
Trace Generation and Deterministic Execution for Concurrent
Programs

Paulo S. L. Souza, Raphael N. Batista, Simone R. S. Souza, Rafael R. Prado,
George G. M. Dourado, Julio C. Estrella

Institute of Mathematics and Computer Science – ICMC
University of Sao Paulo – USP

CEP 13.566-590 – São Carlos – SP – Brazil

{pssouza,rbatista,srocio,rafaelrp,georgemd,jcezar}@icmc.usp.br

Abstract. This paper proposes new algorithms for generation of trace files and
deterministic execution of concurrent programs under test. The proposed algo-
rithms are essential to automate the coverage testing of concurrent programs
and allow to execute new synchronizations automatically, increasing the source
code coverage with focus on non-determinism, and edges of communication and
synchronization. Our algorithms consider programs with multiple paradigms
of communication and synchronization (collective, blocking and non-blocking
point-to-point message passing, and shared memory). We validate our algo-
rithms by means of experiments based on nine representative benchmarks, which
exercise non-trivial aspects of synchronization found in real applications. Our
algorithms have a robust behaviour and meet their objectives. We also highlight
the overhead generated with the algorithms.

1. Introduction
One of the most challenging issues while testing concurrent programs is dealing with
the non-determinism resulting from the use of communication and synchronization1

primitives and the consequent unpredictable progress of processes and threads. Mul-
tiple executions of a program using the same test case can exercise different pairs of
synchronization being able to even generate different outputs, which are correct or
not [Carver and Tai 1991]. This type of behaviour can hide defects, such as unpro-
tected shared data, loss of messages or notifications, deadlocks, starvation, among others
[Farchi et al. 2003]. Testing activity for concurrent programs is extremely challenging
and prone to errors [Bocchino et al. 2009], as defects revealed in execution can disappear
the next time: this makes the testing difficult and expensive.

Deterministic execution ensures that the same sequence of synchronization events
is executed for the same test case. In order for deterministic execution to take place, suffi-
cient information about the synchronizations must be extracted while the program is being
executed and mechanisms must be created to enable the same synchronization sequence
as the original execution to be replayed [Carver and Tai 1991]. Trace files store this infor-
mation to keep the order in which the synchronization events were executed and also to
determine which pairs of synchronization were carried out in a given execution. Besides
re-executing, this information can be used to evaluate the coverage of synchronization

1For short, whenever possible, this paper uses the term synchronization to represent communication and synchro-
nization events.



primitives [Souza et al. 2014]. Furthermore, it can be used as a basis to generate new
synchronization pairs so that the coverage rate [Lei and Carver 2006] can be increased
[Sarmanho et al. 2008].

This paper presents new algorithms that can generate trace files and execute deter-
ministically, considering concurrent programs using multiple synchronization paradigms
(blocking and non-blocking point-to-point message passing, collective messages and
shared memory). The collective synchronization considered is one-to-all, all-to-one and
all-to-all. Another significant difference of the proposed algorithms is that they were de-
veloped at the application level, i.e., they do not require alterations in their programming
language or synchronization libraries.

The proposed algorithms were implemented and validated in a prototype using
Java. The prototype was executed with nine benchmarks using different standards of
synchronization. Our results demonstrate a stable behaviour of these algorithms.

2. Related Studies

Trace generation and deterministic execution of concurrent programs is a topic that has
been addressed substantially in the literature. Some of the main studies found are pre-
sented as follows.

Carver e Tai [Carver and Tai 1991] proposed deterministic execution for
semaphores and monitors. Their approach uses resources from the language itself to
maintain the same order of the previous execution. During trace generation, only the or-
der in which the threads gain access to a critical region (using monitor enter, semaphore
down) is registered. During deterministic execution, threads verify if they can access the
critical region, based on the original trace execution.

DejaVu (Deterministic Java Replay Utility) [Alpern et al. 2000] is a deterministic
execution tool to facilitate the debugging of multi-thread programs executed in Jalapeño, a
Java Virtual Machine (JVM) developed by IBM. Distributed DejaVu [Konuru et al. 2000]
enables the trace file generation and replay for programs running in multiple JVMs. The
tool uses a modified version of the JVM to obtain information on the Transmission Control
Protocol (TCP) and User Datagram Protocol (UDP) operations, carried out in Application
Program Interface (API) Java sockets. These information allow the re-execution of mes-
sage passing programs. The restriction of this approach is that the deterministic execution
is specific to Java and depends on the Jalapeño modified virtual machine.

