
Distributed Quantum Walk Control Plane Implementation

André Ribeiro1, Matheus Guedes de Andrade2, Fabio Kon1, and Don Towsley2

1Departamento de Ciência da Computação
Universidade de São Paulo (USP)

2Manning College of Information and Computer Sciences
University of Massachusetts Amherst

Abstract. The Quantum Walk Control Protocol (QWCP) enables universal dis-
tributed quantum computing in quantum networks. In its debut, QWCP was
specified in terms of logical quantum operations required by a quantum network
to implement the protocol. In this paper, we propose two possible implementa-
tions of the QWCP based on different ways to encode quantum walks in physical
qubits. The proposed encodings require different numbers of qubits and remote
entangled states to perform control operations. Our approaches help to bridge
the gap between the logical description of the QCWP and possible physical re-
alizations of the protocol. 1

1. Introduction

Quantum networks are on the frontier of quantum research. The field combines
various disciplines with the promise of enabling quantum communication among quantum
processors, leading to applications that cannot be achieved with classical communication
alone [Kimble 2008]. Similar to traditional computer networks, quantum networks will
require efficient communication protocols to enable scalable quantum communication. In
addition to orchestrating network control operations, quantum network protocols must be
tailored to overcome the inherent fragility of quantum information. Qubits are prone to
errors from a variety of sources, such as memory decoherence in storage and imperfect
state transduction in photonic transmission.

In this context, distributed quantum computing (DQC) is a fundamental appli-
cation enabled by quantum networks [Buhrman and Röhrig 2003]. It requires control
protocols to orchestrate distributed quantum operations despite the choice of quantum
hardware used in the network fabric. Previous work proposed the Quantum Walk Con-
trol Protocol (QWCP) [de Andrade et al. 2023] to enable universal DQC in quantum net-
works. The QWCP was described in terms of logical operators and can be used to control
arbitrary quantum network operations, e.g., entanglement distribution [Pant et al. 2019].
The logical description of QWCP is general, although it does not directly address how the
protocol is implemented in terms of qubits.

In this paper, we address the problem of implementing the QWCP in quantum
processors. We provide two ways one can map the logical description of the QWCP to

1This research was supported in part by the NSF grant CNS-1955744, NSF- ERC Center for Quantum
Networks grant EEC-1941583, INCT of the Future Internet for Smart Cities CNPq proc. 465446/2014-0,
and FAPESP procs. 14/50937-1 and 2020/04031-1.

qubits in the network nodes: the linear encoding and the logarithmic encoding implemen-
tation. We describe the number of qubits required at each node in order to implement the
QWCP, together with a description of the control operators for both proposed methods.
Finally, we present an initial theoretical analysis on the performance of the proposed im-
plementations, which shows a trade-off between network resources used for control and
the time required to complete control operations.

2. System Model
We follow the system model described in [de Andrade et al. 2023] for a quantum

network. Consider a symmetric directed graph G = (V,A), with V and A representing
the nodes and arcs of the graph, respectively. Since G is symmetric, (v, u) ∈ A if, and
only if, (u, v) ∈ A. We use δ(v) to denote the set of neighbors of vertex v ∈ V and
d(v) = |δ(v)| to denote v’s degree.

Edge colorings are of particular interest to the description and analysis of the
methods we propose in this article. Let G′ = (V,E) denote the undirected version of
the network graph G where arcs (u, v) and (v, u) of G are represented by the same edge
in G′. Let Γ′

G,k : E → {1, . . . , |V |}|E| denote an edge coloring of G′ where at most
k edges incident to the same node have the same color. Let ΓG,k : A → {1, . . . , |V |}
be a coloring of the directed graph G obtained from Γ′

G,k as ΓG,k(v, u) = ΓG,k(u, v) =
Γ′
G,k(v, u). Let ∆ΓG,k

denote the number of colors in ΓG,k. When k = 1, coloring ΓG,k

reduces to the usual coloring where edges incident to same node have different colors.
Finding the minimum number of colors for G when k = 1, i.e., minΓG,1

∆ΓG,1
, is an NP-

hard problem, although Vizings’s theorem states that dmax ≤ minΓG,1
∆ΓG,1

≤ dmax +
1 [Stiebitz et al. 2012]. For simplicity, we omit the dependency of a coloring withG from
now on, and use Γ to denote ΓG,1.

