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Abstract. Convolutional Neural Network (CNN) algorithms are becoming a re-
current solution to solve Computer Vision related problems. These networks
employ convolutions as main building block, which greatly impact their perfor-
mance since convolution is a costly operation. Due to its importance in CNN
algorithms, this work evaluates convolution performance in the Gemmini ac-
celerator and compare it to a conventional lightly- and heavily-loaded desktop
CPU in terms of execution time and energy consumption. We show that Gemmini
can achieve lower execution time and energy consumption when compared to a
CPU even for small convolutions, and this performance gap grows with convo-
lution size. Furthermore, we analyze the minimum Gemmini required frequency
to match the same CPU execution time, and show that Gemmini can achieve the
same runtime while working in much lower frequencies.

Resumo. Algoritmos de Redes Neurais Convolucionais (CNN do inglês Con-
volutional Neural Network) tem se tornado uma solução recorrente para solu-
cionar problemas de Visão Computacional. Estas redes empregam convoluções
como principal bloco de construção, o que impacta a performance, pois
convolução é um operação cara computacionalmente. Devido a sua im-
portância nos algoritmos de CNN, este trabalho avalia o desempenho de
convoluções no acelerador Gemmini e os compara com a execução em uma
CPU convencional com cargas leves e pesadas de trabalho. Nós mostramos que
o Gemmini pode atingir melhores tempos de execução e consumos energéticos
até mesmo para pequenas convoluções e a diferença de desempenho cresce com
o tamanho da convolução. Além disso, nós analisamos a frequência mı́nima
necessária que o Gemmini deve ter para obter o mesmo tempo de execução de
uma CPU e mostramos que o Gemmini é capaz de atingir o mesmo resultado
mesmo quando trabalhando em frequências muito mais baixas.

1. Introduction
Neural Network (NN) algorithms have been deployed in many different applications in
recent years due to its capability to solve non linear problems [LeCun et al. 2015]. A
variation of NNs are the Convolutional Neural Networks (CNN), which utilizes convo-
lution operations in its layers and is heavily used in Computer Vision problems, such as



image recognition. However, this class of algorithms requires high computational costs,
demanding new solutions to achieve latency and throughput requirements. Therefore,
in order to tackle this problem, different ways of processing NNs using hardware have
emerged.

Because NN computations are in essence matrix and vector operations, their per-
formance in CPUs can be improved by using SIMD (single instruction, multiple data)
instructions [Vanhoucke et al. 2011]. However, GPUs are better suited to handle NNs
workloads due to its parallel nature. Recent GPUs have specialized units [NVIDIA 2020]
to deal with these workloads, speeding up the inference and training tasks. Neverthe-
less, the growing number of NN applications in different scenarios have demanded new
specialized architectural solutions.

Therefore, to tackle this problem, many accelerators were proposed, such as Eye-
riss, NVDLA, and Gemmini [Chen et al. 2016, Zhou et al. 2018, Genc et al. 2019]. They
achieve better performance by implementing common NN functions in hardware and
leveraging data-reuse opportunities, which is usually accomplished by employing sys-
tolic arrays based architectures [Kung 1982]. Systolic architectures can successfully be
applied in compute-bound problems. The idea behind systolic systems is to fetch data
from memory once and perform as many as possible computations on it before storing
data back to memory, thus minimizing memory accesses and hence, the energy consump-
tion. Each element in the array is a Processing Element (PE), which are chained in a
pipeline fashion to form the array. Gemmini [Genc et al. 2019] is an example of systolic
array generator which enables creation of systolic arrays with different sizes, and thus
aiming different utilization scenarios.

