Approaching the formal notations and definitions of WordNet [Miller 1995], the
IIDB is defined as WI = (f, s, e, d) where f is a form composed by a string over a finite
alphabet, s is sense got from a given set of meanings found in the unstructured bases (as
RFC repository), e is an extension which complements s and d is the sub-domain to which
form s belongs.

Hence, IIDB is a data set that covers the Internet Infrastructure domain and can
be used for quick access not only by IEs but also by third parties and will help build
the KB and support to update the KB and will be used as learning content for ML al-
gorithms. The first three data bases which initially make up the IIDB – iidb.rfc (3,903
MBytes), iidb.person (4,961 MBytes) and iidb.acronym (9,590 MBytes) – are available in
the repositories Open System Foundation (OSF) [Braga et al. 2019].

2.1. The value of IIDB

For several reasons it is necessary to find in which RFC an acronym has been defined. For
example, a way to improve knowledge in a specific subject, which the acronym stands for.
Having the number of the RFC in which it was defined and the RFCs that refer it, other
bases can also be searched for the purpose of refining the knowledge. This set of research
can contribute to become better the agents learning.

It is immediate to research by words in the acronym meaning. In this way, via the
acronym it is possible to identify which RFCs treat the subject referenced by the word. For
example when looking for ’NAT’ we can get to RFC05720 and RFC06346, which should
address the subject Network Address Translation, one of the meanings of the acronym
(lines 5 and 6 in Table 4).

It is also possible to immediately identify which RFCs refer to an acronym or
words of their meaning. Such facility are suitable for AS administrators, as well as tech-
nicians and researchers interested in interacting with RFCs.

The above privileges are appropriate, given the storage form of the IIDB bases,
for testing, training and learning the ML algorithms.

Table 2 shows a set of meanings extracted from the corpus of the RFCs, showing
that there are ambiguities in the meaning of the acronyms.

Table 2. Different meanings of RFC acronym
Acronym Description Document

1 RFC REQUEST FOR COMMENTS RFC01175
2 RFC Request For Comment RFC00199
3 RFC Request For Comments RFC00724
4 RFC Request For Connection RFC00033
5 RFC Request-For-Connection RFC00663
6 RFC Requests-For-Connection RFC00054
7 RFCs REQUESTS FOR COMMENTS RFC01175
8 RFCs Request For Connections RFC00671
9 RFCs Requests For Comment RFC08280

10 RFCs Requests For Comments RFC00661

Accented, included for humans are the ambiguities represented by lines 2 and 4.
But for machines, lines 1 through 6 are ambiguous and so lines 7 to 10. Ambiguities are
common in documents where there is no rigidity in the patterns of their composition. The
bases of the IIDB allow disambiguation of the acronyms by references to the RFCs and,
eventually, to their authors.

In the repository the IIDB is a Jupyter3 notebook, with some Python scripts exam-
ples of using of the data bases.

3. Experimental design, material and methods
The techniques, features, and facilities used to construct the three bases that make up the
IIDB are discussed below.

3.1. iibd.rfc and iibd.person

The iibd.rfc and iibd.person data bases were created based on data available in RFC Index
web page4. For example, the information regarding the RFC8039 [Shpiner et al. 2016],
is:

8039 Multipath Time Synchronization A. Shpiner, R. Tse, C.
Schelp, T. Mizrahi [December 2016] (TXT = 39763) (Status:
EXPERIMENTAL) (Stream: IETF, Area: int, WG: tictoc) (DOI:
10.17487/RFC8039)

A computer program processed this information to fit the following pattern, arbi-
trarily defined:

’number’: 8039 ’title’: ’Multipath Time Synchronization’
’author’: ’first’: ’A’ ’second’: ’’ ’last’: ’Shpiner’
’author’: ’first’: ’R’ ’second’: ’’ ’last’: ’Tse’ ’author’:
’first’: ’C’ ’second’: ’’ ’last’: ’Schelp’ ’author’:
’first’: ’T’ ’second’: ’’ ’last’: ’Mizrahi’ ’nauthor’: 4
’date’: ’year’: 2016 ’month’: December ’day’: ’’ ’status’:
’EXPERIMENTAL’ ’stream’: ’IETF’

3https://jupyter.org/index.html
4https://www.rfc-editor.org/rfc-index2.html

From the above pattern, other appropriate computer program captured the data to
fill the two data bases (iibd.rfc and iibd.person), according to the respective templates
presented in Listings 1 and 2.

