
Accelerating Pre-stack Kirchhoff Time Migration by using

SIMD Vector Instructions

Maicon Melo Alves
1
, Lúcia Maria de Assumpção Drummond

1
e

Reynam da Cruz Pestana
2

1Institute of Computing - Fluminense Federal University (UFF)
Niterói - RJ - Brazil

2Institute of Geosciences - Federal University of Bahia (UFBA)
Salvador - BA - Brazil

{mmelo,lucia}@ic.uff.br, reynam@ufba.br

Abstract. The Pre-stack Kirchhoff Time Migration (PKTM) is a central process

in petroleum exploration. As PKTM is computationally intensive, many works

have proposed the use of accelerators like GPU and FPGA to improve its ex-

ecution time. On the other hand, although many off-the-shelf processors are

endowed with a set of SIMD vector instructions, few papers tackle the problem

considering vectorization and, all of them, consider that compilers can suc-

cessfully vectorize the code. In this paper, we show that a hand-written Kirch-

hoff code by using SIMD vector instructions is more efficient than the auto-

vectorized code provided by GCC. Experiments considering both real and syn-

thetic datasets showed that our solution is up to eight times faster than the auto-

vectorized one. We believe that the proposed strategy can be used together with

the other ones to accelerate seismic migration methods in general without new

investments in hardware and software.

1. Introduction

The first step in oil and gas exploration is a process called seismic data processing flow.
This process provides a subsurface image from earth that allows an interpretation of geo-
logical structures in the target area in order to detect where oil and gas can be found and
recovered [Deschizeaux and Blanc 2007]. This process is very important for petroleum
industry since each oil and gas well in exploration areas costs several tens of millions of
dollars and the production of high-quality seismic images in a reasonable time can signif-
icantly reduce the risk of make mistakes about drilling locations. Moreover, these images
are important as they can improve the position of wells in a billion-dollar producing oil
field [Rizvandi et al. 2011].

Several steps are made in seismic data processing flow such as deconvolution and
velocity analysis, but seismic migration is considered the central step in this entire pro-
cess. Basically, a seismic migration recovers an image of geological subsurface structures
by collapsing diffraction energy at discontinuous points and moving reflection events to
their geological locations. There are many classes of seismic migration methods with
different advantages and constraints. One of the most popular migration methods in oil

-------------------- WSCAD 2015 - XVI Simpósio em Sistemas Computacionais de Alto Desempenho --------------------

----- (WSCAD 2015) ----- 1 -----

and gas industry is Pre-stack Kirchhoff Time Migration (PKTM) that is based on diffrac-
tion summation procedure. PKTM is widely used because of its simplicity, efficiency,
feasibility and I/O flexibility [Xu et al. 2014].

However, PKTM is computationally intensive. Even in supercomputers, it
could take days or weeks to generate the final migrated image for a seismic dataset
[Shi et al. 2011]. In other words, a PKTM execution needs to process terabytes of data
and requires Gflop-months of computation prior to being interpreted by experts. Conse-
quently, parallel and distributed computing techniques have been applied in PKTM aiming
to reduce its execution time [Rizvandi et al. 2011]. Due to data parallelism characteris-
tics of PKTM algorithm, many works, for example [Xu et al. 2014], [Shi et al. 2011],
[Panetta et al. 2012], and [Sun and Shi 2012], have proposed the use of computational
accelerators such as Graphical Processing Units (GPU) or Field-programable Gate Array
(FPGA) to reduce PKTM execution time. In this strategy, generally the computation is ac-
complished just by GPUs and FPGAs, and CPU is used only for performing control tasks
such as moving data from memory to these devices. Although this approach with GPUs
and FPGAs achieves satisfactory results, some works as [Panetta et al. 2012] have shown
that a new strategy combining computational power of conventional multicore processors
and these accelerators can significantly improve PKTM performance.

In addition to computational power provided by a multicore processor, there is
another interesting resource available in many off-the-shelf processors that can increase
performance of applications. Many processors have been endowed with functional units
of Single Instruction Stream Multiple Data Stream (SIMD) which can process multiple
data elements at one time by using special sets of hardware instructions. This capability is
also called SIMD vector instructions since the basic data unit handled by this instruction
set is a vector. Each processor manufacturer has implemented its own set of instructions
to provide SIMD capability. In Intel processors, for instance, the set of instructions that
support SIMD vector computing is SSE and AVX, whereas 3DNow and Altivec provides
such resource in AMD and PowerPC processors, respectively [Rahmad et al. 2011].

