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Abstract. A comprehensive monitoring system is essential to assist solutions
for most of SFC problems. Therefore, in this work, we propose SFCMon, an
efficient and scalable monitoring solution to keep track network flows in SFC
environments. To achieve the desired goals, SFCMon works with a pipeline of
probabilistic data structures to detect and store large flows as well as per-flow
counters. For evaluation purposes, based on the SFC reference architecture de-
fined by RFC 7665, we implement a Proof-of-Concept (PoC) framework, which
provides a P4-based SFC switch and Python-based SFC Controller. Presented
initial experiments demonstrate that SFCMon introduces a negligible perfor-
mance penalty while providing significant scalability gains.

1. Introduction

Network Functions Virtualization (NFV) promises to reduce the cost of deploying and
operating large network infrastructures. Rather than dealing with proprietary hardware
equipment, which includes a limited set of specific network applications, NFV allows
users to transfer network functions (e.g., Firewall, Network Address Translation - NAT,
and Deep Packet Inspection - DPI) from specific to common-off-the-shelf (COTS) hard-
ware using virtualization technologies. NFV aims at creating and deploying end-to-end
network services that interconnect one or more network functions [ETSI 2015].

Service Function Chaining (SFC) is a key enabler for NFV [Bhamare et al. 2016].
SFC is a mechanism that allows an ordered set of network Service Functions (SF),
which may or may not be virtual, to be connected to each to form an end-to-
end service through multiple data centers, WANs, and application service providers
[Halpern and Pignataro 2015, Medhat et al. 2017]. SFCs deal with data traffic, control
and monitoring of a specific application/service, applying appropriate policies along the
routes according to the service requirements and considering the availability status of the
network. The SFC standardization is addressed by the Internet Engineering Task Force
(IETF) at the SFC working group (WG). Ongoing work at SFC WG focus on aspects
of the architecture (RFC 7665 [Halpern and Pignataro 2015]) and protocol (RFC 8300
[Quinn et al. 2018]) needed to enable this network capability. SFC is a hot topic and en-
compasses various problems including SFC path selection, optimization of SF placement
in an SFC-enabled domain, policy enforcement, troubleshooting, and security.

In this context, a comprehensive monitoring system is essential to assist so-
lutions for the above problems [Bhamare et al. 2016]. Surveys [Medhat et al. 2017,
Bhamare et al. 2016] in this area point out that advanced monitoring capabilities are re-
quired to provide solutions considered key challenges for SFCs such as Traffic Steering.



In theory, a monitoring task needs to store information from all transmitted packets for
complete accuracy. In practice, however, this approach would lead to storage and process-
ing scalability issues [Pereira et al. 2017, Shirali-Shahreza and Ganjali 2015]. It is worth
mentioning that scalability is the primary challenge of SFC [Bhamare et al. 2016]. To
overcome these issues, we can use sampling techniques to avoid the storage and process-
ing of all packets. NetFlow! is the most widely-used sampling tool. However, sampling
reduces the accuracy to a level that precludes its use for many applications (e.g., traffic
engineering) required in today’s large scale networks.

Ideally, for SFC purposes, a monitoring task should take into account all trans-
mitted packets at the same time that keeps memory and processing at acceptable levels.
Therefore, in this article, we want to solve the problem of how to provide an efficient and
scalable mechanism to track network flows in SFC environments. As a starting point, we
argue that, in SFC monitoring tasks, exact results are usually not necessary, and a high-
quality approximation is enough. This assumption suggests the use of probabilistic data
structures (e.g., Bloom Filter, Sketches) that use smaller amounts of memory and require
less computation to achieve the desired goals [Pereira et al. 2017]. Such techniques have
been widely accepted in network measurements, thanks to their higher accuracy compared
to sampling techniques and their speed [ Yang et al. 2018].