Listing 1. iidb.rfc template

1 {
2 "representation": representation,
3 "meaning": {
4 "title": title,
5 "year": year,
6 "month": month,
7 "day": day,
8 "status": status,
9 "stream": stream,

10 "words": {
11 "volume": "len(text)",
12 "vocabulary": "len(set(text))"
13 },
14 "lexical_diversity": "vocabulary/volume",
15 },
16 "extension": "",
17 "subdomain": "rfc"
18 }

3.2. iibd.acronym

3.2.1. The construction process

Figure 2 shows the four steps that allow to prepare the RFCs for the extraction of
acronyms.

Figure 2. Preparing to process RFCs

Following the figure, the process of add/update RFCs to a local directory based on
a search using the Document Retrieval features of the RFC-Editor5.

Listing 2. iidb.person template

1 {
2 "representation": {
3 "firstname": "",

5https://www.rfc-editor.org/retrieve/

4 "secondname": "",
5 "lastname": "",
6 },
7 "meaning": {
8 "birthdate": "yyyymmdd",
9 "deathdate": "yyyymmdd",

10 "email": "",
11 "gender": "",
12 "company": "",
13 "orcid": "",
14 "photo": "",
15 "authorship": [{
16 "type_publication": type_publication,
17 "id": number,
18 "doi": doi,
19 "author_seq": seq,
20 }]
21 },
22 "extension": "",
23 "subdomain": "human"
24 }

An RFC is also published in text format such as RFC80396 (an arbitrary choice).
By transforming the RFC8039 and others one into a single string as can be seen in Figure
3 and then using the tokenize techniques, available in NLTK, we construct the corpus
of the RFCs, that is, a bunch of properly formatted documents, gathered in a directory
[Perkins 2014].

Figure 3. Reduced RFC8039 text (partial view)

Thus, the corpus of RFCs facilitates the extraction of acronyms. This operation
using an algorithm described below allows us to prepare some intermediate files that
facilitate the availability of the acronyms data base as desired.

6https://tools.ietf.org/rfc/rfc8039.txt

3.2.2. Acronym in the context of RFCs

Acronyms and their expansions (or meaning), when first introduced in the text, are
usually adjacent [Osiek et al. 2010]. In RFCs the universally used standard has the
format expansion (acronym), one of four formats identified by Pustejovsky et al.
[Pustejovsky et al. 2001]. In this format, the (ACRONYM) will always be shown in cap-
ital letters. Usually, the expansion is composed of words with the first letters in upper
case. Respecting this pattern and using some tools available in the Python language, and
NLTK we extract the acronyms of the RFCs following the scheme shown in Figure 4.

Figure 4. Preparing to process RFCs

On the other hand, the purpose of the iibd.acronym data base is to store acronyms
and the respective RFC it was first occurred, in which RFCs it was referenced and how
many times it appeared in each of them.

An acronym is a word created from the initial components of a phrase or name,
called the expansion [Jacobs et al. 2018]. An acronym can be short-lived; if it was used
in an RFC and is never referenced again. Also, an acronym can have more than one
meaning. This is called polysemy. Polysemy, or lexical ambiguity, is the property of some
words to have multiple meanings or senses [Moldovan and Novischi 2004]. In linguistics,
disambiguation7 refers to the process of explaining the message that has more than one
meaning. To try to appease the disambiguation, the same acronym may appear several
times in iidb.acronym, with divergent meanings, but referencing the RFC where it was
first quoted and at other times.

The acronyms for this work were taken from all RFCs up to RFC08540
[Stewart et al. 2019]. The algorithm used to extract the acronyms from RFCs is sum-
marized in Figure 5.

Figure 5. Algorithm used to extract acronyms from RFCs

7https://en.wikipedia.org/wiki/Word-sense disambiguation

Three steps of the algorithm are relevant: Apply some heuristics, delete text that
precedes it and establish a rank to confirm it. The last two steps are part of the kernel of
the algorithm and considered to be primarily responsible for its success.

