
HPCGRA - An Orthogonal Designed CGRA Generator for
High Performance Spatial Accelerators

Lucas Bragança Silva1, Michael Canesche1,
Ricardo Ferreira1, José Augusto M. Nacif1

1Departamento de Informática – Universidade Federal de Viçosa (UFV)
Avenida Peter Henry Rolfs – Minas Gerais – MG – Brazil

{lucas.braganca,michael.canesche,ricardo,jnacif}@ufv.br

Abstract. Recently, the increasing adoption of domain-specific architectures to
execute kernels with high computing density and the exploration of sparse ar-
chitectures using Systolic Arrays created the ideal scenario for using Coarse-
grained reconfigurable architectures (CGRAs) to accelerate applications. Un-
like Systolic Array, CGRA can run different kernel sets and keep a good bal-
ance between energy consumption and performance. In this work, we present
the HPCGRA, an orthogonal designed CGRA generator for high-performance
spatial accelerators. Our tool does not require any expertise in Verilog de-
sign. In our approach, the CGRA is designed and implemented in an orthogonal
fashion, through wrapping the main building blocks: functional units, intercon-
nection patterns, routing, and elastic buffer capabilities, configuration words,
and memories. It optimizes and simplifies the process of creating CGRAs ar-
chitectures using a portable description (JSON file) and generating a generic,
scalable, and efficient Verilog RTL code with Veriloggen. The tool automatically
generates CGRA with up to 46x66 functional units, reaching 1.2 Tera ops/s.

1. Introduction
With the increasing adoption of domain-specific architectures such as Systolic Arrays to
execute kernels with a high computation density, it is necessary to develop new tools to fa-
cilitate the Design Space Exploration (DSE) of the domain/application-specific architec-
tures. Recent work has focused on generating Systolic Arrays from kernels implemented
at a high level [Weng et al. 2020, Jia et al. 2020]. Other works have focused on a high-
performance implementation of an essential operation such as a matrix multiplication unit
by using a systolic array. Applications in Deep Learning such as deep neural networks
(DNN) and convolutional neural networks (CNN) takes profit of these high performance
specialized low layer, where more than 70% of the execution time requires matrix mul-
tiplications [Asgari et al. 2019, Zhang et al. 2019]. These previous approaches focus on
producing optimized architectures for only a specific set of kernels to be accelerated.

Unlike Systolic Arrays, coarse grain reconfigurable architectures (CGRAs) can
run different kernel sets. However, there is a lack of tools available to help developers
to generate CGRA models. The first challenge is how to describe the architecture. For
instance, how to define each processing element and its basic operations? The intercon-
nection network should provide high performance and low cost in the processing elements
communications [Chin et al. 2017]. In this way, we propose a novel tool capable of gen-
erating RTL code in portable Verilog for FPGA and ASICs that automatically synthesizes

CGRAs from a high-level description. Our approach helps the hardware developers an-
alyze various types of architectures, including a design exploration using an orthogonal
approach, to obtain data on the consumption of hardware resources, energy consumption,
maximum operating frequency speed, and performance.

In this work, we present HPCGRA, an optimized tool to generate a high-
performance CGRA from a single high-level description for FPGA’s and ASIC’s plat-
forms. From a portable JSON configuration file, HPCGRA automatically builds an ar-
chitecture. We provide orthogonal features to design, interconnect, and configure each
processing element (PE). The tool also generates generic Verilog RTL code without the
developer worrying about specific FPGA models or vendors. Furthermore, HPCGRA can
also generate ASIC designs. Therefore, our tool contributes to reduce and to improve the
design cycle. It provides a high-level abstraction layer where the developers will focus on
modeling the main architecture requirements.

The contributions of our work are as follows:

• A simple method of creating generic parallel architectures from a single portable
description;
• Orthogonal designed methodology;
• Portable and efficient Verilog RTL code;
• An intermediate assembly code to simplify the programming and code generation

for CGRAs.