Aiming at moving forward on the IETF SFC WG standardization threads, in this
work, we present SFCMon, an efficient and scalable monitoring solution to keep track
network flows in SFC-enabled domains. In summary, our main contributions are as fol-
lows:

1. The SFCMon, which offers an efficient and scalable monitoring system for SFC
environments. For this, it proposes the use of a pipeline of probabilistic data struc-
tures to keep track large flows directly inside the network switches, thus reducing
both overall latency and signaling overhead;

2. The Proof-of-Concept (PoC) framework, which provides a reference P4-based
SFC switch and a Python-based SFC controller. The former follows the RFC
7665 to implement the two SFC components: Classifier and Service Function
Forwarder (SFF), enabling stateful in-switch processing. It also provides SFC-
Mon implementation. The latter implements an SFC control plane that provides
an operator with a tool for constructing SFCs and associated Service Function
Paths (SFPs). Besides, it performs periodic queries for the monitoring data stored
by the SFCMon instances. Such data are made available to the operator through
the Kibana tool?;

3. The validation and performance evaluation processes which point to the potential
benefits of SFCMon to be part of SFC architecture.

2. SFCMon: A Monitoring Component for SFC

SFCMon consists of an efficient and scalable fine-grained monitoring solution to keep
track network flows in SFC-enabled domains. In this section, we discuss the design guide-
lines and the architecture of SFCMon.

Thttps://www.ietf.org/rfc/ rfc3954.txt
Zhttps://www.elastic.co/products/kibana



2.1. Design Guidelines

Probabilistic data structures provide a deterministic number of operations but probabilis-
tic output. These structures use smaller amounts of memory and require less computation
to provide a high-quality approximation of the exact results [Pereira et al. 2017]. Proba-
bilistic data structures such as Bloom Filters and Sketches have been widely accepted in
network measurements, thanks to their higher accuracy compared to sampling techniques
and their speed [Yang et al. 2018].

Bloom Filter (BF) is a probabilistic data structure that provides a memory-
efficient approach for insertions and membership queries [Bloom 1970, Grandi 2018].
A BF consists of a 1-bit vector of M cells. For insertion, an element is used as input
in K hash functions, which map to different cells in the array. Then, each position is
marked with bit 1. For membership queries, an element is used as input in the same K
hash functions. An item is considered in the set if all the hash values map to a cell with
bit 1.

In BFs, the False Negative Rate (FNR) is always 0, that is, if at least one hash
value map to a cell with bit O the probability of the element not being part of the set is
100%. However, false positive matches are possible, that is, if all the hash values map to a
cell with bit 1, the element is possibly part of the set. Fortunately, the False Positive Rate
(FPR) is controllable and can be defined at design time by the equation (1), considering a
design with NV elements, M cells, and K hash functions. In practice, BF designers focus
on the tradeoff among memory, number of operations, and FPR.

1
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According to [Broder et al. 2002], a good approximation to obtain lower FPR is
to assume M > K x N. In network measurement, one BF can be used within a switch to
detect, rapidly and memory-efficiently, whether or not a flow is part of a set of monitored

flows [Broder et al. 2002]. However, it cannot store data from these flows.

For instance, Invertible Bloom Lookup Table (IBLT) is an extension of BF that
allows the storage of key-value pairs [Goodrich and Mitzenmacher 2011]. In addition to
the insertions and membership queries, IBLT also allows for updates, deletions, lookups,
and a complete listing. For this, each IBLT cell contains three fields:

e count: store the number of entries mapped to this cell;
o keySum: store the sum of all the keys mapped to this cell;
e valueSum: store the sum all the values mapped to this cell.

The listing method allows listing all the key-value pairs being stored in one IBLT
(please refer to [Goodrich and Mitzenmacher 2011] for more details). Therefore, using
this method, some manager can retrieve a set of IBLTs and list their entries, with a certain
probability of failure (only part of the entries are extracted successfully). In this context,
one IBLT can be used to keep track flows as well as per flow counters (metrics). However,
some issues must be solved.

