Improving the Performance of the Contextual Spaces
Re-Ranking Algorithm on Heterogeneous Systems

Flavia Pisani', Daniel C. G. Pedronette?, Ricardo da S. Torres', Edson Borin'

nstitute of Computing (IC) — University of Campinas (UNICAMP)
Campinas, Sao Paulo, Brazil

Institute of Geosciences and Exact Sciences (IGCE) — Sdo Paulo State University (UNESP)
Rio Claro, Sao Paulo, Brazil

{fpisani, rtorres,edson}@ic.unicamp.br, daniel@rc.unesp.br

Abstract. Re-ranking algorithms have been proposed to improve the effective-
ness of Content-Based Image Retrieval (CBIR) systems by exploiting contextual
information encoded in distance measures and ranked lists. In this paper, we
show how we improved the efficiency of one of these algorithms, called Contex-
tual Spaces Re-Ranking. We propose a modification to the algorithm that re-
duces its execution time by 1.6 X on average and improves its accuracy in most
of our test cases. We also parallelized the implementation with OpenCL to use
the CPU and GPU of an Accelerated Processing Unit (APU). Employing these
devices to run different parts of the code resulted in speedups that range from
3.3X to 4.2X in comparison with the total execution time of the serial version.

1. Introduction

Due to a reduction in price of storage devices and the new technological advances that
are being made in the field of data acquisition and sharing, we can observe a consider-
able increase in the size of image collections. As a result of that, the adoption of search
systems becomes very important for users to be able to find images in these huge collec-
tions. Widespread retrieval approaches, such as the ones based on keywords and textual
metadata, face serious challenges caused by the inherent difficulty in describing an image
in words [Datta et al. 2008]. Furthermore, textual image description is an intrinsically
time-consuming and laborious task, and it also depends on the subjective, and usually
inconsistent, evaluation of annotators.

Content-Based Image Retrieval (CBIR) is a technology that mitigates this problem
by providing automatic mechanisms for searching based on an image’s visual properties
(e.g., color, shape, and texture). Given a query image, a CBIR system intends to retrieve
similar items from the collection by using one or more content descriptors, which encode
the visual properties of the images. A CBIR system ranks the results by decreasing order
of similarity, and since users consider mostly top-ranked images, it is imperative that the
rank be as accurate as possible.

In recent years, several successful attempts to increase the effectiveness
(quality of results) of CBIR systems have been performed [Datta et al. 2008,
Pedronette and da S. Torres 2011, Yang and Latecki 2011]. In particular, re-ranking

----- (WSCAD 2015) - 132

methods have been used to improve the effectiveness of CBIR systems by exploiting
contextual information encoded in similarity scores and ranked lists. These methods are,
on the other hand, very costly as they are based on comparing collection images multi-
ple times. In a real-world scenario, CBIR systems require both good effectiveness and
efficiency (response time), so re-ranking methods must be improved.

Central Processing Units (CPUs) no longer have just one core and Graphics Pro-
cessing Units (GPUs) are now being used as general-purpose processors (GPGPUs)
since they have evolved into massive parallel architectures capable of executing hun-
dreds of operations per cycle [Pedronette et al. 2012]. These devices have been success-
fully used to accelerate re-ranking [Pedronette et al. 2012, Pedronette et al. 2013] and re-
trieval [Teodoro et al. 2014] systems, obtaining good speedups.

Therefore, alternatives that increase performance through paralleliza-
tion seem like a possible fit for the Contextual Spaces Re-Ranking algo-
rithm [Pedronette and da S. Torres 2011], which we discuss in this paper. Another
approach that can be pursued is analyzing the compromises between accuracy and
performance that come out of modifying existing algorithms, since this can lead to
removing demanding work from the execution.

Our solution exploits the use of parallelization to speed up the more costly steps
of a modified version of the Contextual Spaces Re-Ranking algorithm. The experiments
made on an Accelerated Processing Unit (APU) show that this approach improves the total
execution time by 1.6x on average, while also increasing the Mean Average Precision
(MAP) score in most of our test cases. To the best of our knowledge, our research group
has the only efforts to parallelize the Contextual Spaces Re-Ranking algorithm.