We organize this paper as follows. Section 2 provides a brief description of the
proposed tool. Section 3 shows how our approach compares to related work. Section 4
evaluates our tool by generating CGRA designs. Finally, Section 5 concludes by present-
ing the main results and future works.

2. HPCGRA Tool
HPCGRA is a tool that allows the detailed description of a CGRA architecture by using
a simple high-level description in JavaScript object notation (JSON) [JSON 2020]. From
this description, it automatically generates all RTL code of the architecture in the Ver-
ilog language. Our generator is an open-source project based on the Veriloggen library
[Takamaeda-Yamazaki 2015], which is written in Python to provide high-level facilities
to produce Verilog code. Most recent related work to design specific or reconfigurable
architectures is based on the language Chisel [Bachrach et al. 2012] built on top of the
Scala language. We have chosen Veriloggen because Python is a more widespread lan-
guage today, allowing better adhesion of the tool and possible collaborations from the
community.

First, we specify a default format to perform the JSON code transformation into
a CGRA architecture. It is important to highlight that our format is also orthogonal to
define the main architecture features. The proposed format is possible to describe each
processing element (PE) individually to design heterogeneous architectures. In the case
of homogeneous ones, high-level generators could be easily created to generate our input
format. This approach simplifies the elaboration of any format of the CGRA architec-
ture. It is possible to define the set of operations for each PE. Also, we also define which
are its neighbors. Section 2.1 details a simple, generic and orthogonal description format.
HPCGRA also creates architectures that can be generated directly from a single command

line, without the need for an input JSON file, where the developers only define the num-
ber of PEs with a predefined interconnection pattern set. Several CGRA architectures
in the literature are based on these interconnection patterns. Table 1 depicts the main
interconnection models provided by our tool. As already mentioned, this facility could
be used to fast prototype homogeneous designs. However, our generator allows DSE of
heterogeneous architectures.

Table 1. Interconnection patterns for the high level HPCGRA generator.

Name Description
Mesh Each PE communicates with its adjacent neighbors.

One Hop
Each PE communicates with its adjacent neighbors

and with its neighbors’ adjacent neighbors.
Diagonal Same as the mesh with the addition of the diagonals neighbors.

Hexagonal Each PE has 6 neighbors, forming a pattern similar to a beehive.

2.1. Format Specification

In this section, we introduce the proposed JSON format to describe a CGRA architecture.
We create a representation with few attributes to simplify the architecture description.
The three main fields are: (1) the “shape”, that represents the number of CGRA rows
and columns; (2) the “data width” field is an integer that defines the bit width of the
architecture’s processing data, and (3) “PEs” field is an array of objects that describes the
processing elements.

In the proposed format, each PE is individually specified. This definition facil-
itates the construction of heterogeneous architectures in an orthogonal fashion by using
wrappers. Each PE object contains the following attributes “id”, “type”, “neighbors”,
“route type”, “elastic queue” and “isa”.

The “id” attribute is the unique identifier of each PE. The “type” attribute defines
whether the PE receives data from/to outside as an input and/or output node, or it only
communicates with other internal PEs. The values for the “type” field are: “input”, “out-
put”, and “basic”, respectively. The “neighbors” attribute defines the list of IDs of the
neighbors of the current PE. This approach allows the generation of any interconnection
network architecture between PEs.

The attribute “route type” determines what type of internal routing of the PE. In
the current version of our tool, there are three routing options as follows:

• “no routing”: The PE has no routing capability. The function unit (FU or ALU)
receives the input data from its neighbors and sends the result to any PE output
ports.
• “one routing”: In addition to perform the internal operation inside the functional

units, the PE can route a single signal from any neighbor PE to any/all, as shown
in Figure 1.a.
• “full routing”: The PE could route any neighbor’ PE to any neighbor’ PE as it

implements an internal crossbar network, as shown in Figure 1.b.

“one routing”
Output 1

Output 2

Output N

ALU
Input 1

Input 2

Input N

......