When analyzing NN accelerators, requirements such as latency, throughput, and
power consumption are used, and the benchmark programs consist of running entire NN
algorithms. However, this methodology may not capture the execution behavior of each
algorithm building block. Thus, in this work, we investigate the execution behavior in
a fine-grain approach by comparing performance of convolutions between Gemmini and
a conventional CPU. We choose to compare convolution execution because it is a com-
mon building block in CNN algorithms and it is a costly operation, accounting for over
than 90% of computations in a CNN [Chen et al. 2016, Cong and Xiao 2014]. Results
show that even for small convolutions, Gemmini shows better execution time and energy
consumption than CPUs while working in lower frequencies. Furthermore, we show that
CPU’s performance degrades when it is under heavy load while Gemmini is not affected
in this situation due to its dedicated hardware nature.

2. Background
2.1. 2D Convolution
Convolution is a mathematical operation used as building block in CNN algorithms
[Howard et al. 2017, Krizhevsky et al. 2012, Lecun et al. 1998]. Given two matrices, in-
put, I and kernel, K, a 2D convolution can be applied to produce an output matrix, O,
according to Equation 1, where j and k define an element in matrix K, and m and n define
an element in matrices O and I . The intuition behind this equation is to slide the kernel
matrix over the input matrix. At each step, the overlapping elements in both matrices are
multiplied, and then the partial results are summed to create a new element in the output
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Figure 1. The kernel matrix overlaps the input matrix to produce the values of the output
matrix.

matrix. This process is depicted in Figure 1, where the matrices are represented from left
to right as kernel, input and output1. The dot in the kernel matrix represents its center and
the dots inside the input matrix represent the position where the kernel matrix center must
overlap. To compute the first element of the output matrix, the kernel overlaps the input
matrix on the top left corner. Each overlapping element is multiplied and the partial sums
are summed to produce the final output. This process is repeated until the kernel overlaps
all possible positions, represented by the trajectory of the line connecting the dots.

O[m,n] =
∑
j

∑
k

K[j, k]I[m− j, n− k] (1)

The stride parameter determines the sliding step used to move the kernel. It is
possible to pad zeros (padding) to the input matrix border in order to increase its dimen-
sion sizes, allowing the kernel to overlap more elements. Both parameters, stride and
padding, determine the dimension of the output matrix, as shown in Equation 2. Where
D represents the dimension size of a matrix (e.g., input, output, or kernel), p represents
padding, and s the stride used. Throughout this work, we will consider only squared
matrices, therefore D represents the number of rows and columns. Figure 2 shows an
example of these parameters applied to a convolution, considering s = 2 and p = 1. The
increased stride reduces the number of possible overlap positions. Notice that each dot is
positioned two cells away of each other. The padding is represented by the increased size
in the input matrix. In practice, these parameters affect DO and hence, the total number
of computations required by the convolution.

DO =
⌊DI + 2p−DK

s
+ 1

⌋
(2)

In CNNs, 2D convolutions usually occur with higher dimension tensors. Tensor is
an N-dimensional array of data (matrices are 2D tensors). Both input, and kernel matrices
can be extended to a third dimension conventionally named channel. Besides channels, it
is also possible to work with a fourth dimension named batch. These four dimensions can
be related to images. A image have two dimensions to represent the pixels, one dimension
to represent the colors (channel), and the fourth is an image sample (batch).

1We will adopt this convention for Figures 1, 2, and 3.
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Figure 2. Convolution considering padding, p, equal to 1 and stride, s, equal to 2.

1 for(int n = 0; n < N; n++)
2 for(int orow = 0; orow < O_D; orow++)
3 for(int ocol = 0; ocol < O_D; ocol++)
4 for(int och = 0; och < O_C; och++)
5 for(int krow = 0; krow < K_D; krow++)
6 for(int kcol = 0; kcol < K_D; kcol++)
7 for(int ich = 0; ich < I_C; ich++) {
8 int iy = orow*s + krow - p;
9 int ix = ocol*s + kcol - p;

10 if(0 <= ix < I_D && 0 <= iy < I_D)
11 output[n][orow][ocol][och] +=input[n][iy][ix][ich]

* kernel[och][krow][kcol][ich];↪→

12 }

Listing 1: Direct convolution algorithm for 4-D tensors as 7 nested loops.