First, for each insertion, deletion, or update operation on an IBLT, an algorithm
must verify whether or not the input belongs to the set (lookup) beforehand to avoid in-
consistencies. Besides, the design of the size of the IBLT will generally be determined



by the desired probability for a successful lookup operation, that follows the equation
(1) [Goodrich and Mitzenmacher 2011]. Since an IBLT takes up more memory than a
BFE, such a restriction may render the use of this structure impracticable on low-memory
devices. To reduce memory consumption, we can use an approach that applies a combi-
nation of a BF and an IBLT. For instance, the lookup operation will now be performed
using the BF and the remaining services in the IBLT. By using this approach, we can now
target the probability for succeeding in listing entries, that follows the theorem below.

Theorem 1 As long as the number of cells M is chosen so that M > (Ck + €) x T for
some € > 0, the listing method fails with probability O(T* %) whenever N < T, being
N the number of elements and K the number of hash functions.

It worth noting that C is a constant whose value is determined by K and is
always less than K. For example, if K = 7 then C'x = 1.721. Thus, the assumption that
the listing method is the key feature that enables us to design lower-memory IBLTs.

Second, even working with lower-memory IBLT, a large number of flows to man-
age can also make it unfeasible. For example, consider a dataset trace from a 10Gb/s ISP
backbone link, recorded in 2016 and available from CAIDA3. This trace is 17 minutes
long, and each 20-second chunk contains on average about 400,000 5-tuple flows. Ac-
cording to the theorem, an IBLT must be designed with approximately 518,402 cells to
meet this load of flows, where K = 4. If we consider that count and valueSum have
4 bytes each and keySum has 13 bytes (5-tuple size), we will have a total of 21 bytes
per cell and an IBLT that will occupy about 11 Megabytes. We argue that this value is
impractical considering that the switch also needs to support other functionalities related
to packet forwarding and access control. Besides, according to [Sivaraman et al. 2017],
switches should work a limited amount of memory available (about 1.4 Megabytes) per
stage to maintain line-rate processing (at 10-100Gb/s).

Therefore, it is infeasible to accurately measure all flows in high-speed net-
works [Estan and Varghese 2003]. One solution to this problem is to keep track only
the large/heavy flows. A large flow is a flow that includes more than a certain percentage
of the packets during a given time interval [Afek et al. 2018]. Studies have shown that the
majority of flows tend to be short (mice flows) on high-speed links. In [Mori et al. 2004],
the authors showed that a 5% to 10% of flows by number account 60% to 80% of traffic
by volume. According to [Sivaraman et al. 2017], identifying flows with large traffic vol-
umes in the data plane is essential for several applications such as flow-size aware routing,
DoS detection, and traffic engineering. Besides, [Estan and Varghese 2003] states that
both traffic monitoring and attack detection can benefit from accurately measuring only
the large flows. Thus, we argue that it is sufficient to keep track only large flows to meet
the advanced management capabilities required in SFC environments.

In this context, we can use Count-Min Sketches (CMS) to detect large flows.
CMS is probabilistic data structure whose goal is to consume a stream of events (e.g.,
packets) and count the frequency of different types of events. Theses frequencies can
be queried at any time [Cormode and Muthukrishnan 2005]. CMS is a two-dimensional
vector of w columns and d rows. Given (¢, §), w and d are defined at design time by setting
w = [¢] and d = [In(3)]. Each row has a hash function associated H = (h, ..., hy),

3http://www.caida.org/data/passive/passive_2016_dataset.xml



chosen from a pairwise-independent family. In turn, each hash function maps to one of
the w columns.

A basic CMS has two methods: Update and Estimate. Once a new event ¢ ar-
rives, for each row j, the Update method applies the associated hash function to ob-
tain the column index h;(:). Then, it increments the index by one. On the other
hand, the Estimate method returns the estimated frequency of an specific event, i.e.
fi = miny<j<q(CMS][j, h;(i)]). This estimate ensures that f; < f; + (eN) with prob-
ability 1 — ¢, where f; is the true frequency and N = >""  f; is the stream size. Note,
CMS occasionally overestimates frequencies, but it never underestimates frequencies.