“full routing”
Output 1

Output 2

Output N

ALU
Input 1

Input 2

Input N

......

a) b)

Figure 1. PE routing mechanism. a) “one routing”, b) “full routing”.

A common problem for two-dimension spatial architectures like CGRAs in
pipelined design is to avoid delay mismatching after the placement and routing (P&R)
steps [Nowatzki et al. 2018]. This problem occurs when two or more paths have different
arrival times when reaching a determined PE due to the P&R decisions. This problem
could be fixed by adding elastic queues at the PE entrances [Nowatzki et al. 2018]. These
queues are a programmed resource where it is possible to set its size. Hence, we can
create data delays and solve the delay mismatches generated by during the “P&R” steps.
The “elastic queue” attribute specifies the maximum size of the PE queues, which can be
0 if not required.

The “isa” field corresponds to the PE instruction set. A PE performs computations
with data from neighboring PEs, external input data for “input” PEs, and an internal
register. In the current version of our tool, we add a set of instructions with the primary
basic operations. These operations are specified by using a list inside the “isa” field.
Thus, it is easy to choose which operations each PE is capable of performing. We have
already implemented arithmetic and logical operations. The operations are labeled as
“add”, “sub”, “mul”, “and”, “or”, “not”, “madd”, “addadd”, “subsub”, “addsub”, “mux”,
“pass”. We highlight some ternary operations, such as multiplication and sum (madd), a
common operation in many applications such as matrix multiplications.

To better illustrate our input format used to generate a CGRA architecture, we
present an example of a 2x2 architecture in Figure 2. This code generates a CGRA with
4 PEs and a mesh network. The PEs in the first column are input PEs, and the PEs of the
last column is “output” type.

2.2. A CGRA Instruction Set Architecture

In this section, we present a CGRA assembly code for configuring any CGRA generated
architecture. The assembly code simplifies the code generation targeting our CGRA. We
use this assembly as an intermediate format. It allows applications written in different
languages to compile for this format, making this tool more versatile. The language
instruction fields vary according to the PE definition, which can have several neighbors
and perform computation on all data from all neighbors. The basic operations showed in
Section 2.1 are used in the description of the assembly instruction with the addition of the
routing instruction called “route”. This instruction defines which PE input will route to
PE output. We use the IDs of PE to pass to the instruction. Figure 3 depicts our instruction
format.

The ID fields in the format A of the instruction source operands also allow the use
of the reserved word “load” or a constant numeric value. For PEs with external data entry,

1 {
2 "shape": [2, 2], "data_width": 16, "pe":
3 [
4 {"id":0,"type":"input","neighbors":[1 , 2],"route_type":"

one_routing","elastic_queue":0,"isa":["sub","add"]},
5 {"id":1,"type":"output","neighbors":[0 , 3],"route_type":

"full_routing","elastic_queue":0,"isa":["or","and"]},
6 {"id":2,"type":"input","neighbors":[0, 3],"route_type":"

no_routing","elastic_queue":2,"isa":["madd"]},
7 {"id":3,"type":"output","neighbors":[1, 2],"route_type":"

one_routing","elastic_queue":2,"isa":["mux","not"]}
8]
9 }

Figure 2. Sample JSON description for CGRA mesh 2x2.

Format A: <operation> $<pe id dst> #<delay> $<pe id src 1> #<delay> $<pe id src 2>… #<delay> $<pe id src N>

Format B: <operation=route> $<pe id src 1> $<pe id src 2>

Figure 3. Assembly Format.

we use the word “load”. The numeric value operates through a constant register inside
the PE, loaded at configuration time. The Format B performs an internal routing of the
PE using the “route” operation, and the fields of the sources of the operand 1 and 2 are
the IDs of the neighboring PEs that will be locally routed. To perform the routing of the
output from the functional unit or ALU, the reserved word “alu” will place as the source
field ID 1, and for output PEs, the reserved word “store” can be used in the source field
2. For PEs with an elastic queue to balance the ALU inputs, it is possible to add a delay
(specified by the number of clock cycles) next to the “#” symbol in front of the source
fields.