The Microsoft CHESS tool [Musuvathi et al. 2008] makes deterministic re-
execution possible for Win32, .NET and Singularity programs. It uses a scheduler that
observes all the calls made in the operating system’s API, to obtain information on the
execution and enable its replay. CHESS redirects all the calls from the synchronization
operations to a library of wrappers, which captures sufficient information on the opera-
tional semantic and determines the order in which the events should occur.

Carver e Lei [Carver and Lei 2010] created a library called Modern Multi-
threading (MM) to develop, test and debug concurrent programs in C++ (using Pthreads)
and Java. MM provides classes to create threads and synchronize objects, using both
semaphores/monitors and synchronous/asynchronous message passing through channels.
The non-deterministic testing executes the concurrent programs multiple times, expecting



different synchronizations. Random delays can also be used to increase the possibility of
exercising different sequences of synchronization. Deterministic testing forces the execu-
tion of a synchronization sequence chosen by the tester. Reachability testing can explore
possible pairs of synchronization in parallel.

Other studies propose the amount of information reduction necessary to gen-
erate trace files and reduce the overhead created by the deterministic execution
[Lifflander et al. 2014] [Olszewski et al. 2009]. The main focus of these related stud-
ies is the shared memory primitives, although some of them address synchronous and
asynchronous message passing. Another factor is that the proposals do not consider the
use of simultaneous point-to-point message passing, collective and shared memory in the
same concurrent program. In this same direction, other studies propose the deterministic
execution in multithreaded systems without using trace files at all [Bergan et al. 2010]
[Liu et al. 2011]. Some studies addressing both the synchronization paradigms need
the programmer to change the source code [Carver and Lei 2010] or a specific JVM
[Konuru et al. 2000]. Indeed, there are various proposals specific to a language, depend-
ing on the API of the operating system or changing the JVM. Our algorithms for trace file
generation and deterministic execution are different from the others as they are broader,
applied for coverage testing activity, offering solutions at the application level and con-
sider various synchronization paradigms.

3. Algorithms for Trace Generation and Deterministic Execution
The algorithms developed operate at the user level, using synchronization resources pro-
vided by their own programming language. In order to do this, a static analysis of a
concurrent program is carried out automatically to identify its synchronization primitives
and afterwards the program is instrumented placing function calls before and after each
primitive. The instrumentation transforms the program into a slightly modified program,
semantically equivalent to the original, except for collecting information and mechanisms
to control the program execution. The automatic static analysis and instrumentation use
the ValiInst module from the ValiPar [Prado et al. 2015]. Due to our available space to
write, this paper does not describe the particularities of the ValiInst module.

Algorithm 1 represents the modifications made for each primitive of the instru-
mented program. The algorithm can be executed freely (non-deterministically), as well
as deterministically. For both of the executing ways, trace files are generated to iden-
tify the synchronization sequence and the synchronization pairs carried out during the
execution of the concurrent program.

Algorithm 1 Instrumented primitive.
1: if execution mode = DETERMINISTIC then
2: CONTROLLER.VALIPAR BEFORE(...)
3: end if
4: TRACER.VALIPAR BEFORE(...)
5: PRIMITIVE(...)
6: TRACER.VALIPAR AFTER(...)
7: if execution mode = DETERMINISTIC then
8: CONTROLLER.VALIPAR AFTER(...)
9: end if

The two modalities of execution are divided into before and after the primitive
execution. During the trace generation, the tracer.valipar before() function collects infor-



mation from the sender and the tracer.valipar after() function retrieves both the informa-
tion from the synchronization pair and the global order in which the event was executed.

In the deterministic execution, the executionController.valipar before() function
verifies if the primitive can be executed, basing itself on trace files from the original exe-
cution. If this is not the correct moment to execute, it blocks the primitive until it receives a
notification that the previous primitives were executed (it verifies if it can proceed again).
The executionController.valipar after() function notifies events waiting to execute.