Because there is potential data parallelism in PKTM algorithm, one strategy to
increase its performance is applying SIMD vector instruction capability available in off-
the-shelf processors. A solution that combines this CPU capability with accelerators can
strongly increase PTKM performance. Another advantage in using SIMD vector instruc-
tions provided by CPU is an immediate acceleration of PKTM in cases where only a con-
ventional CPU cluster or just individual workstations are available. Thus, an expressive
increasing in PKTM performance can be achieved without making additional investments
in new and specific hardware. This SIMD vector instructions can be used by turning on
the auto-vectorization option provided by many compilers such as GCC (Gnu C Com-
piler), ICC (Intel C Compiler) or XLC (IBM C Compiler) [Maleki et al. 2011]. When
this option is enabled, the compiler searches for code structures that can be vectorized,
i.e, inner loops processing vectors without data dependency and control flow. However,
the compiler auto-vectorization fails in cases where the code does not match the auto-
vectorization characteristics searched for the compiler [Mitra et al. 2013]. Thus, in these
cases, the programmer must perform a code analysis in order to identify code pieces suit-
able for vectorization.

In this paper, we present an accelerated version of PKTM by using SSE (Streaming

-------------------- WSCAD 2015 - XVI Simpósio em Sistemas Computacionais de Alto Desempenho --------------------

----- (WSCAD 2015) ----- 2 -----

SIMD Extensions) which is a SIMD vector instruction set available in off-the-shelf Intel
processors. We performed an analysis of the PKTM code in order to identify steps suitable
for applying vectorization provided by SSE. The performance evaluation accomplished in
both real and synthetic datasets showed that our solution is up to nine times faster than
the traditional code executed in the same machine. Furthermore, we also compared our
implementation with the auto-vectorized code generated by GCC which is a free compiler
widely used for academic and commercial purposes. The results showed that the speedup
achieved by our solution is up to eight times greater than the one achieved by the auto-
vectorized version.

More specifically, this work aims to show that an immediate improvement of
PKTM performance can be achieved without new investments in hardware or software.
Thus, the proposed strategy can be used by PKTM solutions where CPU is used to per-
form computation as well as in cases where only clusters of CPU or workstations are
available. To the best of our knowledge, this is the first paper where the acceleration of
PKTM execution by using SIMD vector instructions is evaluated, showing that PKTM is
not successfully auto-vectorized by GCC. Therefore, we believe that the lessons learned
in this work can be applied in novel and complex migration methods, as the Least Square
Migration (LSM), and also in other related problems.

2. Pre-stack Kirchhoff Time Migration (PKTM)

Seismic data processing flow is responsible for converting raw data acquired from earth
subsurface which was collected by a process called seismic data acquisition. In this pro-
cess, a source and a set of receivers are placed in a target area and the distance between
the source and each receiver is called offset. The source propagates a wave towards earth
subsurface which is refracted and reflected when hits on a subsurface rock layer. This
process, known as a Common Shot Acquisition, is performed several times during a seis-
mic data acquisition. At each shot, sources and receivers are placed at different positions
of target area in order to get redundant information about a same point in subsurface
[Yilmaz and Doherty 1987].

At discrete periods of time, receivers placed near surface collect energy reflected
by subsurface rock layers during an entire shot time propagation. Data collected by a
receiver at a discrete time t is known as a sample and represents the amplitude energy
reflected by a point in subsurface. Supposing a parallel plan, this point, known as Common

Mid Point (or just CMP), can be considered as been placed in midway between source
and receiver positions. A set of samples collected by a receiver during one shot is named
seismic trace and represents the energy reflected from a CMP during entire shot time
propagation. A set of traces of a target area results in a dataset named seismic section

which is usually saved in a standard file format [Yilmaz and Doherty 1987].

