
Using Machine Learning Techniques to Classify the
Interference of HPC applications in Virtual Machines with

Uncertain Data
Rafaela C. Brum1, Flavia Bernardini1, Maicon Melo Alves2,

Lúcia Maria de A. Drummond1

1Instituto de Computação
Universidade Federal Fluminense (UFF) – Niterói, RJ – Brasil

2PETROBRAS – Macaé, RJ – Brasil

rafaelabrum@id.uff.br, {fcbernardini, mmelo, lucia}@ic.uff.br

Abstract. This work aims to predict the level of interference caused by concur-
rent access to shared resources, such as cache and main memory, that can dras-
tically affect the performance of HPC applications executed in clouds, by using
some well-known machine learning techniques. As the user does not know the
exact number of resource accesses in practice, we propose a human-readable
categorization of these accesses. The used dataset contains information about
synthetic and real HPC applications, and, to reflect the uncertainty of the user
categorization, we inserted some noisy data in it. Our results showed that our
approach could correctly predict the level of interference in most cases, indica-
ting that it can be a practical solution.

1. Introduction
Nowadays, cloud computing has become a feasible and interesting option to run HPC
(High-Performance Computing) applications. This computational paradigm provides va-
luable benefits such as rapid provisioning of resources and a significant reduction in ope-
rating costs related to energy, software license, and hardware obsolescence. What was
once seen as a potential option to execute these applications, the cloud has now proved
to be a safe, reliable, and affordable alternative to perform this sort of computation. Due
to these advantages, the execution of HPC applications has moved from dedicated infras-
tructures to the computational environment offered by cloud providers more frequently.

Although HPC applications can satisfactorily execute in cloud environments, they
can experience severe performance degradation caused by a cross-application interference
problem. This problem originates from resource sharing policies commonly employed by
cloud providers, where one physical server can host many virtual machines holding dis-
tinct applications. In this scenario, applications allocated to the same physical resource,
even isolated in their virtual machines, may contend for shared and non-sliceable resour-
ces like cache and main memory. Consequently, this dispute over shared resources can
lead to a drastic reduction in co-located applications’ performance.

To tackle this problem, some works such as
[Alves and de Assumpção Drummond 2017, Ludwig et al. 2019, Ren et al. 2019,
Zacarias et al. 2019, Meyer et al. 2020] proposed models to predict the level of interfe-
rence suffered by a set of applications allocated to the same environment. Although those



proposed models presented satisfactory results, some rely on normalized application
access rates to shared resources, which are hard information to obtain, especially for
end-users. Even though using categorical input features, others did not evaluate the
negative impact that uncertain values, provided by end-users, could produce on prediction
models. Therefore, it is worth to mention that this requirement for a quite precise and
non-human readable information can lead the prediction model to make serious mistakes,
besides preventing it from being used in practice by a real cloud provider.

In this paper, we propose a human-readable categorization of the application
access to each shared resource, besides taking into account a level of imprecision
of input information provided by application users. This scale, based on the Likert
one [Likert 1932], is usually employed in research questionnaires and gives some score
to each answer in an ordinary way. Categorization is usable in practice as the user does
not know the exact number of accesses to each resource and does not execute extra tests
only to obtain those numbers. However, this categorization can lead to imprecision, for
example, when there is some uncertainty in the application behavior, and the user has to
guess it. So, we inserted some noisy data in our dataset. The created dataset contains
data from synthetic and real HPC co-located applications in different combinations of the
number of processes and virtual machines. To predict how much the co-located applicati-
ons’ performance degraded, i.e. the level of interference, in this new categorized dataset,
we used the following well-known machine learning techniques: K-Nearest Neighbours
(K-NN), Random Forest, Naive Bayes and Support Vector Machine (SVM).

We created two groups of datasets representing the different number of co-located
applications. The first group represents two co-located applications within 226 data ob-
jects. The other group of datasets contains three co-located applications’ data with 385
objects. Our results showed that the tested classifiers could correctly predict the level of
interference in up to 80.09% of the dataset with two co-located applications. When we
tested the datasets with three co-located applications, the classifiers can predict the level
of interference correctly in up to 95.58% of the dataset.