Therefore, we can use CMS to detect large flows. @ We can formal-
ize this by taking the CMS to solve the e-approximate heavy hitters problem
[Roughgarden and Valiant 2015]. In this problem, the input is a stream of length 7" and
the user-defined parameters k (where 7' >> k) and € (error tolerance). As an output of a
single pass over the stream, we want a list L of elements such that:

e zisin L if x occurs at least % times in the stream:;
e Every value in L occurs at least % — € X T times in the stream.

According to [Roughgarden and Valiant 2015], a good approximation to detect
heavy hitters with high probability is to assume € =

2xk"

2.2. SFCMon Architecture

To achieve the desired goals, SFCMon implements a pipeline of probabilistic data struc-
tures to detect and store heavy/large flows while evicting lighter flows over time. Besides,
for each stored flow, SFCMon maintains a set of per-flow counters. For instance, the
SFCMon pipeline includes the following structures.

e SFCMonCMS: an CMS which is responsible by detect large flows, by solving
the e-approximate heavy hitters (HH) problem;

e SFCMonBF: an BF is used to reduce the SFCMonIBLT size and is responsible
for answering lookup queries (membership) concerning the set of current large
flows being tracked;

e SFCMonIBLT: an IBLT which is responsible for keeping track all large flows
needed to assist in the monitoring tasks.

The general process of SFCMon is described in Algorithm 1. Once an SFC en-
capsulated packet arrives, a flow identifier (/'lowlD,) is generated using data from the
source IP address and from two Network Service Header (NSH) fields: Service Path Iden-
tifier (SPI) which identifies a Service Function Path (SFP) and Service Index (SI) which
provides location within the SFP. In turn, the F'lowlI D, is used as input for the Update
method from the SFCMonCMS. Then, if the amount of processed packets from the packet
stream crosses a determined threshold (T'hresholdg,,;), the SFCMon calls the Estimate
method from the SFCMonCMS. This threshold is necessary since SFCMon does not ex-
pect to process all streams to detect HHs, it starts the detection process after this threshold
is crossed, as packets are processed, and continues until the entire stream is received. If
this estimate is greater than a given threshold (T'hresholdyy), the flow to which the
packet belongs will be considered a HH and the algorithm advances to the next stage of
the pipeline.



Algorithm 1: SFCMon Packet Processing

Input: A list of field values: spt, si, srcl P, dstI P, srcPort,dstPort, proto.
Input: The packet size value: sizepqcket-

1 begin

2 FlowID; «— (spt, si, srclP);

3 CtrPackets +— CtrPackets + 1;

4 UpdateCM S(FlowlD1);

5 if C'tr Packets > Thresholdg,q; then

6 Estimation <— EstimateCMS(FlowID1);

7 if Estimation > Thresholdy i then

8 FlowIDsg +— (spi, si, srcl P, dstI P, srcPort, dst Port, proto);
9 IsStored «— MembershipQueryBF (FlowIDs);
10 if —IsStored then
11 InsertBF(FlowlDs);
12 InsertI BLT (FlowID3);
13 end
14 UpdateI BLT (FlowI D2, sizepgcket):
15 end
16 end
17 end

Algorithm 2: InsertIBLT Function

Data: A finite set H = {H1, Ha, ..., Hy } of hash functions.

Input: A tuple of field values that describes a flow identification: flowID.
1 begin
2 fori < 1to k do
3 Index <+— H;(flowID);
4 SFCMonlBLT[Index].count + +;
5
6
7

SFCMonlIBLT[Index).keySum <— SFCMonIBLT[Index].keySum & flowID;
end
end

Algorithm 3: UpdateIBLT Function

Data: A finite set H = {H1, Ho, ..., Hy} of hash functions.