A quantum network is a set of quantum processors (nodes) that can communicate
with each other via quantum channels (arcs). Each node has a fixed number of qubits
and can perform local quantum operations on them. We divide those qubits into two
disjoint sets,Nv andMv, which we refer to as network qubits and data qubits, respectively.
In this work, we mainly focus on network qubits—which are associated with control
operations—and omit data qubits to simplify exposition when possible.

The discrete-time coined quantum walk model is a unitary evolution process de-
fined in the Hilbert space HG = HV ⊗HC that encodes the graph’s arcs [Portugal 2018].
In particular, HV encodes the vertices and HC encodes the coin space of the walker.
Specifically, for each (v, u) ∈ A, a basis vector |v, cvu⟩ is defined within HG, with cvu
symbolizing the degree of freedom corresponding to the arc that connects v with u. The
evolution of the quantum walk is given by |Ψ(t+ 1)⟩ = S(t)C(t) |Ψ(t)⟩, where C and S
are the coin and shift operators, respectively. A generic coin operation on node v maps∑

u∈δ(v) αvu |v, cvu⟩ →
∑

u∈δ(v) βvu |v, cvu⟩, where αvu ∈ C and βvu ∈ C respect unitary
evolution. C mixes the amplitudes associated with the states representing the outward arcs
of a node and shapes the probability that the walk moves from one node to another. The
shift operator S maps |v, cvu⟩ → |u, cuv⟩. It changes amplitudes among different nodes
and is related to the propagation of the quantum walk itself, i.e., S drives the movement
of the quantum walk among network neighbors.

The QWCP utilizes a quantum walk system to propagate entanglement between

network nodes enabling remotely controlled quantum operations. A diverse set of oper-
ations can be performed with the QWCP and we focus on the case where the protocol is
used to route quantum control information through a network path P = {v0, v1, . . . , vn}.
In a nutshell, the QWCP starts in the state |v0, cv0⟩ ⊗ (α |0⟩ + β |1⟩), where the sec-
ond term denotes the state of a data qubit in B. The first coin operator coin operator
C(0) prepares the state (α |v0, cv0⟩ |0⟩ + β |A, cv0v1⟩ |1⟩), which is an entangled state be-
tween control and data qubits in v0. It progresses by evolving the control state through
successive applications of coin and shift operators until the quantum walk state has the
form α |v0, cv0⟩ + β |vn, cvn⟩. The coin operators applied in the quantum walk evolu-
tion after initialization are permutations of the degrees of freedom such that, for t > 0,
C(t) : |vt, cvtvt−1⟩ → |vt, cvtvt+1⟩. Note that the coin operators that drive the evolution of
the quantum walk are local operations while shifts are non-local. For simplicity, we focus
on the description of C(t) for t > 0, although one can extend the results described in this
paper for the data-control operations described in [de Andrade et al. 2023].

3. Quantum Walk Implementation

We present two ways one can implement the quantum walk protocol with network-
ing qubits. Our models add to previous literature by mapping the mathematical definition
of the protocol to operations that can be performed on qubits within a quantum processor.
In essence, one can think that the description presented in [de Andrade et al. 2023] is a
logical description of a quantum algorithm and our models provide two implementations
of the algorithm.

3.1. Linear Encoding

We start by assuming that one can use O(dmax) qubits in a node to encode the
quantum walk, where dmax is the maximum node degree. This assumption allows each arc
of the network graph G to be represented by one physical qubit in the network. The one-
to-one mapping between arcs and qubits leads to a one-hot encoding of the quantum walk:
each basis vector |v, cvu⟩ is represented by the quantum state where the qubit associated
with arc (v, u) is in state |1⟩ and all other qubits are in state |0⟩. Each superposition of a
set of arcs A′ ⊂ A in the one-hot encoding is an entangled state of the qubits representing
the arcs in A′ resembling a multi-qubit W-state [Dür et al. 2000]. We refer to the state of
the qubit associated with arc (v, u) as |ψ⟩vu. Moreover, we refer to this one-hot encoding
scheme as the linear encoding.