The work has the following contributions: (i) an interference dataset based on a
5-scale categorization of the access to the shared resources: the shared last level cache
(SLLC), the main memory (DRAM), and virtual network (NET); and (ii) a comparison of
the machine learning techniques, K-Nearest Neighbours (K-NN), Random Forest, Naive
Bayes and Support Vector Machine (SVM), in their ability to deal with uncertain data to
predict the interference level of co-located applications.

The remainder of this paper is organized as follows. Section 2 presents the main
Machine Learning definitions and notations used in this work. Section 3 presents some
related works. Section 4 presents our created datasets and section 5 presents our experi-
mental results. Section 6 presents our conclusions and future work.

2. Machine Learning Definitions and Notations
In this work, we are focused on supervised learning algorithms, which expect as input a
training dataset and outputs an estimator of the class for a new object. A training dataset
S is a set of N classified objects {(x1, y1), ..., (xN , yN)}, chosen from a domain X with
an arbitrary, fixed and unknown distribution D. These true classification values are given
by some unknown function y = f(x). The xi objects are typically vectors of the form



(xi1, xi2, ..., xim), whose values can be discrete or real. Each value xij denotes the value
of the j-th feature Xj of the object xi. In this work, our proposal models the output
feature as five levels of interference between co-located applications, which leads to a type
of classification problem. Given a set T of labeled training examples for classification
purposes, the learning algorithm induces a classifier h(x), which is a hypothesis about
the true unknown function f . Given new x values, h(x) predicts the corresponding y
value.

Our input features can be represented as numerical classes and are independent of
each other. So, we used the following classifiers in our experiments: K-Nearest Neigh-
bours (K-NN), Random Forest (RF), Naive Bayes (NB), and Support Vector Machines
(SVMs). K-NN [Cover and Hart 1967] classifiers use a distance metric to classify a new
object. Each new object calculates the distance between this one to all the objects in the
database and uses the K nearest objects to decide which label the new object belongs
to. RF [Breiman 2001] trains many decision trees for each dataset, considering different
random seeds. The final classification of a new object comes from the label voting of
all trees. NB is a probabilistic model [P. Domingos and Pazzani 1997], constructed by
assuming that each feature Xi is independent of the others. This classifier uses the a
priori probabilities of all pairs of feature values and labels, calculated using the training
dataset, to predict the label of a new object. SVMs are based on the statistical learning the-
ory [Cristianini and Shawe-Taylor 2000]. They are capable of obtaining a classifier with
high generalization capacity. SVM was proposed to be a binary classifier (i.e., a classifier
constructed for a dataset with only two labels) that finds a frontier between the objects of
each label, using some of them as an acceptable margin. The frontier design can be linear
or based on a kernel passed to the model in the training phase. When there are more than
two labels in the available dataset, the dataset must be decomposed into various datasets
for constructing binary SVMs. There are two approaches for decomposing the dataset:
The ‘one-versus-others’ and the ‘one-versus-one’ approaches. ‘One-versus-others’ fix
one class as a positive class, and all the others are the same negative class, constructing
L datasets. In our case, five datasets are constructed, one for each class being the posi-
tive, and so five SVMs are constructed. ‘One-versus-one’ considers the combination of
all pairs of labels. So, there are L× (L− 1)/2 pairs of labels. One dataset is constructed
for each pair of classes, and only objects labeled with one of the classes in the pair belong
to the dataset. In our case, as there are five classes, this approach constructs ten datasets,
and so ten SVMs are constructed. The former approach has the advantage of constructing
fewer classifiers, but the decomposition may generate unbalanced datasets, i.e., datasets
with at least one label labeling a low proportion of objects. The later has the advantage
of more probably generating balanced datasets, although it can lead to the construction of
many classifiers. In this work, we used both approaches.

