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Abstract. In this work we study the performance of M-symbol (M-)Amplitude
and Phase Shift Keying (APSK) constellations for Continuous-Variable Quan-
tum Key Distribution systems. Despite the gap still observed between the per-
formance of higher order regular M-APSK constellations with binomial distri-
bution for probabilistic shaping and the optimal performance of Gaussian Mod-
ulation, regular 128-APSK’s performance is better than irregular 256-APSK’s
and almost the same as for regular 256-APSK. Moreover, higher-order regular
M-APSK is secure for longer distances and higher values of mean number of
photons per symbol, and is more resistant to excess noise.

1. Introduction
Quantum Key Distribution (QKD) can establish a secure key between two legitimate
users of a communication system, often called Alice and Bob [Li et al. 2014]. This even
against an eavesdropper with unlimited computing power [Bennett and Brassard 2014].
Continuous-Variable (CV)-QKD uses coherent states and coherent detection to pro-
vide high detection efficiencies and key rates [Ghorai et al. 2019]. Moreover, CV-QKD
schemes are compatible with telecommunication’s components [Huang et al. 2014], thus
being very attractive for practical implementations.

The theoretically optimal Gaussian Modulation (GM) was initially pro-
posed for CV-QKD [Grosshans and Grangier 2002, Ghorai et al. 2019]. How-
ever, its security proofs require ideal GM, which is very difficult to ob-
tain in practice [Denys et al. 2021]. Discrete Modulation (DM) overcomes
these limitations [Leverrier and Grangier 2011], being experimentally simpler to
implement [Ghorai et al. 2019, Lin and Lütkenhaus 2020]. Early DM-CV-QKD
protocols considered small-order constellations, such as 4-Phase Shift Keying
(PSK) [Leverrier et al. 2010]. Nonetheless, their performance is far away from the one
achievable with GM. Security proofs were obtained for arbitrary DM formats using
semi-definite programs mainly in the asymptotic case [Ghorai et al. 2019]. Moreover,
the use of semi-definite programs is computationally expensive, turning their application



beyond small M-symbol (M-)PSK constellations hardly achievable. [Denys et al. 2021]
recently proposed an explicit analytical formula for the secret key rate of DM-CV-QKD,
allowing the study of arbitrary modulation of coherent states. This allowed the study
of M-Quadrature Amplitude Modulation (QAM) constellations in the asymptotic regime
[Denys et al. 2021]. Nonetheless, M-QAM constellations require higher bandwidths and
higher peak-to-average power ratios than M-Amplitude and Phase Shift Keying (APSK)
constellations. Consequently, [Almeida et al. 2021] studied irregular M-APSK constella-
tions in the finite-size scenario.

In this paper we applied higher-order regular M-APSK constellations to a CV-
QKD system under the finite-size effect regime. We obtain security limits of proba-
bilistic shaped higher-order M-APSK constellations, taking into account both the trans-
mission distance and the excess noise. Irregular M-APSK’s security bounds (studied in
[Almeida et al. 2021]) were also computed for comparison purposes. We have consid-
ered the binomial distribution for probabilistic shaping. CV-QKD systems using regular
M-APSK are more robust to eavesdropper attacks than systems using irregular M-APSK,
being secure for longer distances. The present report is organized as follows. Section 2
briefly describes the computation of the security bounds of CV-QKD systems. Section 3
analyses the security limits of considering higher-order probabilistic shaped regular and
irregular M-APSK. Finally, Section 4 summarizes the main conclusions.

2. Discrete Modulation CV-QKD Security Bounds
In the quantum channel, Alice and Bob only share a finite number of states, N , upper
bounding the secret key rate of the CV-QKD system as [Leverrier et al. 2010]

K =
n

N
[βIBA − χBE −∆(n)] . (1)

Here n is the number of states allocated to information reconciliation, β is the reconcil-
iation efficiency, IBA is the mutual information between Bob and Alice, and χBE is the
Holevo bound between Bob and Eve, assuming reverse reconciliation. The impossibility
of transmitting an infinite number of states is associated to a worst estimation of the chan-
nel transmission and excess noise. This can be accounted for by considering the lower
and upper bound of the channel transmission and excess noise, respectively, with a prob-
ability of at least 1 − ϵPE, as provided in [Leverrier et al. 2010]. The finite-size effects
related with the privacy amplification step are accounted for in ∆(n), which is given by

∆(n) = 7

√
log2 (2/ϵ̄)

n
+

2

n
log2 (1/ϵPA) , (2)

where ϵ̄ is a smoothing parameter, and ϵPA is the failure probability of the privacy amplifi-
cation procedure [Leverrier et al. 2010]. The mutual information between Alice and Bob,
IBA, for GM can be found in [Almeida et al. 2021], while the computation of the mu-
tual information between Alice and Bob for DM, namely M-APSK constellations, can be
found in [Essiambre et al. 2010]. The Holevo bound between Bob and Eve is computed
as described in [Almeida et al. 2021], assuming collective Gaussian attacks.