Input: A tuple of field values that describe a flow identification: flowlID.
Input: The packet size value: sizepgcket-

1 begin

2 fori < 1to k do

3 Index «+— H;(flowID);

4

5

SFCMonIBLT[Index).valueSum[0] + +;
SFCMonIBLT[Index].valueSum|[1] «—
SFCMonIBLT[Index].valueSum[l] + sizepqckets
6 end
7 end

In this next stage, a new flow identifier (F'lowI Dy) will be generated using the SPI
and SI information in addition to the 5-tuple data (source and destination IP addresses and
ports, and protocol type). This time, we used more information aiming to provide a more
fine-grained flow monitoring system. According to [Zhou et al. 2018], the 5-tuple con-
tains the main information of network link and existing monitoring mechanisms usually
have good efficiency. The algorithm then performs the lookup query in SFCMonBF (us-
ing the F'lowl D, as input) to find out if the flow already exists in SFCMonIBLT. If so,
the algorithm only updates SFCMonIBLT (Updatel BLT method). Otherwise, the algo-
rithm inserts the new flow within SFCMonBF (InsertBF) and SFCMonIBLT (InsertIBLT)
beforehand, and then updates the latter.

Algorithms 2 and 3 provide a detailed view of the operation of the InsertIBLT and
UpdatelBLT methods respectively. Please refer to [Goodrich and Mitzenmacher 2011]
for more details on how an IBLT works.



It is worth noting that those data structures must be flushed periodically by a man-
ager to remove flows that are no longer active. Besides, such an approach also helps in
keeping the low probability of false positives [Patgiri et al. 2018]. In this context, SFC-
Mon considers as stream any set of packets that it can process before having its structures
reset.
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Figure 1. SFCMon as an SFC Component.

Finally, we propose SFCMon as a new SFC component. For this, we need to
define how it fits into the SFC-enabled domain. Figure 1 shows how SFCMon relates
to the other SFC components. We argue that it must be logically positioned after the
Classifier and before the Service Function Forwarder (SFF) so that it can process all the
encapsulated packets before they are forwarded to a next component.

3. SFCMon Analyzer

In this section, we present the whole process of planning and conducting the experiments
which aim to analyze the SFCMon described in Section 2, focusing on its capability in
detect large flows, performance, and scalability.

3.1. P4-based SFC Solution

We implement a Proof-of-Concept (PoC) framework aiming to validate and evaluate the
SFCMon. The approach towards our PoC use case implementation follows a typical
SDN-based SFC architecture [Boucadair 2016] for the design and development of two
prototypes: an SFC-enabled Switch and an SFC Controller, as shown in Figure 2.

The SFC-enabled Switch is in charge of the SFC data plane. We follow the RFC
7665 [Halpern and Pignataro 2015] to provide an implementation that includes two SFC
components: Classifier and Service Function Forwarder (SFF). It is worth mentioning
that those components are sufficing to create SFC-enabled domains. Besides, our switch
also includes an SFCMon reference implementation.

We develop our prototype as a P4 program [Bosshart et al. 2014]. P4 is a pro-
gramming language to run complex processing in the data plane. It allows the developer to
implement its actions using if-else clauses, algebraic and boolean expressions, and differ-
ent types of counters and hash functions, allowing the calculation of in-switch high-level
features and the creation of customizable traffic analysis mechanisms. In this context, we
implement both Classifier and SFF as P4 tables (see Figure 2) and SFCMon data struc-
tures as an array of registers, which can store states that persist across multiple packets
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Figure 2. Prototype Architecture.

of a flow (i.e., flow states). To support SFCMon, we extend behavioral-model (bmv2%),
a public-domain P4 virtual switch, to enable support for multiple pairwise independent
hash functions. For this, we implement the algorithm MurmurHash3>, which yields the
32-bit hash value. Next, we define 22 independent hash functions by just varying the seed
of MurmurHash3. Moreover, we follow the RFC 8300 [Quinn et al. 2018] to define a P4
header for the Network Service Header (NSH), an SFC encapsulation protocol required
to support the SFC architecture. Usually, the connection between SFC components is

performed by NSH.

The SFC Controller implements an SFC control plane. It has been developed in
Python and uses a P4 Runtime API® to interact with the SFC data plane components. Our

prototype performs the following functionalities.

e [t provides a Northbound API that enables an operator to manage SFCs and asso-

ciated Service Function Paths (SFPs);

Kibana tool’;

low.