After some pre-processing, the seismic section is ready to be migrated
[Yilmaz and Doherty 1987]. Basically, a migration (i) collapses hyperbolic diffractions,
(ii) moves dipping reflectors to their true subsurface positions and (iii) increases spatial
resolution. A seismic section needs to be migrated because dipping reflector points in sub-
surface can produce an image that originally does not represent real geological structures.
This happens because a dipping point produces a semicircular wave (in accordance with
Huygens’ Law) which is collected by receivers as a hyperbola. Thus, a resulting image

-------------------- WSCAD 2015 - XVI Simpósio em Sistemas Computacionais de Alto Desempenho --------------------

----- (WSCAD 2015) ----- 3 -----

can apparently have structures not placed in their real positions and structures that do not
exist in reality. Thereby, migration corrects this distortions and generates a more accu-
rate image where apparent location of dipping reflectors are moved to their real locations
[Yilmaz and Doherty 1987].

Algorithm 1 PKTM algorithm
1: For all Offsets do

/* Input Traces Loop */

2: For all Input Traces do

/* Filtering Loop */

3: For all Cut-frequencies do

4: Filter Values()
5: Filter Input Trace()
6: End For

/* Migration Loop */

7: For all Output Samples do

8: Velocity()
9: Aperture Traces()

/*Contribution Loop*/

10: For all Output Traces in Aperture do

11: Travel Time()
12: Set Samples()
13: Mig Operator()
14: Define Filters()
15: Interpolate()
16: Obliquity Factor()
17: Aperture Angle Taper()
18: Geometrical Factor()
19: Correct Amplitude()
20: Accumulate Contribution()
21: End For

22: End For

23: End For

24: End For

Pre-stack Kirchhoff Time Migration receives a pre-stack common offset section as
input and produces a final image in time coordinate. The basic assumption made by Kirch-
hoff Migration is that any point in seismic section can be considered as a dipping reflector
and, consequently, each of these points is located at the hyperbola apex. That assumption
means that each point must receive back the energy scattered when this point was excited
by a wave front. In other words, this apex must receive the energy contribution of all sam-
ples which compose the hyperbola [Teixeira et al. 2013]. The behavior of this hyperbola
can be defined by a two-way travel time equation which determines the points (input sam-
ples) that contribute to the hyperbola apex (output sample) [Yilmaz and Doherty 1987].

An scalar version of PKTM algorithm is shown in Algorithm 1. For each offset,
PKTM executes the Input Trace Loop (lines 2 to 23) where each input trace of current off-
set is processed. Next, PKTM executes Filtering Loop (lines 3 to 6) which is composed by

-------------------- WSCAD 2015 - XVI Simpósio em Sistemas Computacionais de Alto Desempenho --------------------

----- (WSCAD 2015) ----- 4 -----

two phases and allows to get anti-aliased input trace samples. In the first phase, the filter
values for the current cut-frequency (line 4) is calculated. Next, each input trace sample is
filtered (line 5) by using the previously calculated filter values. After that loop execution,
there will be distinct filtered versions of the same input trace, each one related to one
cut-frequency. Then, a filtered version of the input trace matching an output trace can be
chosen. The number of filtered versions (number of cut-frequencies) can be calculated or
be informed as an input parameter. After filtering the input traces, PKTM executes the
Migration Loop (lines 7 to 22). For each output sample, the velocity for current CMP
is read (line 8) and traces which compose aperture are determined (line 9). An aperture
defines the output traces that will receive contributions from a given input trace.

Next, PKTM executes Contribution Loop (lines 10 to 21). In the first step of this
loop, the two-way travel time is calculated (line 11) to identify which input sample will
contribute to current output sample. However, because this calculated travel time is in
continuous domain, a set of samples to interpolate is defined (line 12) to transpose it to
a discrete domain. After that, the horizontal slowness of migration operator is calculated
(line 13) and its value is used as an input parameter to determine the appropriated filters
for anti-aliasing (line 14). The amplitude energy is then calculated from an interpolation
between filters and samples (line 15). This interpolating process aims to provide an ap-
proximated amplitude value, given the chosen filters and the defined set of samples. So,
the (i) obliquity factor, (ii) aperture angle taper, and (iii) geometrical spreading factor are
calculated (lines 16, 17, and 18, respectively), allowing to correct the resulted amplitude
in the next step (line 19). At last, this corrected amplitude energy is accumulated (line
20) in current output sample. A more detailed description of PKTM can be found in
[Yilmaz and Doherty 1987].