To analyze the classifiers, we used the accuracy metric (Acc), which me-
asures the percentage of objects of the dataset correctly predicted by the mo-
del [Goodfellow et al. 2016]. For example, if there are 50 objects in the test dataset and a
classifier correctly predicted 40 of them, the accuracy of this classifier is 80%. We used as
a baseline the accuracy associated with the major class, i.e. the accuracy obtained when
we always use the majority class to classify all given instance. For example, if we have
a binary (yes or no) dataset and 80 samples in the positive class and 20 samples in the
negative class, the major class is the positive one. The major accuracy in that example is



80% as the total objects are 100, and 80 of them are positive.

For sampling the dataset for evaluation, as the number of objects in our datasets
was small, we used the leave-one-out cross-validation technique to separate the training
and the testing objects. This technique [Japkowicz and Shah 2011] divides the dataset
into N parts, each part containing only one object. It uses N − 1 parts for training and
1 part for testing. Thus, to evaluate a single algorithm, we have to train and validate N
different models. Note that we only have one object to test for each model, so we calculate
the accuracy of the whole algorithm after testing the N different models.

3. Literature Review
In a previous work [Alves and de Assumpção Drummond 2017], we proposed a multiva-
riate and quantitative model able to predict cross-application interference level that con-
siders the number of concurrent accesses to SLLC, DRAM and virtual network, through
different virtual machines (VMs), and the similarity between the amount of those acces-
ses. The experimental analysis showed that the model could estimate the interference,
reaching an average and maximum prediction errors around 4% and 12%, and achieving
errors less than 10% in approximately 96% of all tested cases. However, the user was
required to give all those values precisely. The present work modifies this dataset to use
categorical features and does not rely on precise information given by the user.

Ludwig et al [Ludwig et al. 2019] investigated the performance interference in
multi-tier applications, especially web and mobile ones, where the overhead in network
communication is another important issue. They used CPU, disk, memory, network, and
cache metrics as variables to calculate the interference and used a four-level way to clas-
sify it.

Ren et al [Ren et al. 2019] and Zacarias et al [Zacarias et al. 2019] propose using
ML techniques to predict interference in tasks and applications co-located in multi-core
computers and physical datacenters. Their proposed approaches are based on data collec-
ted from performance events and hardware counters.

Meyer et al [Meyer et al. 2020] proposed a two-phase interference-aware classi-
fier. The first phase uses a classification technique to determine in which of five possible
classes (memory, CPU, disk, network, or cache) the object can suffer from interference.
After that, there is a clustering phase, using the K-Means algorithm, to determine the
level of interference that can be absent, low, moderate, or high. The authors used this
combination of models in workloads that can change the behavior frequently over time.

In this work, we focus on high-performance applications, which are much more
computationally intensive than web applications. So, we used three metrics to predict the
interference: cache, memory, and network metrics. It uses categorical input features as it
is easier for the end-user to know the overall application access’ pattern in the resources
than the exact number of accesses. We also rely on the uncertain data the user gives to
predict the interference.

4. Interference Datasets with Uncertain Data
We created two interference datasets with uncertain data from a dataset containing real
data from several co-locating applications with distinct access levels to SLLC, DRAM,



and to virtual network introduced in [Alves and de Assumpção Drummond 2017]. Firstly,
we present the original dataset with its features. Then, we present the human-readable
categorization and the creation of these new datasets. Finally, we present the insertion of
uncertain data in the datasets.

Original dataset. The original dataset [Alves and de Assumpção Drummond 2017]
is a dataset created for a regression problem and has a total of 930 objects. 432 of them
represent synthetic co-located applications, and the other 498 objects represent real ones.

Concerning the synthetic application, created to represent the usual behavior of
HPC applications [Alves and de Assumpção Drummond 2017], they were generated from
a template that presents, alternately, two distinct and well-defined phases. The first one,
called Computation Phase, represents the phase at which the application performs tasks
involving calculation and data movement. The other one, namely Communication Phase,
is the phase where the application exchanges information among computing pairs. From
this template, an application that puts a high pressure to the shared last level of cache
(SLLC), while keeping a low access level to the virtual network (NET), for example, was
created. Thus, applications with distinct amounts of individual accesses were generated,
considering three target access levels for each of the three shared resources.