The remainder of this paper is organized as follows: Section 2 presents related
work. Section 3 introduces the Contextual Spaces Re-Ranking algorithm and the modi-
fications we propose. Section 4 describes our APU-based implementation. Our experi-
mental results are discussed in Section 5. Finally, Section 6 draws our conclusions.

2. Related Work

In image retrieval applications, images are commonly represented by feature vectors in
an attempt to represent their visual properties. The comparison between two images is
performed using pairwise analysis, e.g., computing the Euclidean distance between their
correspondent feature vectors. Nonetheless, the pairwise distances ignore the relation-
ships among images and the context in which the query is processed, failing to retrieve
relevant results in many situations.

Recent studies [Pedronette and da S. Torres 2011, Yang and Latecki 2011] have
focused on post-processing methods. Such approaches aim at replacing pairwise dis-
tances by more global measures, capable of considering the overall dataset structure.
These methods present an important advantage, as they do not require any user inter-
vention. Since labeling is often a laborious and time-consuming task, these unsupervised
approaches are a very attractive solution for improving the effectiveness of CBIR systems.

However, several of these methods require high computational efforts, mainly due
to matrix operations [Yang et al. 2008] or graph procedures [Wang et al. 2011], and their
evaluation commonly considers only effectiveness, ignoring efficiency aspects that are

----- (WSCAD 2015) - 133

also indispensable in real-word applications. Two alternatives have recently emerged as
possible solutions: rank-based approaches, in which the information of top-k retrieved
images is exploited, reducing the required computation; and the use of parallel and het-
erogeneous architectures, which are popular for accelerating different image applications.

Graphics Processing Units (GPUs) are now viewed as inexpensive co-processors
suited for many applications beyond computer graphics [Steele and Cochran 2007], lead-
ing to General Purpose GPU (GPGPU) approaches. Emerging heterogeneous devices like
Accelerated Processing Units (APUs) are also contributing to disseminate the use of paral-
lel systems. GPUs are being used in many different areas, such as general image retrieval,
remote sensing [Sevilla et al. 2014], and medical applications [Ferreira et al. 2014].

This paper discusses a modified version of the Contextual Spaces Re-Ranking
algorithm, which exploits information from rankings and distances for improving the
effectiveness of image retrieval systems. There are very few studies about the ef-
ficient image re-ranking computation on parallel architectures [Pedronette et al. 2012,
Pedronette et al. 2013]. Therefore, the efficiency evaluation considering APU devices
and heterogeneous computing is also a contribution of this work.

3. Contextual Spaces Re-Ranking Algorithm

The Contextual Spaces Re-Ranking algorithm [Pedronette and da S. Torres 2011] aims to
redefine the relationships between collection images by answering the question “What
information can an image’s nearest neighbors provide about other items in the collec-
tion?”. This way, not only the pairwise correlation between images is analyzed, but also
the information contained in the context of the query.

3.1. Problem Definition

Let C = {imgy,imgs, ...,imgy} be an image collection and D an image descriptor that
defines a distance function p : C x C — R, where R denotes real numbers. Consider
p(z,y) > 0 forall (x,y) and p(z,y) = 0 if x = y. The distance p(img;,img;) for each
pair of images img;, img; € C can be calculated to obtain an N x NN distance matrix A.

Given a query image 7mg,, we can compute a ranked list /2, by taking into account
the distances in A. This ranked list can be defined as a permutation of the items in C such
that if imyg; is closer to the top of the list than img;, then p(img,, img;) < p(img,, img;).
Considering each image img; € C as a query, we obtain a set R = {R;, Ry, ..., Ry}
of ranked lists, which can also be stored in an N x N matrix. By taking as input the
distance matrix A and the set of ranked lists R, the re-ranking algorithm (represented by
the function /) computes a new distance matrix A=F (A, R).

Based on the new distance matrix 121, collection images can be re-ranked, that is, a
new set of ranked lists R can be obtained. The re-ranking algorithm based on Contextual
Spaces, detailed in this section, consists in an implementation of the function F'.

3.2. Contextual Spaces Representation

Given two reference images img; and img;, consider a two-dimensional Cartesian space
where, for all img, € C, the horizontal axis represents the values of p(img;,img;) and
the vertical axis represents the values of p(img;, img;). This means that the position of a
certain image ¢mg; € C is given by the ordered pair (p(img;,img;), p(img;, img;)).