3. Security Limits of M-APSK Constellations
The M-APSK constellations consist of M coherent states in the form
|αp,k⟩ =

∣∣βp|αR| ei(kθp+θp/2)
〉
, with p = 1, 2, ..., R, and k = 0, 1, ...,Mp − 1, where



βp =
p
R

, |αR| is the radius of the outer ring, θp = 2π
Mp

, Mp is the number of points in ring
p, and R is the total number of rings. All points inside some specific ring are considered
to have equal probability, given by Pk = 1/Mp. Probabilistic shaping considering the
binomial distribution is given by Pp =

2
2(2R−1)

(
2R−1
R−p

)
, for the rings probability, where

(
n
k

)
gives the number of ways to choose k elements from a set of n elements. The probability
associated to each state of the constellation is Pp,k = Pp/Mp, and the mean number of
photons per symbol, ⟨n⟩ = |α|2, is given by

∑
p Pp⟨βp⟩2|αR|2. Here, irregular M-APSK

is defined as in [Almeida et al. 2021], with the successive rings containing 4, 12, 16, 32,
64, 128, and 256 states from the inner ring to the outer one. In regular M-APSK, here
referred to as M -APSK (Mp), all rings have an equal number of states, Mp.

Fig. 1 presents the secret key rate as a function of the transmission distance (Fig.
1a) and of the excess noise (Fig. 1b) for GM and regular M-APSK with M between
16 and 256 with the binomial distribution for probabilistic shaping. The performance of
regular M-APSK constellations increase with the number of states M , getting closer to
the optimum performance of GM. Moreover, with increasing M , generally, the perfor-
mance improvement decreases, until reaching a saturation point. In terms of the maximum
achievable transmission distance, this saturation point is reached for 128-APSK (16) (Fig.
1a), which is also very close from 256-APSK (32) in terms of the maximum acceptable
excess noise (Fig. 1b). As such, there is still a gap between the performance of regular
M-APSK and GM’s optimal performance.

Table 1 contains the maximum achievable transmission distance and maximum
(back-to-back) secret key rate for ξ = 0.005 SNU, and the maximum acceptable ex-
cess noise value and maximum (no eavesdropping) secret key rate for d = 10 km for
GM and regular 64, 128 and 256-APSK with the binomial distribution for probabilis-
tic shaping. For a better comparison between regular and irregular M-APSK, Table 1
also contains results for irregular 64, 128 and 256-APSK with the binomial distribution,
with some of the results been taken from Table 1 of [Almeida et al. 2021]. Regular 256-
APSK (32) can achieve only 0.7 km more than irregular 256-APSK. Nonetheless, regular

(a) (b)

Figure 1. Secret key rate for GM and regular M-APSK with M between 16 and 256,
considering binomial distribution for probabilistic shaping, with the mean
number of photons per symbol optimized and considering the finite size
effects, as a function of (a) the transmission distance and (b) the excess
noise. Here it was considered d = 10 km, η = 0.6, β = 0.95, ξ = 0.005 SNU,
ξthermal = 0.04 SNU, ϵ = ϵPA = ϵPE = 10−10, N = 108 points, n/N = 1/2.



Table 1. Maximum achievable transmission distance and maximum (back-to-
back) secret key rate for ξ = 0.005 SNU; and maximum acceptable ex-
cess noise and maximum (no eavesdropping) secret key rate for d = 10
km. Results are presented for GM, and regular and irregular 64-APSK, 128-
APSK and 256-APSK with the binomial distribution for probabilistic shap-
ing. Here the mean number of photon per symbol was optimized, and it
was considered η = 0.6, β = 0.95, ξthermal = 0.04 SNU, ϵ = ϵPA = ϵPE = 10−10,
N = 108 points, n/N = 1/2. ∗Results from [Almeida et al. 2021].