Finally, our framework automates the creation of SFC-enabled domains with any
topology for further validations and evaluations. For this, it uses the Mininet® emulator

“https://github.com/p4lang/behavioral-model
Shttps://en.wikipedia.org/wiki/MurmurHash

It periodically collects statistical data from the SFCMonIBLTs on all SFC-enabled
Switches. The objective is to keep track flow records (flow ids, packet, and byte
counters). Besides, such records are made available to the operator through the

It periodically resets all SFCMon data structures on all SFC-enabled Switches. As
seen in Subsection 2.2, the desired goal is to remove flows that are no longer ac-
tive. Besides, such an approach also helps in keeping the false positive probability

®https://p4.org/api/p4-runtime-putting-the-control-plane-in-charge-of-the-forwarding-plane.html

"https://www.elastic.co/products/kibana
8http://mininet.org/




and the bmv2. Therefore, our framework is not only intended to analyze SFCMon but
also to evaluate future solutions that might arise for SFCs.

3.2. Evaluating the Capability to Detect Large Flows

To evaluate the SFCMon’s ability to detect large flows, we develop a Python program
that simulates the execution of an adapted implementation of Algorithm 1, i.e., instead of
performing the operations of lines 9 to 14, we just store all five tuples in a structure so
that in the end we compare these with a ground truth.

For this experiment, we use as input a public dataset of a backbone link of 10GB/s,
measured in 2019 and available by CAIDA. This dataset contains 30 minutes of measure-
ment, with approximately 936 million packets and 7 million flows (considering only the
source IP as an identifier). In this experiment, SFCMon processes the entire dataset to
evaluate the following performance metrics:

e False Positive Rate (FPR): refers to the proportion of flows that have been reported
as HHs but which are not true HHs;

e Accuracy: evaluates how close predicted results are to true results;

e Recall Rate (True Positive Rate): refers to the proportion of flows that are true
HHs and that have been reported as HHs;

e Precision Rate: refers to the proportion of flows that have been reported as HHs
and that are true HHs.

Moreover, we evaluate the above metrics concerning a single factor: the time
window to delimit a stream of packets. It is worth mentioning that SFCMon considers
as stream any set of packets that it can process before having its structures reset by the
controller. In this context, we assumed the following levels: 6, 7, 10, 15, 30, and 60
seconds.
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Figure 3. Accuracy analysis concerning the SFCMon’s capability to detect large
flows.

For this experiment, we consider that an HH is a flow that has more than 0.1%
of the total packets that SFCMon has processed so far. Besides, we set the value of
Thresholdg,, in 1000 packets, i.e., SFCMon only begins performing HH tests after
processing more than 1000 packets in a given time window. Moreover, we follow the



recommendations of [Roughgarden and Valiant 2015] to design our CMS. In this context,
considering a packet stream size of 10 million, we reach the following parameters: w =
5436 and d = 5. Besides, we set the cell size to 3 bytes. Therefore, our CMS consumes a
total of approximately 82 Kilobytes, less than 1.4 Megabytes (see Subsection 2.1).

Finally, to obtain statistically significant results, we split the dataset into 30 chunks
with 60 seconds of measurement each and use each of them as input to the SFCMon.
Therefore, each point in the graph contains an average across the 30 trials, as well as the
confidence interval obtained from the t-student test.

Figure 3 summarizes the simulation results. We can conclude that SFCMon
achieved excellent results, since both accuracy and precision always produce their re-
sults close to 100%, regardless of the size of the time window. Also, the FPR kept its
results always close to zero, which shows that SFCMon reports a negligible amount of
flows that are not true HHs.