Regarding the real applications, the original dataset considered the following ones:
MUFITS [Afanasyev 2020] is employed by petroleum engineers to study the petroleum
reservoir’s behavior over time [Otto and Kempka 2017]; PKTM is a seismic migration
method that provides a subsurface image from the earth [Melo Alves et al. 2017]; HPL
(High-Performance Linpack), that solves a dense linear system of equations by applying
the Lower-Upper Factorization Method with partial row pivoting; DGEMM (Double-
precision General Matrix Multiply), that performs a double precision real matrix-matrix
multiplication using a standard multiply method; PTRANS (Parallel Matrix Transpose),
that executes a parallel matrix transpose; and FFT (Fast Fourier Transform), that com-
putes a Discrete Fourier Transform (DFT) of one huge one-dimensional complex data
vector.

Distinct metrics express the amount of individual access to each shared resource.
These include the number of references to memory per second or transmitted bytes per
second, and the range of those values is also different. To treat those access rates uni-
formly, those values were normalized in an interval between 0.0 and 1.0, where score
1.0 represents the highest possible access rates achieved by an application based on the
proposed template, and score 0.0 represents no access. As the behavior of an application
changes according to the number of processors (or virtual machines) allocated to it, there
are a total of 57 pairs of applications and amount of processors with different amounts of
access to the SLLC, DRAM, and NET. Table 1 shows some of these combinations. Note
that each application were executed on a VM provided by KVM (Kernel-based Virtual
Machine) and details can be found in [Alves and de Assumpção Drummond 2017].

To create the consolidated dataset where any number of co-located ap-
plications can be modeled, the accumulated score, as well as a similarity fac-
tor in each shared resource, were used. The features of this original dataset
[Alves and de Assumpção Drummond 2017] are described below:

• Accumulated access to shared resources: defined as the sum of all individual ac-



Tabela 1. Normalized SLLC, DRAM and NET score for some synthetic and real
applications

Score
Application # processors SLLC DRAM NET

S1 6 1.00 0.00 0.10
S10 6 0.30 1.00 1.00
S16 4 0.30 0.90 0.30

PTRANS.I5 6 0.18 0.21 0.32
FFT.I4 4 0.07 0.16 0.52

cess to a shared resource performed by applications co-located in the same phy-
sical machine. This accumulated access represents the total pressure put by the
applications co-located in a given shared resource.
• Global similarity factor for each shared resource: is equal to the average of all

similarity factors, concerning a shared resource, calculated for each pair of appli-
cations allocated to the same physical machine.
• Interference level of co-located applications: the interference level experienced

by the set of applications allocated to the same physical machine is calculated
as the average slowdown of applications allocated to this physical machine. The
interference level is the continuous output feature of the original dataset.

In the original dataset, the 432 objects representing synthetic applications are dis-
tributed as follows: 171 objects representing two co-located applications in six processors
each; 165 objects representing three co-located applications in four processors each; 84
objects representing six co-located applications in two processors and 12 objects repre-
senting 12 co-located applications in one processor each. The 498 objects representing
real applications are distributed as the following: 55 objects representing two co-located
applications in six processors each; 220 objects representing three co-located applicati-
ons in four processors each; 210 objects representing six co-located applications in two
processors and 13 objects representing 12 co-located applications in one processor each.

Human-readable categorization. In the present work, a human-readable cate-
gorization based on the Likert scale [Likert 1932] is used. The categorization is done in
the individual access to each shared resource by each application. This scale was adopted
because the user usually does not know the exact number of accesses to each resource.