We now describe the action of the coin and shift operators in the linear en-
coding case. Let qvu denote the qubit in node v that encodes arc (v, u). Let |ψ⟩ =
|1⟩vw

⊗
a∈A\{vw} |0⟩a denote the linear encoding of an arbitrary basis state. For a generic

coin operator, C |ψ⟩ =
∑

u∈δ(v) αvu |1⟩vu
⊗

a∈A\{vu} |0⟩a , where αvu ∈ C denotes the
amplitude of the basis state associated with (v, u) in |ψ⟩. When t > 0, C(t) is a permuta-
tion of the states encoding the outgoing arcs of a node, implemented in the linear encoding
as C(t) = SWAP(qv(v−1), qv(v+1)).2 The shift operator is also a swap gate in the linear en-
coding, although it involves qubits in different nodes. We implement S using the remote
swap gate depicted in Figure 1, which requires the expenditure of two Bell pairs. Using

2Note that coins performing arbitrary permutations of the outgoing arcs of a node can be implemented
in the linear encoding with a sequence of swap gates.

Figure 1. Swap circuit between q0 and q5, using two Bell pairs (q1,q3) and (q2,q4).

(a) Initial state. (b) Coin operation. (c) Shift operation.

Figure 2. Linear encoding system evolution with logical and code states.

two Bell pairs to execute the remote swap gate is optimal, since this operation cannot be
performed using a single Bell pair [Collins et al. 2001].

We illustrate the linear encoding through a three-node network example depicted
in Figure 2. In this setup, three qubits in y encode the walker’s state, while two encod-
ing qubits in both x and z are utilized. Figure 2a shows the initial logical state when
the quantum walk is initialized on the self-loop (y, y), together with the correspond-
ing linear encoding. A coin operator that maps |y, Cy⟩ into the generic superposition
α |y, Cyx⟩ + β |x,Cyz⟩, with α, β ∈ C, is applied, generating the states depicted in Fig-
ure 2b. Finally, the shift operator propagates the quantum walk to nodes x and z, yielding
the states depicted in Figure 2c.

3.2. Logarithmic Encoding

The linear encoding does not utilize the entire power of qubits to encode the quan-
tum walk. We now present an encoding scheme that only requires ⌈log2(∆Γ + 1)⌉ qubits
in each network node. unlike the linear encoding scheme, we do not provide a complete
description of the operations for this encoding in terms of quantum gates. Instead, we de-
scribe them in terms of multi-qubit unitaries that can be implemented with any universal
gate set.

Let K = ⌈log2(∆Γ + 1)⌉ and |ψ⟩v denote the state of all K qubits in node
v. The absence of the quantum walker in v is codified by the state |ψ⟩v = |0 . . . 0⟩.
States are encoded following the coloring Γ such that |v, cvu⟩ is represented by the
state |Ψ⟩v = |Γ(v, u)⟩v. Since arcs (u, v) and (v, u) have the same color, the state of
the qubits in u encoding (u, v) is the same as the state of qubits in v encoding (v, u).
Thus, a generic superposition (α |v, Cvu⟩ + β |w, cwl⟩) is encoded as the entangled state
(α |Γ(v, u)⟩v |0 . . . 0⟩w + β |0 . . . 0⟩v |Γ(w, l)⟩w), for (v, u), (w, l) ∈ A.

(a) Initial state. (b) Coin operation. (c) Shift operation.

Figure 3. Logarithmic encoding system evolution with logical and code states.

A generic coin operator in v drives an evolution of the form as
∑K−1

j=0 αj |j⟩v =∑K−1
j=0 βj |j⟩v, where {αk} and {βk} respect unitarity conditions. The coin operator driv-

ing the propagation of the quantum walk over path P is such that C(t) : |Γ(vt, vt−1)⟩ →
|Γ(vt, vt+1)⟩. This operation can be performed through a sequence of swaps, where qubits
qk and qj in vt are swapped if the k-th bit of Γ(vt, vt−1) and j-th bit of Γ(vt, vt+1) differ.
The shift operator maps state |Γ(v, u)⟩v |0 . . . 0⟩u to state |0 . . . 0⟩u |Γ(v, u)⟩v. This encod-
ing makes the shift operation considerably more complex than the linear encoding case.
In the general case, the unitary that implements the shift between two nodes u and v acts
on all qubits in both u and v. Furthermore, the most efficient way to implement S in terms
of number of Bell pairs consumed that performs the shift operation in the logarithmic ap-
proach is not known. Nonetheless, a feasible way to implement the operator is to teleport
all qubits from v to u, perform the unitary locally, and teleport the qubits back to v. This
approach requires 2⌈log(∆Γ) + 1⌉ Bell pairs. As stated in Section 2, finding an optimal
coloring for the encoding is an NP-Hard problem, although any edge coloring can be used
to generate an encoding for the quantum walk.