The algorithms developed are based on the static analysis model for concurrent
programs proposed by [Souza et al. 2014]. The model organizes the primitives accord-
ing to their semantics, which allows its use in different languages, such as Java or
C/MPI/Pthreads. The model extracts information on the three flows - control, data and
synchronization - representing them in a Parallel Control Flow Graph (PCFG). Each node
in this graph corresponds to a set of instructions executed in sequence (without a condi-
tional diversion) or to a synchronization primitive [Souza et al. 2014] [Souza et al. 2013].

The synchronization primitives are classified according to the type of event
(sender, receiver or sender-receiver) and operation semantic (blocking and non-blocking).
Thus, a primitive can be classified as Blocking Sender (BS), Blocking Receiver (BR), Non-
Blocking Sender (NS), Non-Blocking Receiver (NR), Blocking Sender-Receiver (BSR)
and Non-Blocking Sender-Receiver (NSR). Souza et al. (2014) define synchronization
clusters to avoid synchronization pairs with primitives of different semantics. For exam-
ple, a receive from a collective message passing cannot receive a message from a point-
to-point message passing send or synchronize with a semaphore. Different semaphores
also do not interact and use different clusters.

The synchronization primitives were grouped into message passing, semaphores
(each semaphore is a different cluster) and collective message passing. The collective
primitives can still be subdivided into: one-to-all, all-to-one and all-to-all. These clusters
are used to identify the synchronization pairs during the trace generation and to take
decisions during the deterministic execution. The main features of the trace file generation
algorithms and deterministic execution are described in Sections 3.1 and 3.2.

3.1. Trace File Generation
Our algorithms for trace file generation consider that each thread of the concurrent pro-
gram maintains a list of synchronization events that occur during an execution. Each
event inserted in this queue has an unique identification so that a synchronization event of
node n, from thread t and process p is uniquely identified by the tuple 〈np,t, e〉, where e
is the number of the event listed in sequence by t. The event number distinguishes a node
executed within a loop, i.e., a new event means a re-execution of a node.

Each event in the queue registers its type (sender, receiver or sender-receiver)
and its cluster. Furthermore, each receiver executed also has information about the sender
event that matches with it and also has a global logical time for the concurrent application.
The global logical time is a time-stamp represented by ts global. Each event has a state,
which represents whether the event actually established a synchronization pair, when the
receiver primitive is returned. In order to establish the synchronization pairs, a First-In-
First-Out (FIFO) criterion is considered, assuming that the messages are received in the
same order in which they are sent and that the semaphore queues wake up the threads in



the same order in which the threads requested access to the critical region.

The ts global attributed to the receiving events represents the chronological order
in which the events were executed. It is attributed by an external process called Con-
trol Process (CP). CP initiates together with the instrumented program and manages the
value attribution for the ts global. The attributions take place by message passing. The
ts global determines the order in which the receivers are executed during the deterministic
execution. It begins at zero and is increased for each request made at the CP.

Algorithm 2 shows the steps needed to generate trace files considering blocking
message passing primitives. Before the execution of a blocking message passing primi-
tive, the function valipar before will be called on both for the sender and receiver. For
the sender the identification of the event will be added to the message to be sent; if it is a
receiver, no additional step will be carried out and the primitive will be just executed.

Algorithm 2 Trace generation for blocking message passing.
1: function VALIPAR BEFORE(event, cluster, semantic, msg)
2: if semantic = BS then
3: msg ← event+message
4: end if
5: end function

6: function VALIPAR AFTER(event, cluster, semantic, status, msg)
7: my ts global← ∅
8: sender← ∅
9: result.event← 1

10: result.status← status
11: if semantic = BR then
12: DOWN(tsPairSem)
13: SEND(CP, request for a new ts global)
14: RECEIVE(CP, my ts global)
15: sender← sender event from msg
16: msg← msg without sender event
17: UP(tsPairSem)
18: end if
19: SAVE EVENT(event,cluster,semantic,sender,my ts global, result)
20: end function

After executing the sender primitive and the receipt of the message by the receiver,
the valipar after functions will be executed. For the sender event, the function will just
save the event in the thread’s queue, which will be stored in the thread’s trace file. If the
event is a blocking receiver, the thread receiver gains the semaphore tsPairSem to ensure
that it will also retrieve its ts global without interference from a receiver belonging to
another thread. When gaining the semaphore, the thread receiver sends a message to the
CP, requesting a ts global. If it is the first receiver event to execute, it will receive a
message with the value zero. The thread receiver retrieves the information from the send
message and leaves the critical region. Then the receiver is added to the thread queue.