3.2.3. Step 1: ”Apply some heuristics”

The requirements of this step can be summarized in the following topics:

• An acronym only exists if it is between ’(’ and ’)’.
• The possible acronym must have more than 1 character.
• If the possible acronym is numeric, ignore it.
• If the possible acronym is all lowercase, ignore it.
• The words are stacked until a ’)’ is found. If an acronym is found, the stack is de-

stroyed. So if there is not in the stack, at least the number of items corresponding
to the number of letters found between ’(’ and ’)’, there is no acronym.
• It is acceptable that the acronym has the characters ’&’, ’/’ or ’-’.
• It is acceptable ’.’ if it appears by following each of all the letters of the possible

acronym. In this case all the letters should be uppercase.
• We make the assumption that an acronym’s meaning (or expansion) lies before

to the acronym. The reason for this assumption is associated with the pattern
followed in the RFCs.
• Some authors consider that if the acronym contains numerical letters, its preceding

letter (if there is any) or its following letter is repeated that many times to create
a new acronym. This newly-created acronym is also used to find possible expan-
sions by using other rules. For example, “W3C” can be changed to “WWWC”
in order to discover W3C (World Wide Web Consortium) [Ji et al. 2008]. But,
this does not work, in SS7 Application Part (S7AP), defined in RFC02719
[Ong et al. 1999]. The algorithm adopts the criterion of reproducing the letters
on the left, when it finds 2 or 3 in the possible acronym.
• Some compound words such as ’multiprotocol’ have been separated when are

part of the acronym’s meaning these words were given an additional weight, to
strengthen the acronym. For example, Multiprotocol Label Switching (MPLS).

3.2.4. Step 2: ”delete text that precedes it”

When the algorithm finds an acronym such as (PPP), it pops up three previously stacked
words. Probably, the three words unstacked will be: ’Protocol’, ’Point-to-Point’ and a
third word whatsoever, say ’word3’. Arranged, the result would be: ’word3 Point-to-
Point Protocol’. Thus, the algorithm in this step eliminates the word ’word3’ concluding
that the result of the meaning of ’PPP’ will be: ’Point-to-Point Protocol. Once this is
done, the next step should be to ensure that, indeed, this is the result.

3.2.5. Step 3: ”establish a rank to confirm it”

Keeping the PPP acronym example, this step removes the hyphens (’-’) and verifies that
there is a stop word8 (the ’to’) in the meaning of the acronym. Then the algorithm removes
the stop word, adding to the acronym PPP, a negative weight, by having such a stop word.
Then the algorithm continues analyzing the meaning and for each word that matches
its first letter, with its position in the acronym, also receives a negative weight. When
there is no coincidence, the weight is positive. In the example ’SS7 Application Part
(S7AP)’, the acronym and its meaning are immediately accepted because their weight
will be sufficiently negative to maintain the valid acronym ranking. Finally, let’s look
at the case of the acronym W3C. This acronym stands for a polysemy. The following
meanings were found: (1) ’World Wide Web Consortium’ (in the RFC05945), and (2)
’Worldwide Web Consortium’ (RFC02768). This acronym is well known and ambiguity
may disappear in the context. This acronym is well known and ambiguity may disappear
in this context. But the different RFCs, which refer to them, will certainly elucidate the
issue. This is the case of the polysemy of the acronym AIA, with three meanings: (3)
’Association America’ (RFC04688), (4) ’Authority Info Access’ (RFC04809) and (5)
’Authority Information Access’ (RFC05280).

4. Conclusion

4.1. Application of the algorithm

The final result of the execution of this algorithm, implemented in Python, is represented
by the numbers in Table 3.

Table 3. Statistics of the execution of the acronyms extraction algorithm
Representation Meaning
1 RFCs processed (files) 8, 340

2 Processing time (seconds) 14, 163.1

3 Mean size of acronyms (chars) 3.36

4 Total number of acronyms extracted 69, 198

5 Total number of acronyms extracted (no repetition) 12, 273

6 Acronyms (no repetition) automatically confirmed 11, 098

7 Precision 90.42%

The number of RFCs processed is less than the number of the last RFC processed,
because there are numbers without RFCs, (1). The processing time is the result of the
execution time given by the Sublime Text9, (2). The acronyms average size, in number
of characters, (3). The total number of acronyms extracted, with repetition, (4). Number
of non-repeating acronyms from a non-human point of view, (6), representing 90.42% of
(5), (7).

The file obtained in row (4) of Table 3 is sorted in alphabetical order and used to
populate the acronym.json file, based on the template displayed in Listing 3.