To create the scale, the whole normalized interval (from 0 to 1) was divided
into five categories of access: ‘Very low’ that represents the values between 0 and 0.2;
Low’ that represents the values between 0.2 and 0.4; ‘Medium’ that represents the values
between 0.4 and 0.6; ‘High’ that represents the values between 0.6 and 0.8; and, finally,
‘Very High’ that represents the values between 0.8 and 1. With the 57 pairs of application
and number of processors used in the original dataset (Table 1), we have at least one pair
in the five categories for the SLLC access and all but the ’High’ one for the DRAM and
NET access. The number of pairs in each category for each shared resource is presented
in Table 2.

The original dataset used only the accumulated score of each resource. Thus, the
number of features for any number of co-located applications is always the same. When
we categorize the individual accesses to the resources of each application, we cannot use



Tabela 2. Number of applications for each input feature category

Score
Category SLLC DRAM NET
‘Very low’ 34 45 33
‘Low’ 7 1 7
‘Medium’ 8 6 12
‘High’ 3 0 0
‘Very High’ 6 6 6

the accumulated score. To solve it, we separated the objects of the original dataset by the
number of co-located applications, generating four groups of objects.

For two co-located applications, we have 226 objects with seven features. For
three co-located applications, we have 385 objects with ten features each. For six co-
located applications, we have only 294 objects with 19 features each. For 12 co-located
applications, we have 26 objects with 37 features each. The groups of objects representing
six and 12 co-located applications cannot be datasets as they have few objects concerning
the number of features. Thus, we ended up with two datasets: one for two co-located
applications and one for three co-located applications.

The dataset with two co-located applications has seven features: six represent the
individual access of the application to each shared resource, and the last feature is the
interference level. The dataset with three co-located applications has ten features: nine
represent the individual access of the application to each shared resource, and the last
one is the interference level. Each access of one application to a shared resource is the
expected access behavior of all virtual machines holding that application to the shared
resource. The interference level is the output feature in both datasets.

To categorize the output, we first normalized the values in each dataset and used
the same categories as above: ‘Very low’ for normalized interference of 0 to 0.2; ‘Low’
for values between 0.2 and 0.4; ‘Medium’ for normalized values of 0.4 to 0.6; ‘High’ for
values between 0.6 and 0.8; and ‘Very high’ for values of 0.8 up to 1.0. The objects from
the two co-located applications dataset and the ones from the three co-located applications
dataset were divided into five output categories, as shown in Table 3.

Tabela 3. Number of applications in each dataset for each output category

Datasets
Category 2 app. 3 app.
‘Very low’ 120 226
‘Low’ 68 73
‘Medium’ 28 63
‘High’ 6 17
‘Very High’ 4 6
Total 226 385

As we categorize all features, two different objects can be transformed into the
same one. Those objects are called duplicates or duplicate data. So, there are 50 duplicate
objects in the two applications dataset, and there are 213 duplicate objects in the three
applications dataset.



Uncertain data. The adopted categorization can lead to imprecision, for example,
when there is some uncertainty in the application behavior and the user has to guess it.
So, we inserted some noisy data in our dataset to see how the ML models deal with that
possible imprecision. When the dataset has some incorrect values in the features, we can
call it noisy or uncertain data. We introduced some uncertainty in our dataset to simulate
possible wrong classifications by the user. To simulate the uncertain data, we randomly
selected input features in some objects and changed them to the previous or next category
in our 5-scale measure.

Each object is represented as a line in the dataset and each feature is represented
by a column. To conduct our experiments with uncertain data, we created datasets with
different numbers of features (or columns) that changed. At first, we randomly selected
some objects (or lines), and then, for each of them, we chose (also randomly) some input
features (or columns) to be changed. These input values were changed to the previous or
the next category in our 5-scale categorization. The percentage of changed lines (objects)
and columns (input features) also varied, resulting in several datasets, so that we managed
to analyze our proposal in several scenarios of uncertain data. So, we created five datasets
with two co-located applications and five datasets with three co-located applications. The
datasets without any column changed are called datasets without noisy data or noise. The
other four datasets were created with different amounts of data changed. The first one has
25% of lines, and 25% of columns changed. The second has 25% of lines, and 50% of
columns changed. The third has 50% of lines and 25% of columns changed. The last one
has 50% of lines and 50% of columns changed.