3. Accelerating PKTM by using SIMD Vector Instructions

In this section we describe our proposed solution to accelerate PKTM execution time. In
subsection 3.1 we show how SSE instructions were used to vectorize one single PKTM
step. Next, in subsection 3.2 we present the vectorized version of PKTM, describing what
steps could be vectorized, and discuss some issues related to this entire process.

3.1. PKTM Steps Vectorization

This subsection shows how SSE instructions were applied to vectorize one single PKTM
step. Describing the vectorization of one single PKTM step is enough to understand our
vectorization strategy since the other vectorized steps follow this same approach. As an
example, we describe how the two-way travel time calculation step was vectorized.

Consider the function Travel Time() (executed in line 11 of Algorithm 1) de-
scribed in detail in Algorithm 2. This function receives as input parameters the x co-
ordinate of (i) the output and input traces, (ii) the output sample time, (iv) the offset, and
(v) the velocity. As output, the Algorithm 2 returns the travel time related to the given
output sample time and output trace. Moreover, all parameters and variables are repre-
sented as floating point numbers with single precision (data type float in C). In line 2 of
Algorithm 2 the distance between the input and output traces is computed. The travel
time from source to mid-point is calculated in line 3, while the travel time from mid-point
to receiver is calculated in line 4 (sqrt() and pow() calculates square-root and power, re-
spectively). At last, both previously calculated travel times are summed (line 5) and this

-------------------- WSCAD 2015 - XVI Simpósio em Sistemas Computacionais de Alto Desempenho --------------------

----- (WSCAD 2015) ----- 5 -----

resulting two-way travel time is returned (line 6). Thus, this function calculates the two-
way travel time for only one output trace at a time. PKTM executes this function for every
output trace in aperture (line 11 of Algorithm 1).

Algorithm 2 Scalar Two-way Travel Time Calculation Function
INPUT: output trace x, input trace x, sample time, offset, velocity

OUTPUT: travel time

1: Function TRAVEL TIME()
2: d output trace x - input trace x
3: ts sqrt(sample time + pow((d+offset)/velocity,2))
4: tr sqrt(sample time + pow((offset-d)/velocity,2))
5: travel time ts + tr
6: Return travel time
7: End Function

In Algorithm 3 the vectorized version of Algorithm 2, called Vec Travel Time(),
is described. Vec Travel Time() receives four output traces and calculates, at the same
time, their respective four travel time values by using SSE instructions. The input param-
eters of this function are the same of the original scalar version, except for the parameter
which receives the output trace. In the vectorized version, the function receives a float

vector of four numbers, out tr x[4], (x coordinate of four output traces) instead of just
one float number (x coordinate of one output trace) as performed in the scalar version.
The Vec Travel Time() function returns a float vector of four numbers where the travel
time for each output trace is stored in each vector position. Moreover, all input and output
parameters are represented as floating point numbers with single precision.

The SSE instructions used by Vec Travel Time() allow to process simultaneously
128 bits of data, i.e., four floating point numbers with single precision (32 bits each one).
The Vec Travel Time() procedure accessed the set of SSE instructions by using special
functions called intrinsics which are provided by Intel libraries. As these intrinsics func-
tions process only specific SSE data types, all data must be copied to this kind of vari-
able before being processed by intrinsics. A description about the intrinsics used by
Vec Travel Time() can be found in [Intel 2015].

At first, all input parameters are copied to variables of a specific SSE data type
(variables with sse prefix) in lines 2 to 6. After that, the distances between the four input
and output traces are calculated at the same time in line 7 (statement equivalent to line
2 in scalar version). Next, the travel time values from mid-point to receiver of the four
output traces (corresponding to line 3 of scalar version) are calculated in lines 8 to 12.
The travel time values from mid-point to receiver of the four output traces are calculated
in lines 13 to 17 (equivalent to line 4 of scalar version). The two-way travel time of the
four output traces is then computed in line 18 (line 5 of scalar version). Next, the four
two-way travel time values (stored in a SSE vector) are copied to a float point vector of
four numbers. At last, this vector containing four travel times is returned. Thus, instead
of processing just one output trace as performed by Travel Time(), the Vec Travel Time()

function process four travel time values for four output traces simultaneously.

