
Automation of the Quantum Algorithm HHL for
implementing two-dimensional SVMs
Gabriela Pinheiro1, Luis Antonio Brasil Kowada1

1Instituto de Computação – Universidade Federal Fluminense (UFF) – Niterói, RJ – Brazil

gabrielapc@id.uff.br, luis@ic.uff.br

Abstract. Support Vector Machine (SVM) is considered one of the main clas-
sification Machine Learning algorithms. Following the original formulation,an
SVM generation has quadratic complexity, leaving room for exploring resolu-
tion methods with better performance. One way to enhance its efficiency is by
utilizing Quantum Computing algorithms, such as the HHL. This work presents
an automation of a Quantum Machine Learning algorithm that uses HHL to
generate SVMs fixed at the origin of a two-dimensional hyperplane.

1. Introduction
The Support Vector Machine(SVM) is considered one of the most powerful classification
algorithms which, due to its strong theoretical foundations and generalization capabil-
ity, is widely used in relevant applications such as bioinformatics and image classifica-
tion [Cervantes et al. 2020]. The original formulation of the algorithm has a quadratic
complexity. To reduce the complexity of the algorithm, [Suykens and Vandewalle 1999]
applied a least-squares reformulation on the original version of the SVM, transforming
it on the system of linear equations. This transformation allows for more efficient linear
systems resolution techniques to be applied, such as quantum algorithms.

Quantum Computation allows the use of quantum mechanics to obtain advantages
over classical computers on information processing on specific cases. Despite quantum
computers with enough power to process large computations are not yet available, the field
already demonstrates being promising, with algorithms having exponential performance
advantages [Gyongyosi and Imre 2019].

HHL [Harrow et al. 2009] is a quantum algorithm where is possible to extract
information about the solution of a linear system of equations with exponential advantage
over classic algorithms. The algorithm is used in a variety of quantum machine learning
applications, such as linear regression and SVMs [Duan et al. 2020].

The objective of this paper is to validate and automate an approach to the use of
HHL in a Quantum Machine Learning algorithm proposed by [Rebentrost et al. 2014] to
generate SVMs fixed at the origin of a two-dimensional hyperplane.

2. Fundamental Concepts
2.1. SVM
Support Vector Machine (SVM) [Cortes and Vapnik 1995] is a Machine Learning algo-
rithm created originally for binary classification of data, were a dataset is divided in two
distinct classes and the SVM needs to discover to which class a new element of the dataset
belongs to.

The algorithm works by non-linear mapping the data to vectors in a hyperspace
where the dimension is defined by the number of parameters used. The goal is to find a
linear decision hyperplane dividing the data from both classes, maximizing the distance
between them. As a result, the class of new data can be verified by it’s position relative to
the hyperplane.

The hyperplane to be found is represented by the equation w⃗ · x⃗ − b = 0, and
the classes are represented by the labels 1 and −1. A data χ⃗ belongs to the 1 class if
w⃗ · χ⃗− b ≥ 1 is true, or belongs to the −1 class if w⃗ · χ⃗− b ≥ −1 is true. Figure 1 shows
an example of a SVM in a two-dimensional hyperspace.

Figure 1. Maximum-margin hyperplane in a two-dimensional hyperspace.
Source: [Larhmam 2018].

SVM’s original formulation main goal is to maximize the distance margin 2
||w||

between the two classes, which is equivalent to minimize ∥w⃗∥2
2

with the restriction yj(w⃗ ·
x⃗j + b) ≥ 1 for every xj in the dataset.

[Rebentrost et al. 2014] proposed a least-squares reformulation of the problem,
transforming the SVM into a solution of the linear system represented by Equation (1).

F

(
b
a⃗

)
≡

(
0 1⃗T

1⃗ K + γ−1I

)(
b
a⃗

)
=

(
0
y⃗

)
, (1)

where K the kernel matrix, a M×M matrix created using the function Kij = k(x⃗i, x⃗j) =

x⃗i · x⃗j with the M training vectors, being y⃗ = (y0, y1, ..., yM−1) and 1⃗ = (1, ..., 1). I
represents the identity matrix and γ is the user-defined training error weight. Resulting in
a (M + 1) × (M + 1) matrix F in which the SVM parameters become represented as a
function of b and a⃗ and the class of a data x⃗i is now obtained with the condition in (2).

yi =

+1 if

M−1∑
j=0

aik(x⃗i, x⃗j) + b ≥ 0

−1 if
M−1∑
j=0

aik(x⃗i, x⃗j) + b < 0

(2)

2.2. Quantum Computation

Quantum Computation is the field of computation responsible for studying information
processing through the use of quantum mechanical systems [Nielsen and Chuang 2010],
which makes possible to obtain algorithms with processing advantages over classical sys-
tems.