In general, non-blocking message passing primitives can work in two ways: (a)
they are executed in background and return identifiers so that it is possible to consult the
state of the operation (case of MPI); or (b) they live (i.e. are active and executing) just
during the time of the call and return the amount of sent/received bytes. In this last way,
if the message has not been totally transmitted or received, the primitive should be called
again (case of SocketChannels in Java). The algorithm proposed for non-blocking mes-
sage passing considers these two types of non-blocking events (Algorithm 4). For the first
case (a), besides the message passing cluster, two new clusters are introduced: wait and



Algorithm 3 Trace generation for shared memory.
1: function VALIPAR BEFORE(event, cluster, semantic, msg)
2: if semantic = BS then
3: DOWN(queueSem)
4: QUEUE INSERT(cluster, event)
5: UP(queueSem)
6: end if
7: end function

8: function VALIPAR AFTER(event, cluster, semantic, status, msg)
9: my ts global← ∅

10: sender← ∅
11: result.event← 1
12: result.status← status
13: if semantic = BR then
14: DOWN(tsPairSem)
15: SEND(CP, request for a new ts global)
16: RECEIVE(CP, my ts global)
17: DOWN(queueSem)
18: sender← QUEUE REMOVE(cluster)
19: UP(queueSem)
20: UP(tsPairSem)
21: end if
22: SAVE EVENT(event,cluster,semantic,sender,my ts global, result)
23: end function

test. These clusters represent the primitives that verify the state of a non-blocking prim-
itive based on the returned identifier. The wait primitive has a blocking behaviour, while
the primitive test has a non-blocking behaviour. The ts global and the synchronization
pair are only attributed to receiver events (including test and wait of received primitives)
that will actually receive a message (Algorithm 4.152).

As in the blocking message passing algorithm, the trace generation for non-
blocking primitives uses its own message to insert the sender’s identification. The dif-
ference takes place during the valipar after function, where the identifier returned by the
non-blocking primitive is inserted into a hash table, as the key to retrieve the tuple with
the identification and the semantic of the original primitive (Algorithm 4.24). When a
primitive test or wait is executed, this information will be retrieved from the hash table so
that it is saved in the trace (Algorithm 4.11–14). For this case, the state of the trace file is
a tuple with both the event identifier of the origin and the primitive state.

The synchronization made using collective primitives were organized in the fol-
lowing clusters: one-to-all, all-to-one and all-to-all. A queue is used to register the syn-
chronization pairs that participate in these synchronizations. This queue needs to be ac-
cessible for all the concurrent processes/threads, which participate in some synchroniza-
tion. Thus, it was allocated in the CP. Exchanging messages enables the insertion and
retrieval of data in the queue. The algorithms for collective primitives use a communica-
tor to identify subgroups within the same cluster. This subgroup separates, for example,
two barriers or different broadcast groups that, despite belonging to the same cluster, do
not interact. The creation of these subgroups is dynamic and non-static using the source
code, because their requirement is determined on-the-fly, according to the execution flow
of the threads. The CP maintains a queue for each cluster of the collective primitives.
When receiving an insertion request, a data structure is added to the queue of the cluster
containing the identification of the sender event and its communicator.

2Algorithm x.y indicates the line y of algorithm x.



Algorithm 4 Trace generation for non-blocking message passing.
1: function VALIPAR BEFORE(event, cluster, semantic, msg)
2: if semantic = NS then
3: msg ← event+message
4: end if
5: end function

6: function VALIPAR AFTER(event, cluster, semantic, status, msg)
7: my ts global← ∅
8: sender← ∅
9: result.event← ∅

10: result.status← status
11: if cluster = test or cluster = wait then
12: result.event← HASH RETRIEVE SENDER(identifier)
13: semantic← HASH RETRIEVE SEMANTIC(identifier)
14: end if
15: if semantic = NR and result.status = 1 then
16: DOWN(tsPairSem)
17: SEND(CP, request for a new ts global)
18: RECEIVE(CP, my ts global)
19: sender← sender event from msg
20: msg← msg without sender event
21: UP(tsPairSem)
22: end if
23: if (semantic = NR or semantic = NS) and cluster 6= test and cluster 6= wait then
24: HASH INSERT(identifier, event, semantic)
25: end if
26: SAVE EVENT(event,cluster,semantic,sender,my ts global, result)
27: end function

3.2. Deterministic Execution
To replay a specific sequence of synchronization from a concurrent program, the deter-
ministic mode should be activated at the beginning of the execution, so that the control
functions are called on before and after each primitive (Algorithm 1). During the initial-
ization of each thread, it loads the content of the respective trace files from the original
execution and initializes with zero a local variable, which represents the ts global. This
variable controls the progress of the receiver events.