8A word that is part of the meaning of the acronym, but usually is not represented in the acronym.
9https://www.sublimetext.com/

Listing 3. iidb.acronym template

1 {
2 "representation": "",
3 "meaning": {
4 "acronym_of": "",
5 "type": "",
6 "appears-in": [{
7 "doc-id": "",
8 "times": ""
9 }],

10 "updated": [{
11 "process": "automatic, agent, manual",
12 "last_update": yyyymmdd
13 }],
14 },
15 "extension": "",
16 "subdomain": "acronym"
17 }

4.2. Acronym examples

Table 4 presents acronyms on which we will make some comments to reinforce the heuris-
tic algorithm used.

Table 4. Acronym Examples
Name Description RFC
1 6LoWPANs IPv6 over Low-Power Wireless Personal Area Networks RFC06550
2 AAA Authentication Authorization and Accounting RFC05887
3 AAA AUTHENTICATION AUTHORIZATION AND ACCOUNTING RFC02881
4 AAA Authentication Authorization and Accountability RFC02888
5 CGN Carrier-Grade NAT RFC05720
6 CGNs Carrier-Grade NATs RFC06346
7 EBCDIC Extended Binary-Coded Decimal Interchange Code RFC00109
8 (FDV, also known as Jitter) Frame Delay Variation RFC07023
9 NETRJS Remote Job Service RFC00252

10 RJE Remote Job Entry RFC00105
11 RJE Remote Job Entry Protocol RFC00707
12 USASCII USA Standard Code for Information Interchange RFC00109
13 WRU Who Are You RFC00109

In line 1, ’6LoWPANs’. If the number 6 appears in an acronym and does not
follow a small ’v’ letter, then it represents ’IPv6’. The same happens with the number 4,
which turns into ’IPv4’. The acronyms in lines 2–3 represent the same meaning (from the
human point of view). The algorithm, however, considers them different and implements
the two in the iidb.acronym file. It remains for the future work, the normalization of
this difference. The acronym on line 4, has the seemingly strange meaning with the
word ’Accountability’. This is a good example of the absence of standardization, whose
proposal was put into future work. The RFC Editor should define between ’Accounting’
and ’Accountability’, for an acronym such as ’AAA’. Lines 5–6 serve to illustrate the
fact that a lowercase ’s’ at the end of the acronym does not influence the choice. This is
the orientation that intelligent agents will receive when using IIDB. There is similarity to

this case with lines 2–3, relating to the acronym ’AAA’. The acronym of line 7 has size
6. If you remove the hyphen from the second word of meaning, you have 6 words in the
meaning. This is how the algorithm behaves. In line 8, very rarely is there an oversight
of an author, escaping aggressively from the pattern of acronyms. The algorithm of this
work fails in cases like this even though it is not complicated, in the context of a ’(’, end
with a ’,’ instead of a ’)’. But, this ran away from the more common pattern of acronyms
in RFCs. In line 9, the algorithm will fail (but acknowledge and identify the failure), to
Remote Job Service (NETRJS). In lines 10–11, same acronym with the word ’Protocol’
in the end of the meaning. This word does not create ambiguity, because the algorithm
admits the existence of it, or not at the end of the meaning. The acronym of line 12,
’USASCII’ has size 7, but has one of the words of its meaning, integrally in the acronym:
’USA’. Then the size of the acronym becomes 5. However, it has a stop word, ’for’
that reduces its size to 4. Acronym Who Are You (WRU), line 13, is only possible to be
identified if we use a phonetic dictionary, since the characters R and U correspond to ARE
and YOU. This was done in the algorithm, which gives each phoneme the appropriate
punctuation.

4.3. Use of IIDB data bases
In the IIDB repository, as already mentioned, there is a file with some scripts in Python,
using the data bases available there. By way of illustration, we show a simple script, but
it uses two bases at the same time, to determine the first 30 most participant authors of
RFCs. Figure 6 shows the program and on the right side, the result.

Figure 6. First 30 most participant authors of RFCs.

5. Related Works
The importance of extracting acronyms is acclaimed by Sánchez and Isern
[Sánchez and Isern 2011]: The discovery of the definitions associated to an acronym is
an important matter in order to support language processing and knowledge-related tasks
as information retrieval, ontology mapping or question answering. Xiaonan Ji and col-
leagues [Ji et al. 2008], consider that techniques for being able to automatically identify
acronym patterns are very important for enhancing a multitude of applications that rely
upon search and present a new approach to discover acronyms patterns.