To better illustrate what application code is like in assembly, Figure 4 presents an
application for performing vector sum. In Figure 4.a the C code is presented, in Figure 4.b
the assembly code is presented, we separate the instructions for configuring the ALU and
its inputs in the first three lines and, in the other lines, the instructions for routing between
the PEs. Thus, in the first instruction, we configure the ALU with the pass instruction, and
its only operand is the external input port ($load). In the second line, we make the sum in
PE2 with the data of PE0 and the external input ($load) operating and notice that a delay
was added in the external input ($load) to balance the dataflow. Finally, we configure the
ALU of PE3 with the pass instruction with data provided by PE2. After configuring the
ALU instructions and inputs, we carry out the routing instructions (route), where, for each
PE, we need to configure from and to where your data goes. ALU’s operating instructions
are only one for each PE. The router instructions there may be more than one per PE.
In the fourth line, the ALU exit from PE0 is routed to PE2. In the fifth line, the ALU
output from PE2 is sent to PE3. Finally, in the last line, the PEU ALU output is sent to
the external output ($store) of PE3. Figure 4.c a possible mapping of the assembly code

is shown in a 2x2 CGRA.

void sum(int *a, int *b, int *c, int n){
 int i;
 for(i = 0; i < n;++i){
 c[i] = a[i] + b[i];
 }
}

0

a) b) c)

pass

add pass

noppass $0 $load
add $2 #1 $load $0
pass $3 $2
route $0 $alu $2
route $2 $alu $3
route $3 $alu $store

0 1

32

Figure 4. Assembly code for vector sum.

2.3. Orthogonal design approach

For the generation of a CGRA architecture, we developed an orthogonal approach, where
the axis of functionality, reconfiguration, and connection between the PEs are indepen-
dent. In this way, architectures with different numbers of PEs perform the arrangement in
the same way. For this, a PE entity is a wrapper, that the generator automatically adds the
necessary resources for routing, configuration, and computation.

Figure 5 presents a representation of the dimensions of the generator. ALU 1© is
the core of architecture, as it performs computations. From the ALU, other components
are added, according to the architecture description. The elastic queue 2© components are
connected to the ALU input ports. The routing 3© dimension is responsible for routing
the PE inputs in the elastic queue and the ALU output to the PE outputs. The next dimen-
sion is interconnection 4©, where each PE is connected to its neighbors according to the
description. And finally, the configuration 5© dimension that is linked to all components.

Configuration

Interconnection

Routing

Elastic queue

ALU
1

2

3

4

5

Figure 5. Representation of the dimensions of the generator.

We have developed a partial reconfiguration mechanism for each CGRA compo-
nent. This mechanism allows efficiently and quickly reconfiguration. A configuration
bus is automatically generated for any CGRA. It bypasses by all the PEs of the array,
where rows and columns are traversed simultaneously. The bus uses registers for each
PE throughout the route to shorten the critical path. Figure 6 shows the mechanism. It
is straightforward to calculate the maximum time to configure the entire array since the
configuration is sent in the pipeline at each clock cycle to the PEs of the row and column.
The configuration time (ctall) calculation for all PEs is shown in the Equation 1, and the
configuration time for a single PE (ctpe) in the worst case is calculated in Equation 2,

where, Fmax is clock frequency, and L is the number of rows in the array and C is the
number of columns.

ctall = (1/Fmax)× (L× C) (1)

ctpe = (1/Fmax)× (L+ C) (2)

PE
(0,0)

PE
(0,1)

PE
(0,C-1)

PE
(1,0)

PE
(1,1)

PE
(1,C-1)

PE
(L-1,0)

PE
(L-1,1)

PE
(L-1,C-1)

Conf.
Input

Figure 6. CGRA reconfiguration model.