----- (WSCAD 2015) - 134

We take images from the MPEG-7 dataset [Latecki et al. 2000] as an example. By
using the CFD shape descriptor [Pedronette and da S. Torres 2010], we can compute the
distance between each pair of images in this collection and then build the corresponding
space for a given pair of reference images.

Figure 1(a) shows a graphic representation of a space where the reference images
are similar. We see that the distances from each reference image to the other images (i.e.,
the horizontal and vertical coordinates of each point) are similar as well. Figure 1(b), in
turn, shows a case where the two reference images are not similar. Note that this time the
distances from each reference image to the other images present a negative correlation.

Contextual Space — Similar Images Contextual Space — Dissimilar Images

A 70 o+ A 70 %t
‘o 60 s 560 t "
& A ® T,
£ 50 r £ 50 T
g 40 £ 40 f
2 2
= (=
< 30 o 30 T
Q Q
5 20 520
@ 7]
A107 - 1 A0+t 1
MPEG-7 Images MPEG-7 Images
O L L L L 0 L L +
0 10 20 30 40 50 60 70 10 20 30 40 50 60 70

(=]

‘ Distance from Image i =5 Distance from Image i
(a) Similar reference images (b) Dissimilar reference images

Figure 1. Graphical representation of two-dimensional spaces constructed with
certain pairs of (a) similar and (b) dissimilar reference images.

We can define a contextual space as a two-dimensional space considering as
reference images an arbitrary image ¢mg; and each one of its K-nearest neighbors
KNN (img;) = {imgj,, img,,.,. .., img;, }. The Contextual Spaces Re-Ranking algo-
rithm intends to exploit the information of contextual spaces to improve the distances
among collection images, which can lead to better rankings.

3.3. Original Contextual Spaces Re-Ranking Algorithm

Algorithm 1 presents the main operations of the Contextual Spaces Re-Ranking algo-
rithm. Two parameters must be set: the initial number of neighbors to be considered, /s,
and the final number of neighbors, K .. The number of iterations of the algorithm (line 4)
isdefinedas T = K, — K, + 1.

First (lines 1-3), we initialize the current iteration number (%), the current distance
matrix (A;), and the current number of neighbors to be analyzed (K). In the main loop,
for a given pair of images img;, img; € C (lines 6-7), we consider the contextual spaces
that have reference images img; and each one of img;’s K -nearest neighbors (line 11).

The dimension d; is computed as a weighted average of the distances from img; €
KNN(img;) to img; (line 12). The term K — ¢, (where ¢ is a variable declared in
line 9) is used as weight so the distances from neighbors closest to the top of the list are
considered more relevant. Both dimensions d; and d; are then divided proportionally by

----- (WSCAD 2015) - 135

Algorithm 1 Contextual Spaces Re-Ranking

Require: Original distance matrix A; set of ranked lists R.
Ensure: Processed distance matrix A; new set of ranked lists R.

1: t+0
2: At — A
3: K+ K,
4: while K < K, do
5: At+1 0
6: for all img; € C' do
7: for all img; € C do
8: {Considering contextual spaces}
9: cp <0
10: dj 0
11: for all img; € KNN (img;) do
12: dJ<—dj+At[,” X(K—Ck)
13: cp —cp+1
14: end for
15: {Computing distance p(img;, img;)}
16: d; + A, l]/K
17: dj + dj /(2B
18: At+1 [’L, l] — d,LQ + d?
19: end for
20: end for

21: Ryy1 < per formReRanking(Ai11)
22: K+ K+1

23: t—t+1

24: end while

25: A+ A,

26: R+ Ry

the number of neighbors considered in the iteration (lines 16—17) and the new distance
between img; and img; becomes the Euclidean distance defined by d; and d; (line 18).

Once the distances among images are redefined, a new set of ranked lists can
be computed (line 21). As we increase the current iteration ¢ (line 23), we can also
increment the number of K neighbors considered for constructing the contextual spaces
(line 22). The motivation behind this increment relies on the fact that the effectiveness
of this approach increases along iterations since new distances are computed and non-
relevant images are moved away from the first positions of the ranked lists. A new distance
matrix A and a new set of ranked lists R are produced as a final result (lines 25-26).