Equation 3 shows convolution complexity related to tensors’ dimensions, where
N represents the batch size and C the number of channels of a matrix. Figure 3 shows an
example of 4D tensors used in convolutions and the relationship between its dimensions.
The input tensor is determined by N , CI , and DI . The only free output tensor parameter
is the CO, since the batch must be the same as the input tensor and DO is determined by
Equation 2. Similarly, only DK is a free parameter in the kernel tensor, since the number
of its channels is determined by the number of channels in the input tensor and the number
of its batch is the same as the number of channels in the output tensor.

A 2D convolution program can be implemented as shown in Listing 1. The pro-
gram iterates over 7 dimensions and 5 of them are present in equation 3, only DO in lines
2 and 3 are not. However, computation on the output matrix is performed only when the
conditions in line 10 are satisfied, i.e. when it is possible to index an element in input
tensor, explaining where the term DI come from.

N × CO ×DK ×DK × CI ×DI ×DI (3)

2.2. Gemmini

Tensor operations are compute-bound with high data reuse opportunities, either spatial,
or temporal [Kwon et al. 2019]. Gemmini [Genc et al. 2019] is a systolic array generator
which can be used to accelerate general matrix operations represented by Equation 4,
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Figure 3. Tensors as present in CNN convolution layers.

Figure 4. Overview of Gemmini’s systolic array. Each tile is composed by
fully-combinational PEs, and registers divide each tile. Source: H. Genc et al
[Genc et al. 2019].

where A and B are multiplied matrices, D is a bias matrix, and C is the result.

C = A ∗B +D (4)

Figure 4 depicts Gemmini systolic array internals. The basic computation unit
in Gemmini is a processing element, which can perform a Multiply-Accumulate (MAC)
operation. A set of fully combinational connected PEs compose a tile, which are arranged
in a pipeline fashion to form the systolic array. Since Gemmini is a generator, it is possible
to generate a new hardware by tunning its parameters (e.g. size of scratchpad memory
and number of tiles) targeting a specific utilization scenario. Furthermore, it is possible
to choose which type of dataflow the systolic array in Gemmini will support: weight-
stationary or output-stationary, or both.

Gemmini is designed to be tightly coupled to a RISC-V [Waterman et al. 2016]
processor. RISC-V is an open Instruction Set Architecture (ISA) which supports new



extensions, and custom instructions. A RISC-V processor communicates with Gemmini
by issuing well-defined custom instructions. To easier the accelerator programming, soft-
ware libraries written in C are generated with a Gemmini hardware, matching the custom
hardware’s parameters. The libraries provide an API to access the accelerator, avoiding
the burden of programming in assembly to control the hardware. Due to its tightly coupled
nature, Gemmini’s performance may depend not only on its hardware parameters, but also
on the tightly coupled processor parameters, such as cache size [Genc et al. 2019].

3. Methodology
We use a single direct convolution program as benchmark2, which can be executed either
in Gemmini or in a conventional CPU. For each benchmark execution, we vary input
tensor’s parameters batch size and in dim size which represents the number of rows and
columns (DI) as discussed in Section 2.1. Thus, the output dimension (DO) will change
according to Equation 2. In the first set of experiments, we fix in dim to 56 while varying
batch size from 1 to 10. Then, we vary in dim from 10 to 100 while fixing batch size to 4.
We choose both fixed values to be similar to common values found in convolution layers
[Howard et al. 2017].

For each simulation we measure total execution time, and energy required by the
CPU system. Since Gemmini is provided as a Verilog description, the number of sim-
ulated cycles is measured and then converted to time considering synthesis frequency.
We choose Gemmini’s energy consumption and working frequencies using data of sys-
tem number 7 in [Genc et al. 2019, Table 1] since its parameters are the closest to those
present in the Gemmini system used in this work. Since Gemmini is a generator, and thus
can be applied into many application domains, e.g., embedded computing where lower
operating frequency may be required, we evaluate the minimum Gemmini necessary fre-
quency to match the same runtime obtained by CPU. Equation 5 shows how this can be
calculated, where Cgem is the number of cycles to run the benchmark on Gemmini and
tcpu is the total execution time of the same benchmark on a CPU.