3. Related Work
In this section, we present recent works for the generation of reconfigurable architec-
tures. The current works have no focus on the production of generic architectures such
as CGRAs. These works have focused on generating specific architectures for kernels
that demand high computational density, unlike our tool that allows the user to generate a
generic architecture from a JSON description.

In [Chin et al. 2018], the CGRA-ME framework is presented. Unlike our tool that
uses the JSON format, CGRA-ME uses the XML format to describe CGRA architectures.
For that, several standards were created, creating a specific language, with several TAGs
that allow us to describe the detailed functioning of all the components of a CGRA. Our
tool simplifies the description by creating components with greater granularity. Thus, the
user only focuses on describing the CGRA directly.

The tool described in work [Jia et al. 2020] presents a generator of Systolic Arrays
to perform vector computation. The tool uses a compiler [Genc 2020] as the frontend for
the tool and uses the Chisel [Bachrach et al. 2012] infrastructure to generate the archi-
tecture’s Verilog code. Unlike our tool, only architectures for specific computing are
generated, making it unfeasible for systems that need to speed up different computations.

The work [Weng et al. 2020] presents a framework for DSA (design specific ar-
chitecture). The DSA framework receives as input C kernel codes annotated with pragmas
and generate a specific spatial architecture. The framework can generate an architecture
that minimizes the tradeoff between performance, energy efficiency, and area. For this,
the compiler has several optimization phases, such as decouple memory from computing,
to leave the ideal code described in the form of a data flow graph. The work generates

architecture through small blocks that together are capable of generating any functional
architecture. These blocks are PEs, switches, memory, FIFOs, and controllers, which
allow the construction of an Architecture Dataflow Graph (ADG). For a set of kernels,
an ADG is iteratively optimized, adding components and removing components at ran-
dom and evaluated at each iteration using an objective function. The objective function
evaluates performance per square millimeter until a target value, or the graph stays stable.

4. Evaluation

In this section, we present the evaluations performed with the HPCGRA tool. The crite-
rion adopted to evaluate the tool was the quality of the RTL code generated in terms of
performance and resources for different types of CGRA architectures. For this, we gener-
ate CGRA with sizes 9x9, 18x18, 36x36. For each size of CGRA, we generate four types
of interconnection between the PEs, the Mesh, One-hop, Diagonal, and Hexagonal model.
We synthesize all architecture using the Intel/Altera infrastructure. For this, we adopted
the FPGA Arria 10AX115U3F45E2SGE3 to synthesize CGRA as overlays. Arria 10 has
427200 logic blocks (ALM) and 1518 digital signal processing blocks (DSPs). We set the
target clock of 400MHz for all synthesis because this is the maximum frequency that the
FPGA Arria supports.

To validate the generator’s scalability, we synthesized a heterogeneous CGRA
with an array of 46x66 PEs and with 4 bits of processing word. Since the FPGA Arria
10 has only 1518 DSPs, only half of the PEs perform multiplication. CGRA used 39% of
ALMs and 100% of DSP and obtained a maximum frequency of 403 MHz. We calculate
this architecture’s theoretical performance as follows: each PE performs an operation
at each clock cycle, so the number of PEs multiplied by the cycle time in seconds is
the number of operations per second that the architecture can perform. In this way, this
architecture’s theoretical performance is 46 ∗ 66 ∗ 400 = 1214400 MOPs or 1.2 TOPs,
showing that the generated code is scalable.

Table 2 presents a comparison of three generated CGRA sizes, where each size
has three different types of internal routing. It is important to highlight that we use
ADRES and HyCube columns, where the CGRAs have been generated by using the
work presented in [Taras and Anderson 2019]. The ADRES architecture is compati-
ble with our “one routing” routing model shown in Figure 1.a, where our approach
uses 32% less ALMs per PE in comparison to the best result presented in the previous
work [Taras and Anderson 2019]. The HyCube model is compatible with our “full rout-
ing” implementation shown in Figure 1.b, where our approach is approximately 50% more
resource-efficient than [Taras and Anderson 2019]. Our generator is scalable and allows
the developers to increase the number of elements, maintaining the same average resource
usage per PE, as shown in Table 2.