Named after the type of quantum computers available, Quantum Computation is
currently at the NISQ (Noisy Intermediate-Scale Quantum) era, where these computers
processing capacity is still limited, between 50 to 100 qubits [Pednault et al. 2017]. An-
other limiting factor is the high rate of noise, which are measuring errors that occurs due
to different reasons, such as the the difficulty to maintain the system isolated, multi-qubit
operations and the circuit transpilation that is necessary to run circuits on real devices and
usually results in bigger circuits than the original.

2.3. HHL algorithm
Named after its creators, the HHL [Harrow et al. 2009] is a quantum algorithm for the
resolution of linear systems. Considering the system Ax⃗ = b⃗, given b⃗ and the matrix A,
it is possible to extract information about the solution x⃗ more efficiently, being exponen-
tially faster than any classical algorithm for specific systems. A more in depth explanation
and circuit tutorial can be found in [Adedoyin et al. 2018].

3. Implementation
In order to reduce the size and length of the generated circuit for a SVM,
[Yang et al. 2019] fixed b = 0, implying that the generated hyperplane passes trough
the origin of the hyperspace. This was done in order to simplify the system, because with
b being 0 is possible to remove the first line and column of F due to their values also
becoming 0 after the multiplication, resulting in the Equation (3).

F
(
a⃗
)
≡

(
K + γ−1I

) (
a⃗
)
=

(
y⃗
)

(3)

As a result, F becomes a M × M matrix and the only parameter that must be
found is a⃗. Because a⃗ is a vector, the ratio between it’s components is enough to calculate
the angle and trace the hyperplane. Resulting in an ideal scenario for the use of HHL,
which is able to calculate that ratio efficiently.

Quantum Machine Learning is an emerging area, therefore, the majority of the
circuit generation needs to be done manually due to the lack of automated tools available,
resulting in a previous quantum computation knowledge requirement from the user. The
circuit generation automation not only increases the efficiency of the testing and develop-
ment process but also removes the knowledge requirement.

Automating was performed using the Python programming language and the qiskit
library, an open-source quantum toolkit developed by IBM [Cross 2018]. Each HHL cir-
cuit used the same structure shown in the tutorial [Morrell Jr et al. 2021], where initially
b⃗ is mapped to the circuit, followed by a Quantum Phase Estimation(QPE), a controlled
rotation R and finishes with a inverse QPE. The generated circuit is represented on Fig-
ure 2.

In order to validate the circuit automation, the Breast Cancer Wisconsin (Diagnos-
tic) dataset [Street et al. 1993] was chosen to perform the tests. The dataset was created
from 569 images of breast mass fine needle aspirates (FNA) that were processed and
resulted in 30 continuous features.

After plotting the graphs for all possible combination of features pairs, the ones
who presented the best behavior for an SVM implementation were empirically chosen to

Figure 2. Generic HHL circuit. Source: [Cai et al. 2013].

compose the test group, which, due to the free plan execution time limit, was restrained to
eleven different SVMs. For each test, the dataset was divided in a training set containing
the first 369 elements and a test set with the remaining 200. The Kernel matrix was created
with the average value of the features of the benign and malignant training data, and each
element was divided by its norm.

4. Results

The generated SVMs were classically validated and the corresponding circuits were tested
in quantum simulators and real quantum computers with the number of qubits varying
from 7 to 127, chosen based on their availability, provided for free by IBM, with 100.000
measurements in every execution. For each element of the test group, three different
SVMs were generated, one from the exact solution of the linear system, one from the re-
sults of noiseless simulations and one from executions on real quantum devices, evaluated
based on their accuracy, calculated by correct predictions

all predictions
.

In all test cases, the SVMs generated from the exact solution and simulations
presented similar accuracy, with slightly variation due to numerical rounding performed
by the algorithm, but the SVMs generated from executions on real quantum computers
showed a expressive results variation due to the noise interference, due to time constraints
it was not possible to carry out an in-depth analysis of the different origins of the noise
and its impacts. Resulting in three distinct scenarios, positive noise interference, low
noise interference and negative noise interference, each represented by a example above.

Occurring only once, in this scenario the noise interference improved the accuracy
of the generated SVM, reaching 87.0% in comparison with the 83.0% expected. This
experiment was executed on the retired 7 qubits ibm nairobi computer and the results are
shown in Figure 3.