5. Experimental Results

We implement our tests in Python, using the scikit-learn package that has many ML te-
chniques ready to be used [Pedregosa et al. 2011]. For executing the leave-one-out cross-
validation, we used the LeaveOneOut class with the default parameters.

For executing the K-NN algorithm, we used the KNeighborsClassifier class with
the default algorithm, uniform weights for all neighbors, and we varied the value of K
from 1 to 9. For constructing the RF model, we used the RandomForestClassifier class
with 100 trees and used the whole training dataset to create each tree. For constructing the
NB model, we used the GaussianNB class with the default parameters. For constructing
the Linear SVM, we used two classes: SVC with Linear kernel and LinearSVC. The SVC
class uses the ‘one-vs-one’ approach for multi-class problems and the LinearSVC uses the
‘one-vs-others’ approach. Note that for the K-NN model, we only present the Acc value
for the optimal K in each dataset.

Two co-located application datasets: The major accuracy for these datasets is
53.10% and is the baseline for all our used techniques. The Acc for each ML classification
technique is presented in Table 4. The ‘w. n.’ column represents the dataset without any
noisy data and the ‘25% l. 25% c.’ column represents the dataset where 25% of the lines
and 25% of the columns changed to noisy data. The ‘25% l. 50% c.’ column represents
the dataset where 25% of the objects had 50% of their columns changed to noisy data.
The ‘50% l. 25% c.’ and ‘50% l. 50% c.’ columns represent the columns where 50%
of the dataset’s lines were changed. The first one had only 25% of the columns changed
while the last one had 50% of the columns changed. Fig. 1 shows the Acc values (bars)



and the major accuracy (continuous line).

Tabela 4. Acc values for datasets with two co-located applications

w. n. 25% l.
25% c.

25% l.
50% c.

50% l.
25% c.

50% l.
50% c.

K-NN
(optimal K) 72.12% 67.70% 65.93% 64.60% 65.49%

RF 80.09% 71.68% 68.14% 66.81% 61.95%
NB 72.57% 70.80% 68.58% 70.80% 61.06%

Linear SVM
‘one-vs-one’ 77.43% 75.22% 68.58% 71.68% 61.50%

Linear SVM
‘one-vs-others’ 71.24% 65.93% 63.72% 68.58% 56.64%

Datasets

A
cc

ur
ac

y

0,00%

25,00%

50,00%

75,00%

100,00%

Without noisy 
data

25% of lines 
and 25% of 

columns 
changed

25% of lines 
and 50% of 

columns 
changed

50% of lines 
and 25% of 

columns 
changed

50% of lines 
and 50% of 

columns 
changed

K-NN (optimal K) Random Forest Gaussian Naive Bayes SVM 'one-vs-one'
SVM 'one-vs-others' Majoritary

Figura 1. Learning algorithms’ Acc values against major accuracy for two co-
located applications dataset

Fig. 1 shows that all tested algorithms presented a larger Acc values than the major
accuracy in all datasets, though, for each dataset, different learning algorithms found the
highest Acc value. For the dataset without noise, the highest accuracy was in the RF,
which correctly predicted almost 27% more samples than the major case, as shown in
Table 4.

The Linear SVM with the ‘one-vs-one’ approach generated better accuracy for
the datasets where 25% of the lines were modified. This accuracy was 75.22% for the
one where 25% of the columns were changed. For the dataset with 50% of the columns
changed, the accuracy was 68.58%. When we change 50% of the lines, different methods
generated the highest Acc value. NB presented the highest accuracy of 70.80% when the
noisy data is only in 25% of the columns. K-NN (with K = 9) presented the highest
accuracy of 65.49% when we insert noise in 50% of the columns.