We also perform a design exploration of several configurations by ranging the
interconnection patterns, routing resources, and buffer resources. Figure 7 shows the use
of resources of the Mesh and Diagonal architectures. Figures 7 a, b and c are of “no
routing”, “one routing” and “full routing” models, respectively. Each CGRA has 0, 2,
and 4 sizes of elastic queues at ALU entrances. PEs with elastic queues greater than
zero have higher latency in their data path, decreasing the critical path and improving
the performance of the architecture against the grain and increasing the use of hardware

Table 2. Resource usage for 16-bit CGRAs. ADRES and HyCube using FPGA
STRATIX 10 [Taras and Anderson 2019] and ours using FPGA ARRIA 10.
NR denotes “no routing”, OR denotes “one routing” and “FR” denotes
“full routing”.

ADRES HyCube Our
NR

Our
OR

Our
FR

Our
NR

Our
OR

Our
FR

Our
NR

Our
OR

Our
FR

Array Size 4x4 4x4 9x9 9x9 9x9 18x18 18x18 18x18 36x36 36x36 36x36
ALM 5051 5664 6400 11954 13827 26801 49589 58111 108709 202643 237248
DSP 32 32 81 81 81 324 324 324 1296 1296 1296

AVG (ALM/PE) 216 330 79 147 170 82 153 179 83 156 183

resources. We can notice in the graph of Figure 7.c that the frequency increases for CGRA
have elastic row sizes 2 and 4 but decreases for those that do not, with size 0.

CGRA mesh no routing CGRA mesh one routing

CGRA mesh full routing CGRA diagonal full routing

a) b)

c) d)

R
e
so

u
rc

e
 u

sa
g

e
 i
n
 p

e
rc

e
n
t(

%
)

R
e
so

u
rc

e
 u

sa
g

e
 i
n
 p

e
rc

e
n
t(

%
)

R
e
so

u
rc

e
 u

sa
g

e
 i
n
 p

e
rc

e
n
t(

%
)

R
e
so

u
rc

e
 u

sa
g

e
 i
n
 p

e
rc

e
n
t(

%
)

M
a
x
im

u
m

 F
re

q
u
e
n
cy

(M
H

z)

M
a
x
im

u
m

 F
re

q
u
e
n
cy

(M
H

z)
M

a
x
im

u
m

 F
re

q
u
e
n
cy

(M
H

z)

M
a
x
im

u
m

 F
re

q
u
e
n
cy

(M
H

z)

Figure 7. Graph of resource usage and a maximum frequency. Graph a, b and c
refers to the Mesh interconnection model; a) without internal routing in the
PE; b) with only one entry routing; c) with all routing possibilities.

Figure 8 shows the use of resources of the One-hop architecture. Figures 8 a, b
and c are of “no routing”, “one routing” and “full routing” models, respectively. Each
CGRA has 0, 2, and 4 sizes of elastic queues at ALU entrances. PEs with elastic queues
greater than zero have higher latency in their data path, decreasing the critical path and
improving the performance of the architecture against the grain and increasing the use of
hardware resources. We can notice in the graph of Figure 8.c, the frequency increases for
CGRA have elastic row sizes 2 and 4 but decreases for those that do not, with size 0. The
One hop model communicates with two more neighbors than the Mesh model. It uses
more hardware resources per PE, so the model with full routing Figure 8.c was able to
synthesize only the sizes 9x9 and 18x18 with the elastic rows of size 0, 2, and 4.

a) b)

c) d)

CGRA one-hop no routing CGRA one-hop one routing

CGRA diagonal no routingCGRA one-hop full routing

M
a
x
im

u
m

 F
re

q
u
e
n
cy

 (
M

H
z)

R
e
so

u
rc

e
 u

sa
g

e
 p

e
rc

e
n
t(

%
)