Fmin =
Cgem

tcpu
(5)

We evaluate the CPU system in two different scenarios to assess the impact of
processor load. In the first scenario, named CPU-LL, the benchmarks are executed in
a lightly loaded CPU, that is, no demanding process is executed in background. In the
second scenario, named CPU-HL, we run CPU-bound processes to keep the rest of CPU
cores busy. Since CPU benchmarks runs in a full system environment, which may impact
the results, we run each benchmark 500 times, and then consider the mean value of each
execution as the final result. The computer system used to run the benchmarks consists of
a Ubuntu 16.04 OS and a Intel i5-4460 CPU (four physical cores). To stress the processor
in CPU-HL system, we use the stress tool which launches CPU-bound processes, making
the rest of the cores busy. The processor a 3 GHz along all experimentation process.
Energy metric is measured using the Intel Performance Counter Monitor (PCM) [opcm ],
which measures CPU socket’s energy consumption.

2Compiled with default baremetal parameters when not noticed. More details about the source code can
be found in Section 7.



The Gemmini system used is the GemminiRocketConfig available in Chipyard
[Amid et al. 2020], which is a framework to generate custom SoCs. The default system
consists of a 5-stage in-order Rocket core [Asanović et al. 2016] tightly coupled to Gem-
mini. The accelerator is composed of 1 tile with 16x16 8-bit integer PEs. Besides that,
the scratchpad and accumulator sizes are 256KB and 64KB, respectively. Since Chipyard
provides the generated hardware as a Verilog code, we use the open-source Verilog simu-
lator Verilator to run the benchmarks. Differently from the CPU systems, each Gemminni
simulation is executed only once since the convolution program runs on top of a baremetal
platform and the Verilator is a cycle-accurate simulator. For the reasons mentioned pre-
viously, we consider Gemmini system power consumption as 568.23 mW and working
frequency as 500 MHz.

4. Results
Figures 5.a to 5.d show execution when varying batch size and in dim size respectively to
each platform. In these cases, execution time grows with respect to input size and in the
same proportion, as expected when analyzing Equation 3. In fact, running an application
in an accelerator does not change the algorithm complexity, but optimize its execution.
By analyzing Figures 5.a and 5.b, it is noticeable the steep increase in execution time
when batch size is 5 and in dim size is 70, which occurs due to input tensor’s size being
greater than the scratchpad size (256 KB). Figures 5.c and 5.d show the execution times
for the CPU systems where the errors bars represent the standard deviation of the mea-
surements. It is noticeable that CPU-HL not only took longer to finish, but also had a more
unpredictable execution time in comparison with CPU-LL. Figures 5.e and 5.f depict the
differences in execution time by comparing both systems. When considering batch size
equal to 10, Gemmini was 4.9 times faster than CPU-LL. Time difference is more notice-
able when analyzing in dim growth. Gemmini achieved 10.5 times less execution time
than CPU-LL when considering in dim equal to 100.

Figure 6 shows energy consumption when running the benchmarks, which is di-
rectly proportional to execution time. As expected, Gemmini can run the same application
with much lower energy consumption. The execution time and energy consumption gap
is even higher when comparing Gemmini with a heavily loaded CPU since all cores are
performing computation. Gemmini’s big energy advantage over the CPU systems is ex-
plained by three reasons. First, Gemmini is designed to this specific niche of applications.
Second, even though the Gemmini system is composed of the accelerator and the Rocket
processor, the entire system can be considered as an embbeded computing platform since
the CPU is a simple in-order core. Third, the power value adopted for Gemmini considers
a fabrication process using TSMC 16 nm FinFET technology against the 22 nm process
used in i5-4460, thus granting Gemmini a technology node advantage.