Other techniques such as logical-algebraic equations that combine grammatical
and semantic characteristics of words of substantive, attributive and verbal collocations
types exploit WordNet resources [Khairova et al. 2018].

Unsupervised learning techniques have been and are used in the medical field,
where ambiguity of acronyms occur mainly when the context is not delimited. If we see
the acronym RA in a cardiology report, then it can be normalized to “right atrial”; other-
wise, if it occurs in the context of a rheumatology note, it is likely to mean “rheumatoid
arthritis” or “rheumatic arthritis” [Pakhomov 2002]. So the method of using the global
context to solve the ambiguity of an acronym as it is done in the medical field is not an
adequate solution to the ambiguity of the acronyms found in the RFCs. It is noted that am-
biguity is often produced, by lexical error or typos of the authors, both very common, as
can be seen. Also, other techniques as machine-learning-based approach to automatically
build an acronym dictionary from texts are proposed [Jacobs et al. 2018].

A simple formula, where a score is determined by Equation 1, and if it is below
some threshold, then the pair is accepted. This was proposed by [Pustejovsky et al. 2001].

score =
of words in the match

of characters in the acronym
(1)

Reinforcement learning techniques like Markov chains [Paulino et al. 2018] and
unsupervised learning techniques like Hidden Markov models (HMMs) are a power-
ful probabilistic tools for modeling time series data, and have been applied with suc-
cess to many language-related tasks such as part of speech tagging, speech recogni-
tion, text segmentation and topic detection [Freitag and McCallum 1999]. Several au-
thors have used acronyms extraction in medical unstructured texts [Osiek et al. 2010]
[Conroy and O’leary 2001]. Others one, in speech recognition [Rabiner 1989].

The issue associated specifically with the extraction of acronyms is intensely ad-
dressed in Manuel Zahariev’s doctoral thesis [Zahariev 2004].

6. Future Works
RFCs are not ready to be evaluated by machines or smart codes. For example, Monkey in
the Middle (MITM) should come closer to the machine understanding perspective being
represented as (MitM), ensuring that stop words are in lower case, in the acronym. The
absence of standards when writing an RFC creates ambiguity between acronyms, more
often than was expected (CGN e CGNs, both with the same meaning). The IETF, as a
careful standards-setting institution, should take better care of the standardization of its
main document, since it is from RFCs that we can gain knowledge to provide intelligent
agents. The authors believe and in the near future should lead to a draft proposing writing
standards that could be required from the authors to facilitate the use of machine learning
and other techniques of artificial intelligence. This kind of care should be extended to
IETF peripheral institutions, such as Regional Internet Registers (RIRs), which produce a
lot of important information for ASes administrators.

The algorithm used to extract the acronyms from RFCs can be improved to use
machine learning techniques on rejected acronyms. Additionally, refinement of the files
generated by the current algorithm could increase the accuracy of the result. Both al-

ternatives allow to produce appropriate results for measurements and evaluations of the
acronyms capture algorithm [Batista et al. 2004]. This was not done in this project, be-
cause it was outside the goal of the global experiment.

Acknowledgment

This work is supported by CAPES – Brazilian Federal Agency for Support and Evalua-
tion of Graduate Education within the Brazil’s Ministry of Education, by national funds
through FCT with reference UID/CEC/50021/2019 and by MackPesquisa. .

References

Batista, G. E. A. P. A., Prati, R. C., and Monard, M. C. (2004). A study of the behavior
of several methods for balancing machine learning training data. SIGKDD Explor.
Newsl., 6(1):20–29.

Bird, S., Klein, E., and Loper, E. (2009). Natural language processing with Python. ”
O’Reilly Media, Inc.”.

Braga, J., Silva, J. N., Endo, P. T., and Omar, N. (2019). Autonomous Architec-
ture Over Restricted Domains (A2RD). DOI 10.17605/OSF.IO/TKA9U. Available at
https://osf.io/tka9u/. Acessed: 19 Mar 2019.

Braga, J., Silva, J. N., Endo, P. T., Ribas, J., and Omar, N. (2018). Blockchain to Improve
Security, Knowledge and Collaboration Inter-Agent Communication over Restrict Do-
mains of the Internet Infrastructure. In Proceeding of CSBC 2018 - V Workshop pre
IETF, pages 61–73, Natal, RN Brazil.