R
e
so

u
rc

e
 u

sa
g

e
 p

e
rc

e
n
t(

%
)

R
e
so

u
rc

e
 u

sa
g

e
 p

e
rc

e
n
t(

%
)

R
e
so

u
rc

e
 u

sa
g
e
 p

e
rc

e
n
t(

%
)

M
a
x
im

u
m

 F
re

q
u
e
n
cy

 (
M

H
z)

M
a
x
im

u
m

 F
re

q
u
e
n
cy

 (
M

H
z)

M
a
x
im

u
m

 F
re

q
u
e
n
cy

 (
M

H
z)

Figure 8. Graph of resource usage and a maximum frequency. Graph a, b and c
refers to the One-hop interconnection model; a) without internal routing in
the PE; b) with only one entry routing; c) with all routing possibilities.

Figures 9 a and b show the use of resources for the Diagonal model. In this model,
each PE has eight neighbors. This model has more rout ability than the Mesh model but
uses more resources. For the version “full routing,” only the sizes 9x9 and 18x18 fit in
the FPGA. The version without routing “no routing” showed a drop in frequency to the
extent 36x36.

 0
(9x9)

 2
(9x9)

 4
(9x9)

 0
(18x18)

 2
(18x18)

 4
(18x18)

 0
(36x36)

 2
(36x36)

 4
(36x36)

 0
(9x9)

 2
(9x9)

 4
(9x9)

 0
(18x18)

2
(18x18)

 4
(18x18)

CGRA diagonal full routingCGRA diagonal no routing

R
e
so

u
rc

e
 u

sa
g

e
 i
n
 p

e
rc

e
n
t(

%
)

M
a
x
im

u
m

 f
re

q
u
e
n
cy

 (
M

H
z)

R
e
so

u
rc

e
 u

sa
g

e
 i
n
 p

e
rc

e
n
t(

%
)

M
a
x
im

u
m

 f
re

q
u
e
n
cy

 (
M

H
z)

a) b)

Figure 9. Graph of resource usage and a maximum frequency for CGRA Diagonal
interconnection model; a) without internal routing in the PE; b) with all
routing possibilities.

Figures 10 a and b show the results for the hexagonal architecture. In this archi-
tecture, each PE has six neighbors equal to the model of a One Hop. However, the pattern
of connection between neighbors is similar to that of a hive. CGRAs with this connection

pattern have a frequency similar to the One Hop, but with less variation when increasing
the size of the matrix and the amount of latency of the elastic lines.

 2
9x9

 4
9x9

 2
18x18

 4
18x18

 2
36x36

 4
36x36

 2
9x9

 4
9x9

 2
18x18

 4
18x18

 2
36x36

 4
36x36

a) b)

Figure 10. Graph of resource usage and a maximum frequency for CGRA Hexag-
onal interconnection model; a) without internal routing in the PE; b) with
all routing possibilities.

5. Conclusion

In this work, we present the HPCGRA tool. A simple way to generate Verilog code for
CGRA architectures from a simple JSON description. Our tool is open source and is
available on Github1. The Verilog code generated by the tool is generic and synthesizable
for different FPGA platforms such as Intel/Altera or Xilinx. The synthesis results show
that the frequency of the architectures is stable even with an increase in the number of
PE of the CGRAs. The generator is scalable, even increasing the size of the array, the
ALM/PE ratio remains stable. It was possible to synthesize architectures with 3036 PEs,
with a theoretical performance of 1.2 TOPs. As future work, we will add a memory ac-
cess interface through the AXI protocol facilitating the coupling of the architectures in
heterogeneous high-performance computing platforms, such as Intel HARPv2 and AWS
F1. Another improvement is the addition of specific functions in place of a PE ALU.
For the creation of CGRA specialized in image processing algorithms, we can create a
specific PE for applying filters. We also plan to design a generator for domain-specific
CGRA for gene regulatory networks [Silva et al. 2017] and to integrate just-in-time com-
pilers [Ferreira et al. 2013] to the HPCGRA tool.