Hitherto, we only considered Gemmini working at 500 MHz. However, Gem-
mini’s flexibility allows it to be used in many application domains, e.g. IoT devices,
which lower operation frequencies may be required. Figure 7 shows Gemmini’s system
necessary frequency to match execution times of both CPUs scenarios. Overall, Gemmini
can achieve the same execution time while working in much lower frequencies. When
comparing both plots, batch growth requires higher frequencies than in dim growth. Thus,
Gemmini’s performance scales better when increasing the number of lines and columns of
input tensor than the number of batches. When analyzing the CPU-LL behavior in Figure
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Figure 5. Execution time comparison between Gemmini and CPU systems.

7.a, it is noticeable that for some values of batch size (2, 3, and 4), the minimum frequency
reaches its minimum value before increasing again. This indicates that Gemmini achieves
its best performance in comparison with the CPU-LL around these values. In an analo-
gous manner, Gemmini’s worst result happens when in dim is equal to 20 in Figure 7.b,
indicating that Gemmini’s runtime for this point is closer to CPU-LL’s execution time.
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Figure 6. Energy comparisons.
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Figure 7. Minimum Gemmini frequencies to reach CPU execution time.

5. Related Work
In this section we discuss about other hardware accelerators, convolution algorithms and
a tool to find the best hardware parameters to run a NN application.

DNN accelerators: To leverage computation-bound operations such as the con-
volution routine described in Listing 1, many accelerators were proposed, which ex-
ploit data reuse techniques and different dataflows. NVDLA [Zhou et al. 2018] is
an open-source accelerator which offers integration with development tools such as
Caffe [Jia et al. 2014], facilitating deployment of CNNs. Eyeris [Chen et al. 2016,
Chen et al. 2017] proposes the Row-Stationary dataflow, which optimizes all types of
data movement by maximizing the usage of the storage hierarchy, i.e., registers inside
a PE, inter-PE communication, and global buffer access.

Hardware design space exploration: MAESTRO [Kwon et al. 2019] allows de-
signers to leverage reuse opportunities, and to find optimal design points when tunning
accelerator parameters. The tool receive as input a generic description of the accelerator
and a description of a DNN model. Then, MAESTRO sweeps the design space to find a
throughput-or-energy-optimized design. As output, the tool indicates the best accelera-



tor’s parameters to run the given DNN model.

Convolution algorithms: Besides the standard direct convolution presented in
Equation 3, it is possible to reduce the computational cost by factorizing the standard con-
volution into depthwise and pointwise convolutions [Howard et al. 2017]. This approach
can drastically reduce computation at a small reduction in accuracy. The Indirect Convo-
lution algorithm [Dukhan 2019] is an alternative to GEMM-based convolution algorithms
due to elimination of im2col transformations. Furthermore, it replaces the im2col buffer
with a smaller indirection buffer. Nevertheless, it is optimized for NHWC layout, and has
limited applicability to backward pass of convolution operator.

6. Conclusion
This work studied execution behavior of small convolutions in a lightly and heavily loaded
CPU, and in Gemmini. Overall, Gemmini can achieve one order of magnitude less exe-
cution time than a conventional lightly loaded CPU when comparing a single convolution
execution, and even better results can be achieved when comparing with a heavily loaded
CPU. We show that Gemmini could run in much lower frequencies to match CPU systems
execution times. The difference between the compared platforms could be greater when
evaluating complete CNN algorithms, as claimed in previous work [Genc et al. 2019].

As future work, different matrix operations performance could be studied on Gem-
mini, e.g., matrix transposition and multiplication. Another possibility is to explore Gem-
mini’s performance in a warehouse computing scenario as done with a Tensor Processing
Unit (TPU) in Jouppi et al [Jouppi et al. 2017].

7. Reproducing the Results
We provide a git repository which contains the code and scripts to reproduce the results
of this work available at: https://gitlab.com/cravieira/wscad2020.
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