Before a receiver event is executed, it verifies if the ts global correspondent to the
trace is greater or equals to the value of the ts global of the thread. The receiver primitive
can only be executed if this condition is satisfied; if it is not, the thread will wait until
it receives a notification with the updated value of the ts global. When this message is
received, the thread updates its ts global and verifies if the primitive can be re-executed.

The valipar after function, called on soon after executing the receiver primitive,
increases the ts global value and propagates it by broadcast to all the threads that are
blocked (waiting), freeing the next receiver.

Sender events have their execution controlled in two ways: (a) they wait for the
receiver event to be freed in a blocking receive or (b) they are executed according to
an ordered queue that represents the order in which the events take place in a determined
cluster from the original execution. The first case is used to control point-to-point message
passing events, as these events can be freed only when the receiver event is ready, avoiding
a race condition. The second case is used for shared memory and for collective primitives.

Algorithm 5 presents the deterministic execution solution for blocking point-to-
point message passing. Before the sender events execute the primitive, they wait for a
confirmation message from their original receiver (Algorithm 5.5), enabling the receiver



to decide from whom it will receive the message, thus avoiding non-determinism. When
the receiver is ready to execute, i.e., ts global of the receiver event, obtained from the
original trace, is equal to the ts global, a message is sent to its sender (Algorithm 5.10).
This message frees the sender to execute its primitive. The receiver waits for a confirma-
tion from the sender that the message was sent, to be able to execute the receive primitive
(Algorithm 5.11), to which it is sent soon after the primitive execution (Algorithm 5.16).

Algorithm 5 Deterministic Execution for blocking message passing.
1: ts global← 0

2: function VALIPAR BEFORE(event, cluster, semantic, msg)
3: e← current event from trace
4: if semantic = BS then
5: receiver← RECEIVE(any receiver, a release msg)
6: else if semantic = BR then
7: while e.ts > ts global do
8: RECEIVE(any thread, ts global)
9: end while

10: SEND(e.sender, a release msg)
11: RECEIVE(e.sender, a release msg)
12: end if
13: end function

14: function VALIPAR AFTER(event, cluster, semantic, status, msg)
15: if semantic = BS then
16: SEND(receiver, a release msg)
17: else if semantic = BR then
18: ts global++
19: BROADCAST(all other threads, ts global)
20: end if
21: current event← next event from trace
22: end function

Besides the original trace, the blocking shared memory algorithm loads a queue
for each cluster, including all the sender events that occur in the same order in which
they were executed in the original execution. Before a shared memory sender primitive is
executed, the event loaded from the trace will be compared to the top of the queue. If the
event is not equal to the top event, it will sleep in a condition variable. If it is, two actions
will be carried out after executing the primitive: the top of the cluster queue is moved
and all the sender events that were waiting are woken up. The process for the receivers
happens in a similar way to the blocking message passing, except for freeing the sender
and confirmation message.

During the deterministic execution of the non-blocking message passing events,
the sender events wait for the original receivers to be free in the same way as the blocking
message passing. The receiver primitives that do not establish a synchronization pair are
free to execute, and as the sender events wait to be freed, all the receiving events (receive,
test and wait) present the same behavior as the original execution. Before the execution
of a receiver event that established a synchronization, a message is sent to the sender to
free it and a confirmation is expected from this sender before the receiver primitive is
executed. When the sender is freed to execution, a confirmation is sent to the receiver
event, which then executes the reception of the message. This confirmation is used so
that the receiver primitive is only executed after the message is sent, ensuring that it
is received by the same receptor of the original execution. One non-blocking message
passing receiver event waits for the ts global only if it is the first event in its thread.