Acknowledgments

This work was carried out with the support of the Coordernação de Aperfeiçoamento de
Pessoal de Nı́vel Superior - Brasil (CAPES) - Financing Code 001. Financial support from
Intel Academic Compute Environment, FAPEMIG, CNPq, and Universidade Federal de
Viçosa (UFV).

References

Asgari, B., Hadidi, R., Kim, H., and Yalamanchili, S. (2019). Eridanus: Efficiently run-
ning inference of dnns using systolic arrays. IEEE Micro, 39(5):46–54.

1https://github.com/lesc-ufv/hpcgra

Bachrach, J., Vo, H., Richards, B., Lee, Y., Waterman, A., Avižienis, R., Wawrzynek, J.,
and Asanović, K. (2012). Chisel: constructing hardware in a scala embedded language.
In DAC Design Automation Conference 2012, pages 1212–1221. IEEE.

Chin, S. A., Niu, K. P., Walker, M., Yin, S., Mertens, A., Lee, J., and Anderson, J. H.
(2018). Architecture exploration of standard-cell and fpga-overlay cgras using the
open-source cgra-me framework. In Int Symposium on Physical Design.

Chin, S. A., Sakamoto, N., Rui, A., Zhao, J., Kim, J. H., Hara-Azumi, Y., and Anderson,
J. (2017). Cgra-me: A unified framework for cgra modelling and exploration. In Int
Conf on Application-specific Systems, Architectures and Processors (ASAP).

Ferreira, R., Duarte, V., Meireles, W., Pereira, M., Carro, L., and Wong, S. (2013). A
just-in-time modulo scheduling for virtual coarse-grained reconfigurable architectures.
In Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS).

Genc, H. (2020). A dsl for systolic arrays. https://github.com/hngenc/
systolic-array. Acessado em: 2020-08-11.

Jia, L., Lu, L., Wei, X., and Liang, Y. (2020). Generating systolic array accelerators with
reusable blocks. IEEE Micro, 40(4):85–92.

JSON (2020). Introducing json. https://www.json.org/json-en.html. Aces-
sado em: 2020-07-25.

Nowatzki, T., Ardalani, N., Sankaralingam, K., and Weng, J. (2018). Hybrid optimiza-
tion/heuristic instruction scheduling for programmable accelerator codesign. In Pro-
ceedings of the 27th International Conference on Parallel Architectures and Compila-
tion Techniques, pages 1–15.

Silva, L., Almeida, D., Nacif, J., Sánchez-Osorio, I., Hernández-Martı́nez, C. A., and
Ferreira, R. (2017). Exploring the dynamics of large-scale gene regulatory networks
using hardware acceleration on a heterogeneous cpu-fpga platform. In International
Conference on ReConFigurable Computing and FPGAs (ReConFig).

Takamaeda-Yamazaki, S. (2015). Pyverilog: A python-based hardware design process-
ing toolkit for verilog hdl. In International Symposium on Applied Reconfigurable
Computing, pages 451–460. Springer.

Taras, I. and Anderson, J. H. (2019). Impact of fpga architecture on area and perfor-
mance of cgra overlays. In 2019 IEEE 27th Annual International Symposium on Field-
Programmable Custom Computing Machines (FCCM), pages 87–95. IEEE.

Weng, J., Liu, S., Dadu, V., Wang, Z., Shah, P., and Nowatzki, T. (2020). Dsagen: Syn-
thesizing programmable spatial accelerators. In 2020 ACM/IEEE 47th Annual Inter-
national Symposium on Computer Architecture (ISCA), pages 268–281. IEEE.

Zhang, J., Zhang, W., Luo, G., Wei, X., Liang, Y., and Cong, J. (2019). Frequency
improvement of systolic array-based cnns on fpgas. In 2019 IEEE International Sym-
posium on Circuits and Systems (ISCAS), pages 1–4. IEEE.