However, Precision presented poor results (less than 30%) when compared to the
Accuracy. These weak results are provoked by the existence of False Positives (FPs),
which, although a negligible amount, is far superior to the number of True Positives (TPs).
Since SFCMon does not expect to receive the entire stream to detect HHs, it eventually
collects some FPs. This amount decreases as we increase the size of the time window (see
Figure 3), since the amount of TPs increases. Nevertheless, it is worth emphasizing that
the impact of this evidence on the viability and performance of our solution is negligible
since the number of FPs is only a small percentage of the total amount of flows in a stream
(2% to 3% on average).

3.3. Evaluating Performance and Scalability

By using our PoC framework, we perform experiments aiming to evaluate the SFCMon
regarding its performance and scalability. For this, we have created a typical topology of
an SFC-enabled switch connecting two hosts.

For these experiments, we decide to compare the SFCMon with a P4 table, when
used as monitoring solutions for an SFC-enabled domain. Just like the SFCMon, P4 table
is a stateful object. However, unlike SFCMon, a P4 table provides deterministic outputs
at the cost of a probabilistic number of required operations. Using a P4 table to keep track
large flows would be the best since it allows to detect HHs with greater precision since it
does not underestimate or overestimate the detection metrics. In addition, it will enable
you to manage the flows without producing false positives.

We evaluate the above solutions by considering Throughput (Mbps) and Latency
(Milliseconds) metrics and compared their results when varying the number of active
flows (1, 20000, and 40000), i.e., the amount of flow currently being tracked. The SFC
Controller is responsible for creating these flows in advance. We designed SFCMon’s
probabilistic data structures to support up to 10 million streams simultaneously, follow-
ing the recommendations described in Subsection 2.1. For this, we design our CMS with
the same values defined in Subsection 3.2. Besides, from the experiments performed in
Subsection 3.2, we identify that, for a time window of 20 seconds, the number of HH re-
ported is approximately 200. Therefore, considering the time window in 20 seconds and
K = 3, we reach the following parameters for SFCMonBF and SFCMonIBLT, respec-
tively: Msroyonpr = 1500 and Msponyonrprr = 245. For SFCMonIBLT, we consider



that count and valueSum have 4 bytes each and keySum has 13 bytes (5-tuple size), thus
a total of 21 bytes per cell and an IBLT that will occupy about 5 Kilobytes per switch, less
than 1.4 Megabytes (see Subsection 2.1). It is worth mentioning that, in this case, we only
need a small portion of bandwidth (about 4 Mbps per SFC-enabled switch with 10Gbps
links) to send statistical data from the SFCMonIBLT to the controller every 10ms. This
short time scale provides better visibility in data center networks [Li et al. 2016].

For traffic generation, we choose the Iperf’ and D-ITG!? as packet generators. We
use Iperf to generate TCP traffic as fast as possible. In this way, we can compare the two
solutions according to the impact of the number of active flows in Throughput. On the
other hand, we use D-ITG to generate a single UDP flow. For this, we assume a “typical”
average packet size of 512 bytes and a transmission rate of 10 Mbps to avoid packet loss.
By using D-ITG, we can compare the two solutions according to the impact of the number
of active flows in Latency, since this tool allows you to obtain end-to-end traffic statistics
such as bandwidth, latency, jitter, and packet loss.

For each relation “Number of Active Flows x Metric x Monitoring Approach”, we
perform 30 executions with a duration of 10 seconds each, as a way to generate random
samples of size 30 and compare the solutions with statistical significance. Finally, as most
of the samples showed a tendency to non-normality of the data, the experiments applied
the Wilcoxon Test to compare the medians for each sample, while using the confidence
intervals from this test with confidence 95%. We decide to work with the median because
it is less sensitive to possible outliers. We run the experiments using a Server with Intel
Core 17-8550U 1.80GHz processors and 16 GB RAM.
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Figure 4. SFCMon performance evaluation results.

Figure 4 show the results. In terms of performance, with only a few thousand ac-
tive flows, SFCMon can be better than a P4 table considering both Throughput (see Figure
4a) and Latency (see Figure 4b). It is worth mentioning that this reference implementa-
tion of SFCMon was designed to support a stream of up to 10 million flows! This gain
in performance occurs because the SFCMon requires only simple operations (e.g., hash
function calculations, vector updates), which are independent of the number of entries.