Colel, R., Callon, R., Gardner, E., and Rekhter, Y. (May 1994). Guidelines for OSI NSAP
Allocation in the Internet . Technical report, RFC Editor. RFC1629.

Conroy, J. M. and O’leary, D. P. (2001). Text summarization via hidden Markov models.
In Proceedings of the 24th Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval, pages 406–407.

Fellbaum, C. (1998). WordNet: An Electronic Lexical Database. MIT Press, Cambridge,
MA.

Freitag, D. and McCallum, A. (1999). Information extraction with hmms and shrink-
age. In Proceedings of the AAAI-99 workshop on machine learning for information
extraction, pages 31–36. Orlando, Florida.

Hares, S. and Katz, D. (December 1989). Administrative Domains and Routing Domains:
A model for routing in the Internet. Technical report, RFC Editor. RFC113.

Isotani, S. and Bittencourt, I. I. (2015). Dados abertos conectados. Novatec Editora, São
Paulo, SP, Brasil.

Jacobs, K., Itai, A., and Wintner, S. (2018). Acronyms: identification, expansion and
disambiguation. Annals of Mathematics and Artificial Intelligence, pages 1–16.

Ji, X., Xu, G., Bailey, J., and Li, H. (2008). Mining, ranking, and using acronym patterns.
In Asia-Pacific Web Conference, pages 371–382. Springer.

Khairova, N., Petrasova, S., Lewoniewski, W., Mamyrbayev, O., and Mukhsina, K.
(2018). Automatic extraction of synonymous collocation pairs from a text corpus. In
2018 Federated Conference on Computer Science and Information Systems (FedCSIS),
pages 485–488. IEEE.

Miller, G. A. (1995). WordNet: A Lexical Database for English. Communications of the
ACM, 38(11):39–41.

Moldovan, D. and Novischi, A. (2004). Word sense disambiguation of wordnet glosses.
Computer Speech & Language, 18(3):301–317.

Musumeci, F., Rottondi, C., Nag, A., Macaluso, I., Zibar, D., Ruffini, M., and Torna-
tore, M. (2018). A Survey on Application of Machine Learning Techniques in Optical
Networks. IEEE Communications Surveys & Tutorials, pages 1–1.

Ong, L., Rytina, I., Garcia, M., Schwarzbauer, H., Coene, L., Lin, H., Juhasz, I., Holdrege,
M., and Sharp, C. (October 1999). Framework Architecture for Signaling Transport.
Technical report, RFC Editor. RFC2719.

Osiek, B. A., Xexéo, G., and de Carvalho, L. A. V. (2010). A language-independent
acronym extraction from biomedical texts with hidden markov models. IEEE Trans-
actions on Biomedical Engineering, 57(11):2677–2688.

Pakhomov, S. (2002). Semi-supervised maximum entropy based approach to acronym and
abbreviation normalization in medical texts. In Proceedings of the 40th Annual Meet-
ing on Association for Computational Linguistics, ACL ’02, pages 160–167, Strouds-
burg, PA, USA. Association for Computational Linguistics.

Paulino, C. D. M., Turkman, M. A. A., and Murteira, B. (2018). Estatı́stica Bayesiana.
Fundação Calouste Gulbenkian, second edition.

Perkins, J. (2014). Python 3 text processing with NLTK 3 cookbook. Packt Publishing
Ltd.

Poole, D. L. and Mackworth, A. K. (2010). Artificial Intelligence: foundations of compu-
tational agents. Cambridge University Press.

Pustejovsky, J., Castano, J., Cochran, B., Kotecki, M., and Morrell, M. (2001). Auto-
matic extraction of acronym-meaning pairs from medline databases. Studies in health
technology and informatics, 84(1):371–375.

Rabiner, L. R. (1989). A tutorial on hidden markov models and selected applications in
speech recognition. Proceedings of the IEEE, 77(2):257–286.

Sánchez, D. and Isern, D. (2011). Automatic extraction of acronym definitions from
theWeb. Applied Intelligence, 34(2):311–327.

Shpiner, A., Tse, R., Schelp, C., and Mizrahi, T. (December 2016). Multipath Time
Synchronization. Technical report, RFC Editor. RFC8039.

Stewart, R., Tuexen, M., and Proshin, M. (February 2019). Stream Control Transmission
Protocol: Errata and Issues in RFC 4960. Technical report, RFC Editor. RFC8540.

Zahariev, M. (2004). A(Acronyms). PhD thesis, Simon Fraser University.