The deterministic execution for all-to-all collective primitives is based on the order
in which the events were executed inside the cluster. Therefore, a queue containing the
order of events is loaded in each thread during the beginning of the replay. Before an
event is executed, it verifies the top of the queue. If it is not the event at the top, a message
is sent to the CP to notify it that this event is waiting for an alteration at the top of the
queue. Before executing the event that is at the top of the queue, the top of the queue is
moved and a message is sent to the CP. When this message is received, the CP sends a
message to each thread that is waiting, so that their events can attempt to execute again.

The deterministic execution for one-to-all and all-to-one collective primitives is
controlled with the support of the CP using a queue. Each cluster has a queue of sender
events in the same order in which they were saved in the trace. A sender event can only
be executed if it is at the top of the queue. If it is not, it waits for a notification from the
CP that the top was moved. At this moment it can try to execute again. After executing
a sender event, the queue is moved and a notification is sent to the CP so that it frees the
threads that are waiting. The receive events are controlled by the ts global in a similar
way to the blocking message passing algorithm.

4. Evaluation and Analysis of the Results
Prototypes of the algorithms presented in this paper were developed in Java to evaluate:
(a) if the algorithms are capable of re-executing a concurrent program deterministically;
(b) the overhead added by the deterministic execution; and (c) the size of the trace files.

Five microbenchmarks were used while the algorithms were being developed
and evaluated: Blocking Message Passing (BMP), Non-blocking Message Passing
(NMP), Shared Memory (SM), All-to-All (ATA) and One-To-All (OTA). All the bench-
marks used to validate our proposal are described and available for download in
http://testpar.icmc.usp.br/benchmarks [Dourado et al. 2016]. Each microbenchmark has
only one type of primitive and thus validates a specific behaviour of the algorithm. Table
1 shows the main features of the microbenchmarks: paradigm (Message Passing (MP)
or Shared Memory (SM)), semantic (Point-To-Point (P2P); Collective (COL); Blocking
(BK); Non-Blocking (NBK); All-To-all (ATA) or One-to-all (OTA)), number of processes
and threads (Procs and Threads), send events (Sndrs), receive events (Rcvrs), send-receive
events (Sndr/Rcvr), Lines Of Code (LOC) and Cyclomatic Complexity (CC). We did not
find examples of all-to-one primitives in Java.

Table 1. Microbenchmarks used during the development.
Bench Paradigm Semantic Procs Threads Sndrs Rcvrs Sndr/Rcvr LOC CC

BMP MP P2P/BQ 3 3 4 4 0 66 1.2
SM SM P2P/BQ 1 3 9 8 0 42 1.0
NMP MP P2P/NBQ 3 3 3 3 0 99 2.8
ATA SM COL/ATA 1 4 0 0 6 65 1.5
OTA MP COL/OTA 4 4 2 4 0 47 2.5

Four other larger benchmarks with a combination of primitives were also
used. They were Producer-Consumer (PC), Prime-Server (PS), Multiplication of Ma-
trices (MM) and Token-Ring (TR). PC only has shared memory primitives and the other
three have both paradigms (message passing and shared memory); PS and TR have block-
ing and non-blocking point-to-point primitives and the rest use blocking primitives. Table



4 presents the main characteristics of these four new benchmarks. TR also has broadcast
(one-to-all) and barrier (all-to-all) collective primitives.

Table 2. Benchmarks used to evaluate if the deterministic re-execution is correct, the
overhead of the deterministic execution and the trace size.

Bench Proc Thread Sndr Rcvr Snd/Rcv LOC CC

PC 1 5 19 16 0 140 1.2
PS 4 7 29 18 0 210 1.5

MM 5 13 37 30 0 227 1.4
TR 3 7 25 17 20 296 2.6

The benchmarks were executed in a computer using an Intel Core i7 - 36100M
2.3GHz CPU, 8GB of RAM, Ubuntu Server 14.04 and OpenJDK Java Virtual Machine
1.7.0 55. Each benchmark was executed 30 times non-deterministically and 30 times
deterministically. We collected for each execution: response time, standard deviation
(SD), amount of generated trace files and trace file size (bytes).