-------------------- WSCAD 2015 - XVI Simpósio em Sistemas Computacionais de Alto Desempenho --------------------

----- (WSCAD 2015) ----- 6 -----

Algorithm 3 Vectorized Two-way Travel Time Calculation Function
INPUT: output trace x[4], input trace x, sample time, offset, velocity

OUTPUT: travel time[4]

1: Function VEC TRAVEL TIME
/* Copying input parameters to SSE variables */

2: sse output trace x mm load ps(output trace x)
3: sse input trace x mm set1 ps(input trace x)
4: sse sample time mm set1 ps(sample time)
5: sse offset mm set1 ps(offset)
6: sse velocity mm set1 ps(velocity)

/* Corresponding to line 2 of Algorithm 2*/

7: sse d mm sub ps(sse output trace x,sse input trace x)
/* Corresponding to line 3 of Algorithm 2 */

8: sse aux1 mm add ps(sse d,sse offset)
9: sse aux2 mm div ps(sse aux1,sse velocity)

10: sse aux3 mm mul ps(sse aux2,sse aux2)
11: sse aux4 mm add ps(sse sample time,sse aux3)
12: sse ts mm sqrt ps(sse aux4)

/* Corresponding to line 4 of Algorithm 2 */

13: sse aux1 mm sub ps(sse offset,sse d)
14: sse aux2 mm div ps(sse aux1,sse velocity)
15: sse aux3 mm mul ps(sse aux2,sse aux2)
16: sse aux4 mm add ps(sse sample time,sse aux3)
17: sse tr mm sqrt ps(sse aux4)

/* Corresponding to line 5 of Algorithm 2 */

18: sse travel time mm add ps(sse ts,sse tr)
/* Copying travel times from a SSE variable into a float one */

19: mm store ps(travel time,sse travel time)
20: Return travel time
21: End Function

3.2. Vectorized PKTM

In Algorithm 4, the vectorized PKTM version is shown. As can be seen in Algorithm 4,
the Contribution Loop (originally in lines 10 to 21 of Algorithm 1) was divided in two
new loops called Vectorized Contribution Loop (lines 10 to 18 of Algorithm 4) and Scalar

Contribution Loop (lines 19 to 23 of Algorithm 4). All vectorized steps were grouped
in the Vectorized Contribution Loop, executed by iterations of four-by-four output traces.
Steps inside this loop compute four output traces simultaneously and makes available
their computed data to the scalar steps by storing the resulting data in vectors, where each
vector position corresponds to one output trace.

Steps that could not be vectorized were inserted in Scalar Contribution Loop,
executed by iterations of one-by-one output trace. These steps could not be vectorized
due to intrinsic characteristics or SSE limitations. The step of filtering input traces (Fil-

ter Iput Trace()) could not be vectorized because it uses complex numbers which are not
supported by SSE. The interpolation step (Interpolate()) was not suitable for vectoriza-
tion because many distinct math calculations are accomplished in only 8 floating point
numbers, i.e, vectorization is more suitable for problems where a same operation is per-

-------------------- WSCAD 2015 - XVI Simpósio em Sistemas Computacionais de Alto Desempenho --------------------

----- (WSCAD 2015) ----- 7 -----

Algorithm 4 Vectorized PKTM Version
1: For all Offsets do

/* Input Traces Loop */

2: For all Input Traces do

/* Filtering Loop */

3: For all Cut-frequencies do

4: Vec Filter Values()
5: Filter Input Trace()
6: End For

/* Migration Loop */

7: For all Output Samples do

8: Velocity()
9: Aperture Traces()

/*Vectorized Contribution Loop*/

10: For all Output Traces in Aperture step by 4 do

11: Vec Travel Time()
12: Vec Set Samples()
13: Vec Mig Operator()
14: Vec Define Filters()
15: Vec Obliquity Factor()
16: Vec Geometrical Factor()
17: Vec Aperture Angle Taper()
18: End For

/*Scalar Contribution Loop*/

19: For all Output Traces in Aperture step by 1 do

20: Interpolate()
21: Correct Amplitude()
22: Accumulate Contribution()
23: End For

24: End For

25: End For

26: End For

formed on many elements. The steps responsible for correcting the resulting amplitude
(Correct Amplitude()) and for accumulating the contribution in the output sample (Accu-

mulate Contribution()) were not vectorized because they depend on data provided by the
interpolate step, which was not vectorized.