We illustrate the logarithmic encoding in Figure 3 with the same three-node net-
work exampled used for the linear encoding in Figure 2.

4. Performance analysis

Performing coin operations in both encodings described in Section 3 is simple
from a networking perspective since they only require local operations in the nodes. Shift
operations are more complex, since they require the generation of entanglement between
neighboring nodes. We now analyse the performance of the two proposed encodings in
terms of the network resources required to implement shift operations. We now assume
that network nodes have additional network qubits that can be used to create Bell pairs
with their neighbors in order to implement the remote gates required by shift operators.
From now on, we divide the network qubits in the nodes into two groups: encoding and
operation qubits.

Shift operations in both encodings are defined for a single link and performing the
shift operation for the entire network—which we refer to as the network shift throughout
the remainder of this paper—requires shifts on each network link. There is trade-off be-
tween the number of Bell pairs utilized to perform the network shift and the time required
to complete the operation. This trade-off stems from the fact that the number of parallel
shifts that can be executed at a given node depends on how many non-local Bell pairs that
node can share with its neighbors at a given step.

Let a k-parallel shift denote shifting k ≥ 1 links on a node simultaneously. Let a

sequential shift denote shifting each link of a node one at a time, i.e., a 1-parallel shift.
Since the time to execute a shift operation is negligible if a node has sufficient pre-shared
Bell pairs, parallel node shifts are possible in both encodings. Executing a k-parallel shift
in a node consumes kBenc Bell pairs simultaneously, where Benc is the number of Bell
pairs consumed by a shift operation over a link in a given encoding. Note that Benc =
2 in the linear encoding and Benc = 2⌈log(∆Γ) + 1⌉ in the logarithmic encoding. A
sequential shift in node v incurs a time delay on the order of O(d(v)), while k-parallel
shifts lead to a time delay of O(d(v)/k). We discuss the time required to complete the
network shift in terms of shift rounds, or simply rounds: a round is a maximal set of shift
operations performed in different nodes such that no additional shift can be performed
without additional Bell states. The number of rounds required to complete the network
shift relates to edge coloring problems. In particular, the number of rounds is ⌈∆Γk

/k⌉
when nodes perform k-parallel shifts. For instance, the network shift on an n-node star
requires n− 1 rounds if only sequential shifts are allowed.

5. Conclusion
In this paper, we described two different implementations of a mathematical quan-

tum walk control plane [de Andrade et al. 2023] based on (i) a linear encoding and (ii) a
logarithmic encoding. For both cases, we specified how to arrange the qubits in the net-
work and how to perform the operations needed to implement the quantum walk control
plane for universal distributed quantum computation. Finally, we analyzed and compared
the proposed encoding schemes in terms of the trade-off between network resources and
operation time. As future work, we plan to conduct simulations of the control plane. Our
goal is to further investigate the performance of the two models proposed when effects
such as classical communication latency and memory decoherence are taken into account.

References
Buhrman, H. and Röhrig, H. (2003). Distributed quantum computing. In International

Symposium on Mathematical Foundations of Computer Science, pages 1–20. Springer.

Collins, D., Linden, N., and Popescu, S. (2001). Nonlocal content of quantum operations.
Phys. Rev. A, 64:032302.

de Andrade, M. G., Panigrahy, N. K., Dai, W., Guha, S., and Towsley, D. (2023).
Universal quantum walk control plane for quantum networks. arXiv preprint
arXiv:2307.06492.

Dür, W., Vidal, G., and Cirac, J. I. (2000). Three qubits can be entangled in two inequiv-
alent ways. Physical Review A, 62(6):062314.

Kimble, H. J. (2008). The quantum internet. Nature, 453(7198):1023–1030.

Pant, M., Krovi, H., Towsley, D., Tassiulas, L., Jiang, L., Basu, P., Englund, D., and Guha,
S. (2019). Routing entanglement in the quantum internet. npj Quantum Information,
5(1):25.

Portugal, R. (2018). Quantum Walks, and Search Algorithms. Springer Nature, Switzer-
land.

Stiebitz, M., Scheide, D., Toft, B., and Favrholdt, L. M. (2012). Graph edge coloring:
Vizing’s theorem and Goldberg’s conjecture, volume 75. John Wiley & Sons.