All the deterministic executions generated with success new trace files, these
equivalent to the respective generated trace files from the free executions. Table 3 presents
the results, highlighting the cost added by the deterministic execution. As observed in the
data presented, the additional cost to the response time by the deterministic execution was
between 154% and 307% with relation to the free execution. For the microbenchmarks,
the overhead was lower than 173% and for the benchmarks, the cost was slightly higher,
between 244% and 307%. These results were expected and show that the cost of the re-
sponse time is higher, according to an increase of the amount of primitives. Despite this
increase in the response time, the trace file generation and the deterministic executions
met their objectives: to describe the concurrent execution behaviour of an application
and enable it to be replayed, considering the structural testing of concurrent programs. It
should be mentioned here that this overhead considers traces with information about all
the executed nodes, as well as the definitions and variable uses. Without this information,
the overhead would be smaller.

Table 3. Overhead of deterministic execution and trace size.
Bench Free exec time [SD] Determ exec time [SD] Overhead Trace amount Trace size (bytes)

BMP 149.63 ms [11.57] 249.87 ms [13.26] 166.99% 6 12198
SM 117.73 ms [8.19] 240.63 ms [15.59] 204.39% 7 9418

NMP 173.10 ms [13.14] 358.30 ms [17.30] 206.99% 6 20631
ATA 108.80 ms [9.14] 167.93 ms [12.03] 154.35% 2 1839
OTA 182.60 ms [11.35] 315.03 ms [18.54] 172.53% 9 22526

PC 147.20 ms [11.99] 360.57 ms [22.98] 244.95% 13 24622.8
PS 219.70 ms [21.54] 642.30 ms [26.95] 292.35% 17 71499

MM 296.00 ms [12.14] 887.37 ms [43.17] 299.79% 30 113671
TR 237.67 ms [14.56] 729.83 ms [27.76] 307.07% 21 87384

Figure 1(a) illustrates a comparison between the average response times (ms) for
the non-deterministic execution (free) and the deterministic execution, with their standard
deviations (SD) and with a confidence interval of 95% (based on a normal distribution).

As observed in Figure 1(b), the size of the trace file is strongly related to the
amount of primitives in the benchmarks. The second factor that influences the size of the
trace is the amount of code lines of the benchmark (Figure 1(c)). This happens because



0

100

200

300

400

500

600

700

800

900

1000

BMP SM NMP ATA OTA PC PS MM TR

R
e

s
p

o
n

s
e

 t
im

e
 (

m
s
) 

Free

Deterministic

(a)

0

10

20

30

40

50

60

70

80

0

20000

40000

60000

80000

100000

120000

BMP SM NMP ATA OTA PC PS MM TR

A
m

o
u

n
t 

o
f 

p
ri

m
it

iv
e

s 
 

b
y

te
s 

Trace

Primitives

(b)

0

50

100

150

200

250

300

350

0

20000

40000

60000

80000

100000

120000

BMP SM NMP ATA OTA PC PS MM TR

LO
C

 

b
y

te
s 

Trace

LOC

(c)

Figure 1. (a) Average response time of free and deterministic executions, (b) Trace size in
relation to amount of primitives, and (c) Trace size in relation to code lines.

other events (such as: the beginning of a node, definitions and use of variables) are also
provided by ValiInst and recorded.

5. Final Considerations
In this paper, algorithms for trace file generation and deterministic execution for six types
of synchronization primitives were presented: blocking and non-blocking point-to-point
message passing, blocking shared memory (semaphore), one-to-all, all-to-one and all-to-
all collective primitives. Furthermore, the algorithms can be used when these different
paradigms are used in concurrent programs at the same time.

For all the experiments carried out, the algorithms met their objectives of replaying
a concurrent program in a deterministic way. Information such as synchronization pairs
and the order of events are provided in the trace files. This information is important for
the structural testing of concurrent programs, during the evaluation of the coverage of
synchronization edges and to determine the definition and use of shared variables.

The experiments carried out demonstrate that the overhead of the deterministic
execution and the trace file size increase proportionally to the amount of primitives used
in the concurrent program. Despite being costy, both the trace file generation and the
deterministic execution have many benefits. The deterministic execution will be applied
directly to the structural testing of concurrent programs, enabling replay of a revealed
fault and helping in the debugging activity. Still concerning about the structural testing of
concurrent programs, the deterministic execution will also be used by the automatic gen-
eration of new synchronization sequences (or variants), enabling new synchronizations
from a concurrent program to be covered from a trace file.

6. Acknowledgements
The authors thank FAPESP for the financial support (2012/14285-4, 2013/01818-7,
2013/05750-8 and 2013/07375-0).