Our implementation presented a little loss of precision if compared with the tradi-
tional PKTM code. In Intel processors, the float point arithmetic is always performed in
extended precision of 80 bits, even when processing numbers of 32 bits represented with
the original IEEE 754 single precision standard [Bryant et al. 2003]. As SSE adopts the
original IEEE 754 representation, there is a little lost of precision if compared with the
traditional C code. However, there is no significant difference in the final migrated image
since single precision is more than adequate for Kirchhoff migration [Levin et al. 2004].

We also used SSE to vectorize data copying between vectors. The conventional
intrinsics used to load and store data (mm load ps() and mm store ps(), respectively)
can be used only when data are aligned in 16-bytes boundaries. In some cases when

-------------------- WSCAD 2015 - XVI Simpósio em Sistemas Computacionais de Alto Desempenho --------------------

----- (WSCAD 2015) ----- 8 -----

data are unaligned, we used the intrinsics mm loadu ps() and mm storeu ps() that can
deal with unaligned data. Remark, however, that accessing unaligned data is slower than
accessing aligned data in 16-bytes boundaries. Finally, some steps execute trigonometric
functions, such as sine and cosine, not supported by SSE. In order to treat this problem,
we employed trigonometric functions available in the SSE math library [Pommier 2007].

4. Experimental Results

Our PKTM implementation is based on the Seismic Unix, an open source software pack-
age for seismic processing [Cohen and Stockwell 2008] that is widely used by petroleum
industry and academy. The performance evaluation of our solution was accomplished
by executing PKTM over a real and a synthetic datasets. Evaluating different datasets is
desired since computational complexity of PKTM is related to their geometry, i.e., differ-
ent number of offsets, traces per each offset and samples per trace can strongly increase
the PKTM execution time. The synthetic dataset and its respective velocity model was
created by using a synthetic seismograph, whereas the real dataset is composed of data
collected from a real seismic data acquisition accomplished in Brazil 1. At last, both our
solution code and synthetic dataset can be obtained upon requesting to the authors.

The number of offsets, samples per trace, and traces per offset are, respectively,
630, 512, 128 for the synthetic dataset, and 200, 1001, 978 for the real one. Thus, the
real dataset has more traces per offset and samples per trace than the synthetic dataset.
Thereby, the execution of both Input Traces Loop and Migration Loop are more compu-
tationally intensive when migrating the real dataset. On the other hand, the number of
offsets is greater in synthetic dataset than in real one. As a consequence, the number of it-
erations of Offset Loop are greater in the synthetic dataset rather than real dataset. At last,
remark that datasets migrated in production environment are more complex than these
evaluated in this work. However, we believe that PKTM performance can be assessed
with those datasets without loss of generality.

The PKTM performance was also evaluated with two different input parameters,
since the variation of such parameters can significantly increase the PKTM execution
time. The first parameter, FWIDTH, is used to define the high-end frequency increment
for low-pass filter. Thus, the changing of FWIDTH reflects directly in the number of
iterations performed by the Filtering Loop. The second one, NFC, defines the number
of Fourier coefficients used for calculating low-pass filter values (line 4 in Algorithm 1).
The execution time for calculating filter values increases as NFC grows. In other words,
the higher the NFC and the lower the FWDITH, the greater the PKTM execution time is.

We evaluated the execution time of three PKTM versions: (i) the original Seismic
Unix code; (ii) the same Seismic Unix code auto-vectorized by GCC; (iii) our PKTM im-
plementation by using SSE. The auto-vectorized version was compiled with optimization
flags ffast-math and O3 which enables by default the auto-vectorization flags ftree-slp-

vectorize and ftree-vectorize. Our implementation was also compiled with -O3, but the
flags fno-tree-vectorize and fno-tree-slp-vectorize were used to disable auto-vectorization.
Moreover, we do not support GCC to find out the proper loops to parallelize, i.e., the over-
all code analysis was lonely accomplished by GCC. All PKTM versions were compiled
with GCC version 4.8.4 and the experiments were accomplished, without any external

1For confidentiality reasons, we can not inform the exact localization of this dataset.