“https://iperf.fr/
10www.grid.unina.it/software/ITG/



On the other hand, a P4 table requires a lookup in a flow table, a type of operation whose
time varies depending on the number of entries, which ends up making it a performance
bottleneck.

In terms of scalability, since the SFCMon only uses probabilistic data structures,
the number of operations required is deterministic, i.e., regardless of the number of en-
tries, the delay processing time will always be the same. As a consequence, both Through-
put (see Figure 4a) and Latency (see Figure 4b) remain the same with increasing active
flows.

Therefore, presented initial experiments demonstrate that SFCMon introduces a
negligible performance penalty while providing significant scalability gains. These results
point to the potential benefits of SFCMon to be part of SFC architecture, aiming to assist
with more advanced monitoring applications in an efficient and scalable way.

4. Related Work

We found some studies that focus on the use of probabilistic data structures for perfor-
mance measurement and volume counting. UnivMon [Liu et al. 2016] proposed an appli-
cation to detect Heavy Hitters (HHs) and use this information to do better traffic manage-
ment or monitoring. For this, UnivMon uses a CMS to perform top-k HH detection. The
HashPipe [Sivaraman et al. 2017] provides an in-switch processing algorithm that uses a
pipeline of hash tables to track heavy flows with high accuracy, aiming to evict lighter
flows from switch memory over time. Recently, the Elastic Sketch [Yang et al. 2018]
proposed a novel sketch to achieve accurate network measurements no matter how traffic
characteristics vary. For this, Elastic Sketch uses a pipeline of hash tables and a technique
named Ostracism to keep large flows separated from the mouse flows. However, different
from SFCMon, UnivMon, HashPipe, and Elastic Sketch do not save network flow data
for further collection by external applications. In contrast, SFCMon uses an IBLT to store
flow data as key-value pairs (i.e., the flow tuples and the packet and byte counters).

Closest to our efforts, FlowRadar [Li et al. 2016] provides a monitoring tool that
keeps track flows within the constraints of emerging programmable switches. Similar
to SFCMon, FlowRadar uses a BF for flow filtering and an IBLT to store flow data and
per-flow counters. However, FlowRadar applies for all transient flows while SFCMon
store only large flows. In Subsection 2.1, we showed that even working with lower-
memory IBLT, a large number of flows to manage can also make it unfeasible. In this
case, SFCMon can scale to a large number of flows.

5. Conclusion and Future Work

In this work, we presented SFCMon, an efficient and scalable monitoring solution to keep
track network flows in SFC environments. To achieve the desired goals, SFCMon works
with a pipeline of probabilistic data structures to detect large flows and to store some of
their features such as packet counting. Based on the SFC reference architecture defined
by RFC 7665 [Halpern and Pignataro 2015], we implemented a Proof-of-Concept (PoC)
framework, which provides a P4-based SFC switch, a Python-based SFC Controller, and
an SFCMon reference implementation. The source code is available in the following
GitHub repository: https://github.com/michelsb/SFCMon. Presented initial
experiments point to the potential benefits of SFCMon to be part of SFC architecture.



We can conclude that the results are promising. However, it is worth mentioning
that these experiments are only in their initial phase, enabling several opportunities for
improvement. For example, the method for setting the thresholds is static. For the growth
of Precision metric (see Figure 3), this method can be improved in future work by using
adaptive thresholds based on Reinforcement Learning and Deep Reinforcement Learning,
for instance. Additionally, it is essential to evaluate how effective SFCMon is compared to
related work when collecting data for applications. In this case, for future work, it would
be good to provide such an analysis in terms of benefits for applications. Possibly use
cases in which SFCMon is advantageous, depending on the service and its traffic profile.

Finally, taking into account latest efforts made by IETF/IRTF, future activities in-
clude pursuing contributions to standardization along the way SFCMon, as an SFC com-
ponent, can be used to assist with more advanced monitoring applications in an efficient
and scalable way.
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