3.4. Proposed Modification

Since the maximum number of neighbors analyzed by Algorithm 1 is a constant much
smaller than NV (number of collection images), we see that the complexity of the Contex-
tual Spaces Re-Ranking algorithm is determined by the assignment of values to matrices
in lines 2-3, 25-26; the loop in line 6; and the re-ranking procedure in line 21.

Assigning values to the matrices and the loop in line 6 both have complexity
O(N?). The procedure in line 21 is defined by N sorting operations on lists of size
N. As these lists are almost sorted, we can use the insertion sort algorithm to sort them
in linear time [Bentley 2000], yielding a complexity of O(N?) for this operation as well.

----- (WSCAD 2015) - 136

The modification we propose consists in moving the re-ranking procedure from
inside of the main loop (line 4) to after its last execution. This way, it is now between
lines 24 and 25 and is executed only once. This does not affect the complexity of the
algorithm, but causes a decrease in the number of re-ranking steps from 7" to 1.

If we compare a single execution of insertion sort on the original and modified
algorithms, the later will have more operations, as it deals with a distance matrix that was
altered 7' times instead of just one. Still, the results presented in Section 5.3.2 show that
the change improves the execution time of this step, since fewer operations are executed in
total. The effectiveness of the algorithm is also improved for most of the image descriptors
used in our tests, as discussed by the evaluation in Section 5.2.

4. Acceleration of the Contextual Spaces Re-Ranking Algorithm
4.1. OpenCL

OpenCL is a new industry standard for task-parallel and data-parallel heterogeneous com-
puting on a variety of modern CPUs, GPUs, and other processors [Stone et al. 2010]. An
OpenCL program runs on computational devices such as CPUs and GPUs. These usually
have compute units (processor cores) with one or more single-instruction multiple-data
(SIMD) processing elements (PE) that execute instructions in lockstep.

A program is divided into kernels, which are dynamically compiled OpenCL func-
tions. A kernel’s execution on a device is scheduled by a C runtime library. Each SIMD
kernel instance is called a work-item and executes on a single PE [AMD 2013].

4.2. Parallel Contextual Spaces Algorithm

Some steps of the Contextual Spaces algorithm described in Section 3 have inherent po-
tential for parallelization and can thus be exploited to increase the algorithm’s efficiency.

We call lines 6-20 from Algorithm 1 the Compute Distances step. We can see that
there are no loop-carried dependencies created by the for commands in lines 6 and 7, so
the computation can be performed concurrently for each pair of images.

Line 21 is the Re-sort Ranked Lists step. We observe that in this step, each image’s
ranked list is independent of other ranked lists, so it becomes clear how we can benefit
from processing them concurrently.

To guarantee that the synchronization requirement between steps is met, an
OpenCL kernel was created for each of them:

e Compute Distances: updates the distance between a pair of collection images
considering the contextual spaces formed by the query’s K-nearest neighbors.
Since this operation can be performed in parallel for all pairs of images in the
collection, we have N x N work-items executing this kernel.

e Re-sort Ranked Lists: re-orders an image’s ranked list considering the new dis-
tances calculated in the previous step. The more similar two images are, the
smaller is the distance between them, making more relevant images closer to the
top of the list. Since this operation can be performed in parallel for all ranked lists,
we have N work-items executing this kernel.

Serial code was added to provide the necessary data input for the kernels. The
“Normalize Distances” operation was separated from the Compute Distances step to avoid
the use of barriers and we decided to not parallelize it, since it is simple and doing so
would only introduce overhead. This configuration created the design depicted in Fig-
ure 2(a). After the modification described in Section 3.4, we still have the same paral-
lelization structure, but the execution flow became the one seen in Figure 2(b).

execute T iterations } execute T iterations
Initialize Data Initialize Data
Structures Structures
Compute Distances Compute Distances
(N x N work-items) (N x N work-items)
Normalize Normalize after the last iteration
Distances (min) Distances (min) v

Re-sort L] Re-sort
Ranked.Llsts O Serial (C/C++) Ranked.Llsts
(N work-items) O Parallel (OpenCL) (N work-items)

|

(O Serial (C/C++)
(O Parallel (OpenCL)

(a) Original (b) Modified

Figure 2. Parallelization of the Contextual Spaces Re-Ranking algorithm.