Figure 3. SVMs positively affected by noise, generated by the exact solution,
simulation and execution on a real quantum computer, respectively.

Another rare case, in this scenario the noise interference only caused a small drop
in accuracy, being 76.0% compared to expected 79.5%.This experiment was executed on
the 127 qubits ibm brisbane computer and the results are shown in Figure 4.

Figure 4. SVMs little affected by noise, generated by the exact solution, simula-
tion and execution on a real quantum computer, respectively.

The most common case, in this scenario, the noise interference caused a major
drop in the accuracy of the generated SVM, reaching only 67.5% in comparison with the
88.5% expected in this example. This experiment was also executed on ibm nairobi and
the results are shown in Figure 5.

Figure 5. SVMs negatively affected by noise, generated by the exact solution,
simulation and execution on a real quantum computer, respectively.

An important fact to take in consideration about the results on real quantum com-
puters is that, due to the free plan’s limit of execution time, each test case was only
executed once, when the ideal scenario was to execute multiple times in order to explore
the noise variation for each execution and search for better results.

5. Conclusion
The experiments showed results consistent with the expected solutions, demonstrating
that the automation was done correctly. The circuit automation allows for a SVM to be
generated from any two-dimension Kernel matrix automatically, facilitating the imple-
mentation of this Quantum Machine Learning algorithm for distinct applications. The
accuracy obtained by the SVMs when executed on real quantum devices shows this
method’s viability, where the use of HHL for the linear system resolution could generate
an efficiency gain over classical computations, indicating a possible quantum advantage.

In conclusion, this paper presented an automation algorithm for quantum machine
learning to generate SVMs fixed on the origin of a two-dimensional hyperplane. From the
two-dimensional SVMs automation, the next goal is the generalization for N -dimensional
hyperplanes. Is expected that with bigger dimensions will be possible to obtain better
results, because it will allow the use of more features simultaneously.

6. Acknowledgements
This work has been supported by the CNPq (101170/2023-8) and by the FAPERJ
(260003/015313/2021).

References
A. Adedoyin et al. (2018). Quantum algorithm implementations for beginners. arXiv

preprint arXiv:1804.03719.

X.-D. Cai et al. (2013). Experimental quantum computing to solve systems of linear
equations. Physical Review Letters, 110(23):230501.

J. Cervantes et al. (2020). A comprehensive survey on support vector machine classifica-
tion: Applications, challenges and trends. Neurocomputing, 408:189–215.

C. Cortes and V. Vapnik (1995). Support-vector networks. Machine learning, 20:273–
297.

A. Cross (2018). The ibm q experience and qiskit open-source quantum computing soft-
ware. In APS March meeting abstracts, volume 2018, pages L58–003.

B. Duan et al. (2020). A survey on HHL algorithm: From theory to application in quantum
machine learning. Physics Letters A, 384(24):126595.

L. Gyongyosi and S. Imre (2019). A survey on quantum computing technology. Computer
Science Review, 31:51–71.

A. W. Harrow, A. Hassidim, and S. Lloyd (2009). Quantum algorithm for linear systems
of equations. Physical Review Letters, 103(15):150502.

C. B.-S. . v. W. C. Larhmam (2018). Maximum-margin hyperplane and margin for
an SVM trained on two classes. samples on margins are called support vectors.
https://commons.wikimedia.org/wiki/File:SVM margin.png.

H. J. Morrell Jr, A. Zaman, and H. Y. Wong (2021). Step-by-step hhl algorithm walk-
through to enhance the understanding of critical quantum computing concepts. arXiv
preprint arXiv:2108.09004.

M. A. Nielsen and I. L. Chuang (2010). Quantum computation and quantum information.
Cambridge University Press.

E. Pednault et al. (2017). Pareto-efficient quantum circuit simulation using tensor con-
traction deferral. arXiv preprint arXiv:1710.05867.

P. Rebentrost, M. Mohseni, and S. Lloyd (2014). Quantum support vector machine for
big data classification. Physical Review Letters, 113(13):130503.

W. N. Street, W. H. Wolberg, and O. L. Mangasarian (1993). Nuclear feature extraction for
breast tumor diagnosis. In Biomedical image processing and biomedical visualization,
volume 1905, pages 861–870. SPIE.

J. A. Suykens and J. Vandewalle (1999). Least squares support vector machine classifiers.
Neural processing letters, 9:293–300.

J. Yang, A. J. Awan, and G. Vall-Llosera (2019). Support vector machines on noisy
intermediate scale quantum computers. arXiv preprint arXiv:1909.11988.