In the five datasets with two co-located applications, the best classifier for them is
the Linear SVM using the ‘one-vs-one’ approach, with an average accuracy of 70.88%.
The worse classifier is the Linear SVM with an average accuracy of 65.22% using the
‘one-vs-others’ approach. As the ‘one-vs-other’ approach creates only five SVMs, it can
lead to unbalanced datasets, especially for the ‘High’ and ‘Very High’ classes of inter-
ference (that has only 6 and 4 objects each one). On the other hand, the ‘one-vs-one’



approach creates one SVM per pair of classes, which gives the classifier a better chance
to understand the output classes with few objects.

Three co-located applications datasets: The major accuracy for these datasets
is 58.70% that is our baseline for the tested techniques. The accuracy for each ML clas-
sification technique is presented in Table 5. Fig. 2 shows the Acc values (bars) and the
major accuracy (continuous line) for these datasets.

Tabela 5. Acc values for datasets with 3 co-located applications

w. n. 25% l.
25% c.

25% l.
50% c.

50% l.
25% c.

50% l.
50% c.

K-NN
(optimal K) 92.99% 89.09% 80.52% 85.45% 77.40%

RF 95.58% 90.91% 85.97% 86.23% 75.06%
NB 77.40% 72.47% 67.79% 73.25% 68.83%

Linear SVM
‘one-vs-one’ 86.75% 88.05% 79.22% 82.60% 72.73%

Linear SVM
‘one-vs-others’ 87.01% 86.23% 77.40% 82.08% 72.73%

Datasets

A
cc

ur
ac

y

0,00%

25,00%

50,00%

75,00%

100,00%

Without noisy 
data

25% of lines 
and 25% of 

columns 
changed

25% of lines 
and 50% of 

columns 
changed

50% of lines 
and 25% of 

columns 
changed

50% of lines 
and 50% of 

columns 
changed

K-NN (optimal K) Random Forest Gaussian Naive Bayes SVM 'one-vs-one'
SVM 'one-vs-others' Majoritary

Figura 2. Learning algorithms’ Acc values against major one for three co-located
applications dataset

As in our previous experimenting scenario, Fig. 2 shows that the achieved Acc
values of all learning algorithms were higher than the major accuracy. RF yielded the
best Acc value for most of the datasets tested in this experiment. This model presented an
accuracy value of 95.58% for the dataset without noise and an accuracy value of 90.91%
for the first modified dataset (25% of the lines and 25% of the columns changed). It also
showed an Acc value of 85.97% for the dataset where 25% of the lines and 50% of the
columns were changed. RF also yielded the best Acc value of 86.23% for the dataset
where 50% of the lines and 25% of its columns changed. However, K-NN (with K = 3)
presented the best result for the last tested dataset, where 50% of its lines and 50% of the
columns changed.

In the five datasets with three co-located applications, the best classifier is the RF
with an average Acc value of 86.75%. The worse classifier is the NB, with an average
Acc value of 71.95%. NB uses the calculated probabilities of all pairs of features input



and classes, and as our dataset is unbalanced, this probabilities can be biased. On the
other hand, RF trains 100 decision trees with different random seeds and uses all of them
to classify one object.

Note that as we increased the amount of noise in the dataset, Acc values did not
degrade too much. It shows that these models could be used in practice when the user is
not sure about the application access pattern. Also, K-NN was the best model for both
datasets containing noisy data in 50% of lines and 50% of columns. It can be explained by
the 50 duplicated objects in the two applications dataset and by the 213 duplicated objects
presented in the three applications dataset. When we have duplicated objects, they have
the same distance to all objects. Even if some noisy data were inserted in some duplicated
objects, the other ones still have the same distance to the modified one, and it is what the
K-NN model uses as its classification metric.

The previous work [Alves and de Assumpção Drummond 2017] that inspired this
new one presented a regression model, which yielded the exact percentage of interference
that the applications suffer when co-located in the same physical machine. Although the
quality of the previous results is higher than ours, they used the exact number of access
to predict the level of interference, and, in many cases, it is not usable in practice. The
new proposed strategy can be used when the user does not have the precise numbers. This
strategy presented an average Acc value of 68.35%, reaching up to 80.09% for the two
applications dataset and an average Acc value of 81.35%, reaching up to 95.58% for the
three applications dataset, showing that it can be an interesting alternative in those cases.