Gaussian
Modulation

Regular M-APSK Irregular M-APSK
64-APSK

(16)
128-APSK

(16)
256-APSK

(32) 64-APSK 128-APSK 256-APSK

Maximum Achievable Transmission
Distance [km] for ξ = 0.005 SNU 58.9 53.5 54.9 54.9 52.0∗ 53.6∗ 54.2∗

Maximum Secret Key Rate
[bits/symbol] for ξ = 0.005 SNU 1.908 0.399 0.516 0.574 0.309 0.361 0.402

Maximum Acceptable Excess
Noise [SNU] for d = 10 km 0.203 0.136 0.156 0.159 0.121 0.134 0.141

Maximum Secret Key Rate
[bits/symbol] for d = 10 km 0.173 0.116 0.132 0.137 0.101 0.111 0.118

M-APSK have higher key rates for all distance range. In fact, for small distances regu-
lar 64-APSK (16) has a higher secret key rate associated, namely 0.399 bits/symbol in
a back-to-back situation, than irregular 128-APSK, which has 0.361 bits/symbol, being
only 0.003 bits/symbol away from irregular 256-APSK. The differences between con-
sidering regular or irregular M-APSK constellations are even more noticeable in terms of
the excess noise, with regular 128-APSK (16) and 256-APSK (32) being able to accept
0.015 SNU and 0.018 SNU more than irregular 256-APSK. As such, regular M-APSK
outperforms irregular M-APSK either in terms of secret key rate, in terms of maximum
achievable transmission distances and in terms of maximum acceptable excess noise.
Remark that no practical advantage of irregular M-APSK constellations over regular
M-APSK, considering QKD practical applications, has been found. Future research may
focus on the comparison between both these modulation formats alongside a practical
implementation of the CV-QKD system.

Fig 2a contains the secret key rate as a function of the mean number of pho-
tons per symbol for GM and regular M-APSK with M between 16 and 256 considering
the binomial distribution for probabilistic shaping. For small values of mean number of
photons per symbol, the key rates obtained considering regular M-APSK approximate
the optimum ones of GM. With increasing number of states, M , the curves for reg-
ular M-APSK becomes flatter, as also observed for irregular M-APSK, allowing more
flexibility in terms of the mean number of photons per symbol in the system, with-
out compromising the secret key rate. Moreover, regular M-APSK has a larger range
of usable mean number of photons per symbol, than irregular M-APSK. From Fig. 8
of [Almeida et al. 2021], irregular M-APSK cannot consider values of mean number of
photons higher than 7 photons per symbol, while both regular 128-APSK (16) and 256-
APSK (32) can extract keys using more than 8 photons per symbol.

In Fig. 2b we present the maximum excess noise as a function of the transmis-
sion distance for GM and regular M-APSK with M between 16 and 256. The use of
higher-order M-APSK allows the increase of the key rate, and as such the increase of
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Figure 2. (a) Secret key rate as a function of the mean number of photons per
symbol; and (b) Maximum acceptable excess noise as a function of the
transmission distance with the mean number of photons per symbol opti-
mized. This for GM and regular M-APSK with M between 16 and 256 con-
sidering the binomial distribution for probabilistic shaping. The results
were obtained considering d = 10 km, η = 0.6, β = 0.95, ξ = 0.005 SNU,
ξthermal = 0.04 SNU, ϵ = ϵPA = ϵPE = 10−10, N = 108 points, n/N = 1/2.

the achievable distances and of the robustness to attacks (Fig. 1 and Table 1), indepen-
dently of the transmission distance and excess noise value considered (Fig. 2b). Higher
transmission distances are associated to smaller accepted excess noise values (Fig. 2b).
Similarly, higher values of excess noise mean that the CV-QKD system is only secure for
a smaller range of distances. Nonetheless, the relation between the maximum acceptable
excess noise and the transmission distance is not linear (Fig. 2b). The maximum ac-
ceptable excess noise decreases more for smaller distances. Remark that, with increasing
transmission distance, the difference between the amount of eavesdropping accepted by
the different constellations decreases.

4. Conclusion

In this work the performance in CV-QKD systems of regular M-APSK constellations was
studied and compared with the performance of irregular M-APSK. We show that regular
M-APSK can achieve higher secret key rates than irregular M-APSK, thus getting closer
to the GM’s optimal performance. In a practical implementation, regular and irregular
M-APSK are similar, turning regular M-APSK constellations more relevant for CV-QKD
purposes. The higher-order regular M-APSK can achieve higher distances, being more
resistant to the excess noise. Nonetheless, a gap can still be observed, independently of
the transmission distance and of the excess noise, between the performance of the higher-
order regular M-APSK constellations and GM, with the curve of regular 128-APSK (16)
being almost overlapped with the curve of regular 256-APSK (32). As such, there is no
relevant gain in considering regular 256-APSK (32) over regular 128-APSK (16). Reg-
ular 128-APSK (16) achieves almost 93% of GM’s maximum achievable transmission
distance (in a no eavesdropper situation), and accepts almost 76% GM’s maximum ac-
ceptable excess noise (in a back-to-back situation), showing greater performance than
irregular 256-APSK for all distance and excess noise values. Further analysis of both
regular and irregular M-APSK constellations in terms of the practical implementation of
CV-QKD systems is left as future work.
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