-------------------- WSCAD 2015 - XVI Simpósio em Sistemas Computacionais de Alto Desempenho --------------------

----- (WSCAD 2015) ----- 9 -----

(a) Average Execution Time (b) Average Speedup

Figure 1. Synthetic Dataset Migration with NFC=32

interference (like processes and users), in a Intel i5-3337U 1.80GHz processor with 6GB
of RAM memory running Ubuntu Linux (kernel 3.13.0). We executed the Seismic Unix
version 43R8 for the following NFC and FWIDTH values: 32, 16, 8, and 5, 3, 1, respec-
tively, testing all combinations of these values. The values chosen for NFC and FWIDTH
obey an interval of feasible values that match to geophysical principles. Each experiment
was repeated five times in order to calculate the average execution time achieved by each
code. At last, we considered an error margin calculated from a 99% confidence interval
by using the Student’s T Distribution.

The average execution time achieved by the three PKTM codes as well as the
speedups achieved by our solution and by the auto-vectorized code when migrating syn-
thetic dataset with NFC equal to 32 are shown, respectively, in Figures 1a and 1b. As
expected, the average execution time of all PKTM versions grows as FWIDTH decreases.
For all FWIDTH values, the average execution time of our implementation was shorter
than the other ones. When FWIDTH was equal to 1 the speedup achieved by our im-
plementation was approximately eight times greater than the one achieved by the auto-
vectorized version. This super-linear speedup comes from the adoption of SSE combined
with another optimization process accomplished by GCC such as loop unrolling and func-
tion reordering to improve code locality, for example. Moreover, the speedup achieved by
our solution increases as the PKTM execution time grows, indicating that the accelera-
tion provided by our implementation follows the growth of PKTM complexity execution.
However, unlike our implementation, the speedup of the auto-vectorized version is ap-
proximately constant, even when the PKTM complexity execution rises. Actually, note
that the speedup slightly decreases as PKTM execution time increases.

The average execution time achieved by the three PKTM codes as well as the
speedups achieved by our solution and by the auto-vectorized code when migrating real
dataset with NFC equal to 32 are shown, respectively, in Figures 2a and 2b. When migrat-
ing the real dataset, both our implementation and the auto-vectorized one follow the same
behavior when migrating the synthetic dataset, i.e., the speedup of our implementation
increases as PKTM complexity grows, whereas the speedup of auto-vectorized version
remains approximately constant. The main difference between migrating the synthetic
and the real datasets is that, in the second one, the acceleration achieved by our imple-

-------------------- WSCAD 2015 - XVI Simpósio em Sistemas Computacionais de Alto Desempenho --------------------

----- (WSCAD 2015) ----- 10 -----

(a) Average Execution Time (b) Average Speedup

Figure 2. Real Dataset Migration with NFC=32

mentation was smaller. However, even though the speedup achieved when migrating the
real dataset was smaller than migrating the real one, the performance achieved by our
solution is still approximately four times greater than the performance achieved by the
auto-vectorized version. These results show that GCC compiler can not successfully vec-
torize PKTM. This happens because the auto-vectorization process performed by GCC
are not designed to support some programming patterns such as loops with wrap around
variables, besides that GCC auto-vectorization fail in the presence of data dependencies

5. Conclusion and Future Work

In this paper we proposed an accelerated version of PKTM by using SSE, a set of SIMD
vector instructions available in off-the-shelf Intel processors. The experimental results
considering both synthetic and real datasets showed that our solution is till nine times
faster than the original one and up to eight times faster than the auto-vectorized version
generated by GCC. These results show that GCC compiler can not successfully vectorize
PKTM due to some programming patterns such as loops with wrap around variables and
flow control which are presented in this algorithm.

In future work we expect to evaluate the performance achieved by a PKTM so-
lution that combines GPU and CPU, where the CPU code, implemented by using SIMD
vector instructions, is used to perform computation and not only control tasks. We also
expect to implement PKTM by using a novel set of SIMD instructions such as AVX which
allows to process 8 floating point numbers simultaneously. At last, although this is not
the main goal of this paper, we intend to further evaluate commercial compilers such as
ICC or frameworks like LLVM, as well.