6. Conclusions

Cross-application interference is a well-known problem when co-locating applications
in the same computational resource. In some scenarios, the users/providers may have a
general knowledge of the execution profile of some applications, but they do not know
the access rates precisely. In this work, we categorized the applications’ interference in
five levels and used some well-known ML techniques to predict the interference. Among
them, SVM with the ‘one-vs-one’ and RF presented the best average accuracy of 70.88%
and 86.75% for two and three co-located application datasets, respectively.

As future work, we intend to create a dataset that can predict the interference level
for any number of applications. Since the performance of HPC applications executed in
clouds can be improved when using a virtual placement strategy that considers the cross-
application interference, we intend to implement a scheduler that uses such information
to make better decisions regarding the allocation of virtual machines in data centers of
cloud environments.

Acknowledgment

This research was supported by PrInt from CAPES (process 88887.310261/2018-00) and
CNPq (process 145088/2019-7).

Referências

Afanasyev, A. (2013-2020). MUFITS reservoir simulation software. http://www.
mufits.imec.msu.ru/. Last accessed in June 2020.



Alves, M. M. and de Assumpção Drummond, L. M. (2017). A multivariate and quantita-
tive model for predicting cross-application interference in virtual environments. Jour-
nal of Systems and Software, 128:150 – 163.

Breiman, L. (2001). Random forests. Machine learning, 45(1):5–32.

Cover, T. and Hart, P. (1967). Nearest neighbor pattern classification. IEEE transactions
on information theory, 13(1):21–27.

Cristianini, N. and Shawe-Taylor, J. (2000). An Introduction to Support Vector Machines
and Other Kernel-based Learning Methods. Cambridge University Press.

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep Learning. MIT Press. http:
//www.deeplearningbook.org.

Japkowicz, N. and Shah, M. (2011). Evaluating learning algorithms: a classification
perspective. Cambridge University Press.

Likert, R. (1932). A technique for the measurement of attitudes. Archives of Psychology,
22 140:55.

Ludwig, U. L., Xavier, M. G., Kirchoff, D. F., Cezar, I. B., and De Rose, C. A. F.
(2019). Optimizing multi-tier application performance with interference and affinity-
aware placement algorithms. Concurrency and Computation: Practice and Experi-
ence, 31(18):e5098. e5098 cpe.5098.

Melo Alves, M., da Cruz Pestana, R., Alves Prado da Silva, R., and Drummond, L. M.
(2017). Accelerating pre-stack kirchhoff time migration by manual vectorization. Con-
currency and Computation: Practice and Experience, 29(22):e3935.

Meyer, V., Kirchoff, D. F., da Silva, M. L., and César A. F., D. R. (2020). An interference-
aware application classifier based on machine learning to improve scheduling in
clouds. In 2020 28th Euromicro International Conference on Parallel, Distributed
and Network-Based Processing (PDP), pages 80–87.

Otto, C. and Kempka, T. (2017). Prediction of steam jacket dynamics and water balances
in underground coal gasification. Energies, 10(6):739.

P. Domingos and Pazzani, M. (1997). On the Optimality of the Simple Bayesian Classifier
under Zero-One Loss. Machine Learning. Machine Learning, 29:103–130.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel,
M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau,
D., Brucher, M., Perrot, M., and Duchesnay, E. (2011). Scikit-learn: Machine learning
in Python. Journal of Machine Learning Research, 12:2825–2830.

Ren, S., He, L., Li, J., Chen, Z., Jiang, P., and Li, C. T. (2019). Contention-aware pre-
diction for performance impact of task co-running in multicore computers. Wireless
Networks, 7.

Zacarias, F. V., Petrucci, V., Nishtala, R., Carpenter, P., and Mossé, D. (2019). Intelli-
gent colocation of workloads for enhanced server efficiency. In 2019 31st Internatio-
nal Symposium on Computer Architecture and High Performance Computing (SBAC-
PAD), pages 120–127.