References
[Alpern et al. 2000] Alpern, B., Ngo, T., Choi, J.-D., and Sridharan, M. (2000). Dejavu:

Deterministic java replay debugger for jalapeño java virtual machine. In OOPSLA ’00,
pages 165–166, NY. ACM.



[Bergan et al. 2010] Bergan, T., Anderson, O., Devietti, J., Ceze, L., and Grossman, D.
(2010). Coredet: a compiler and runtime system for deterministic multithreaded exe-
cution. In ASPLOS 2010, volume 38, pages 53–64. ACM.

[Bocchino et al. 2009] Bocchino, Jr., R. L., Adve, V. S., Dig, D., Adve, S. V., Heumann,
S., Komuravelli, R., Overbey, J., Simmons, P., Sung, H., and Vakilian, M. (2009). A
type and effect system for deterministic parallel java. SIGPLAN Not., 44(10):97–116.

[Carver and Lei 2010] Carver, R. and Lei, Y. (2010). A class library for implementing,
testing, and debugging concurrent programs. International Journal on Software Tools
for Technology Transfer, 12(1):69–88.

[Carver and Tai 1991] Carver, R. and Tai, K.-C. (1991). Replay and testing for concurrent
programs. Software, IEEE, 8(2):66–74.

[Dourado et al. 2016] Dourado, G. G. M., Souza, P. S. L., Prado, R. R., Batista, R. N.,
Souza, S., Estrella, J., Bruschi, S., and Lourenco, J. M. S. (2016). A suite of java
message-passing benchmarks to support the validation of testing models criteria and
tools. In ICCS 2016, volume 80, pages 2226–2230. Elsevier.

[Farchi et al. 2003] Farchi, E., Nir, Y., and Ur, S. (2003). Concurrent bug patterns and
how to test them. In Parallel and Distributed Processing Symposium, pages 7 pp.–.

[Konuru et al. 2000] Konuru, R., Srinivasan, H., and Choi, J.-D. (2000). Deterministic
replay of distributed java applications. In IPDPS 2000, pages 219–, Washington. IEEE.

[Lei and Carver 2006] Lei, Y. and Carver, R. (2006). Reachability testing of concurrent
programs. IEEE T. on Software Engineering, 32(6):382–403.

[Lifflander et al. 2014] Lifflander, J., Meneses, E., Menon, H., Miller, P., Krishnamoor-
thy, S., and Kale, L. (2014). Scalable replay with partial-order dependencies for
message-logging fault tolerance. In IEEE Cluster Computing 2014, pages 19–28.

[Liu et al. 2011] Liu, T., Curtsinger, C., and Berger, E. D. (2011). Dthreads: efficient
deterministic multithreading. In SOSP 2011, pages 327–336. ACM.

[Musuvathi et al. 2008] Musuvathi, M., Qadeer, S., Ball, T., Basler, G., Nainar, P. A., and
Neamtiu, I. (2008). Finding and reproducing heisenbugs in concurrent programs. In
OSDI 2008, pages 267–280, Berkeley. USENIX.

[Olszewski et al. 2009] Olszewski, M., Ansel, J., and Amarasinghe, S. (2009). Kendo:
Efficient deterministic multithreading in software. SIGPLAN Not., 44(3):97–108.

[Prado et al. 2015] Prado, R. R., Souza, P. S., Dourado, G. G. M., Senger, S. R. S., Es-
trella, J. C., Bruschi, S. M., and Lourenco, J. (2015). Extracting static and dynamic
structural information from java concurrent programs for coverage testing. In CLEI
2015, pages 1–8, Arequipa. IEEE.

[Sarmanho et al. 2008] Sarmanho, F. S., Souza, P. S., Souza, S. R., and Simão, A. S.
(2008). Structural testing for semaphore-based multithread programs. In ICCS 2008,
pages 337–346, Berlin. Springer-Verlag.

[Souza et al. 2014] Souza, P. S., Souza, S. R., and Zaluska, E. (2014). Structural testing
for message-passing concurrent programs: an extended test model. Concurrency and
Computation: Practice and Experience, 26(1):21–50.

[Souza et al. 2013] Souza, P. S., Souza, S. S., Rocha, M. G., Prado, R. R., and Batista,
R. N. (2013). Data flow testing in concurrent programs with message passing and
shared memory paradigms. Elsevier, 18(0):149 – 158. ICCS 2013.