References

Bryant, R. E., David Richard, O., and David Richard, O. (2003). Computer systems: a

programmer’s perspective, volume 2. Prentice Hall Upper Saddle River.

Cohen, J. and Stockwell, J. J. (2008). Cwp/su: Seismic unix release no. 41: An open
source software package for seismic research and processing. Center for Wave Phe-

nomena, Colorado School of Mines.

-------------------- WSCAD 2015 - XVI Simpósio em Sistemas Computacionais de Alto Desempenho --------------------

----- (WSCAD 2015) ----- 11 -----

Deschizeaux, B. and Blanc, J.-Y. (2007). Imaging earth’s subsurface using cuda. GPU

Gems, 3:831–850.

Intel (2015). The intel intrinsics guide. https://software.intel.com/sites/
landingpage/IntrinsicsGuide/. [Online; accessed in July-2015].

Levin, S. A. et al. (2004). Numerical precision in 3d prestack kirchhoff migration. In
SEG Annual Meeting. Society of Exploration Geophysicists.

Maleki, S., Gao, Y., Garzaran, M. J., Wong, T., and Padua, D. A. (2011). An evaluation
of vectorizing compilers. In International Conference on Parallel Architectures and

Compilation Techniques (PACT), pages 372–382. IEEE.

Mitra, G., Johnston, B., Rendell, A. P., McCreath, E., and Zhou, J. (2013). Use of simd
vector operations to accelerate application code performance on low-powered arm and
intel platforms. In 27th International Parallel and Distributed Processing Symposium,

Workshops and PhD Forum (IPDPSW), pages 1107–1116. IEEE.

Panetta, J., Teixeira, T., de Souza Filho, P. R., da Cunha Filho, C. A., Sotelo, D., da Motta,
F. M. R., Pinheiro, S. S., Rosa, A. L. R., Monnerat, L. R., Carneiro, L. T., et al.
(2012). Accelerating time and depth seismic migration by cpu and gpu cooperation.
International Journal of Parallel Programming, 40(3):290–312.

Pommier, J. (2007). Simple SSE and SSE2 (and now NEON) optimized sin, cos, log and
exp. http://gruntthepeon.free.fr/ssemath/. [Online; accessed July-
2015].

Rahmad, M. H., Meng, S. S., Karuppiah, E. K., and Ong, H. (2011). Comparison of cpu
and gpu implementation of computing absolute difference. In International Conference

on Control System, Computing and Engineering (ICCSCE), pages 132–137. IEEE.

Rizvandi, N. B., Boloori, A. J., Kamyabpour, N., and Zomaya, A. Y. (2011). Mapreduce
implementation of prestack kirchhoff time migration (pktm) on seismic data. In 12th

International Conference on Parallel and Distributed Computing, Applications and

Technologies (PDCAT), pages 86–91. IEEE.

Shi, X., Li, C., Wang, S., and Wang, X. (2011). Computing prestack kirchhoff time
migration on general purpose gpu. Computers & Geosciences, 37(10):1702–1710.

Sun, P. and Shi, X. (2012). An opencl approach of prestack kirchhoff time migration algo-
rithm on general purpose gpu. In 13th International Conference on Parallel and Dis-

tributed Computing, Applications and Technologies (PDCAT), pages 179–183. IEEE.

Teixeira, D., Yeh, A., and Sampath Gajawada, T. (2013). Implementation of kirch-
hoff prestack depth migration on gpu. SEG Technical Program Expanded Abstracts,
3683:3686.

Xu, R., Hugues, M., Calandra, H., Chandrasekaran, S., and Chapman, B. (2014). Accel-
erating kirchhoff migration on gpu using directives. In First Workshop on Accelerator

Programming using Directives, pages 37–46. IEEE.

Yilmaz, O. and Doherty, S. M. (1987). Seismic Data Processing, volume 2 of Investiga-

tions in Geophysics. Society of Exploration.

-------------------- WSCAD 2015 - XVI Simpósio em Sistemas Computacionais de Alto Desempenho --------------------

----- (WSCAD 2015) ----- 12 -----