5. Experimental Evaluation

This section presents the experimental setup and the experiments we carried out to evalu-
ate the effectiveness and efficiency of the parallel implementation described in Section 4.

5.1. Experimental Setup

The APU used in our experiments is the AMD A8-3850, which combines 4 CPU cores
with an AMD Radeon HD6550D GPU that has 400 cores. We ran the tests on a Linux
3.3.4-5 Fedora 17 environment with AMD OpenCL SDK 2.8. We compiled the C/C++
serial code with g++ 4.7.2 using the flag “-O3”.

The datasets and descriptors we chose are: the MPEG-7 dataset (1,400 images)
and shape descriptors SS, BAS, IDSC, CFD, and ASC; the Soccer dataset (280 im-
ages) and color descriptors GCH, ACC, and BIC; and the Brodatz dataset (1,776 im-
ages) and texture descriptors LBP, CCOM, and LAS. Due to the space constraints of
this paper, we use the article that introduces the Contextual Spaces Re-Ranking algo-
rithm [Pedronette and da S. Torres 2011] as a reference for these datasets and descriptors.

The measure we used to evaluate effectiveness is the Mean Average Precision
(MAP), geometrically referred to as the area below a precision (fraction of retrieved in-
stances that are relevant) x recall (fraction of relevant instances that are retrieved) curve.

For our efficiency analysis, we compared execution times of the serial implemen-
tation against the OpenCL kernels running in either the CPU or the GPU. We chose the
MPEG-7 dataset and 7" = 8 iterations for our tests. Each test case was executed 20 times
and the average running time was computed with corresponding 95% confidence interval.

----- (WSCAD 2015) - 138

5.2. Effectiveness of our Parallel Implementation

Table 1 presents effectiveness results in terms of the MAP measure for the parallel imple-
mentations of the original and modified Contextual Spaces Re-Ranking.

Table 1. MAP for the Contextual Spaces Re-Ranking tests.

Dataset Image | Original | Modified | Modified vs
Desc. | Score[%]| Score[%]| Original [%]
SS 40.75 46.08 +5.33
BAS 74.71 77.00 +2.29
MPEG-7 | IDSC | 85.67 88.06 +2.39
CFD 90.00 90.56 +0.56
ASC 90.51 90.69 +0.18
GCH | 32.97 34.32 +1.35
Soccer ACC 39.35 40.09 +0.74
BIC 43.07 45.58 +2.51
LBP 49.34 49.26 -0.08
Brodatz | CCOM| 61.49 63.28 +1.79
LAS 79.67 79.41 -0.26

The scores achieved by the parallelized version of the original algorithm are
very similar to the ones from the serial implementation made when it was first pro-
posed [Pedronette and da S. Torres 2011], but the scores obtained with the modifications
present some improvement.

Six out of the eleven tests had an increase in accuracy of at least 1.35% (up to
5.33%). For all MPEG-7 and Soccer tests, the results of the modified version were better
than the original. Two cases of the Brodatz tests, however, presented a decrease in the
MAP, but no greater than 0.26%.

5.3. Efficiency of our Parallel Implementation

The following performance analysis is divided into two parts: first, we look at the results
obtained by parallelizing the original Contextual Spaces Re-Ranking algorithm. Then, we
analyze the impact of the algorithm modification. Since the Compute Distances kernel
was not modified, the second part focuses on the Re-sort Ranked Lists kernel.

For simplicity, the kernel names in this section are abbreviated to “Dist” (Compute
Distances) and “Sort” (Re-sort Ranked Lists). Also, the notation “k-Impl” is employed
to indicate which implementation of a kernel was used in a certain test case. The value
of “k” can be either “s”, the “Sort” kernel, or “d”, the “Distance kernel”. The value of
“Impl” can be “CPU”, the OpenCL version executed on the CPU; “GPU”, the OpenCL
version executed on the GPU; or “Serial”, the C/C++ version.

In each graph, it is possible to compare the serial and parallel execution times by
calculating the speedup obtained by the parallelization. These speedups are displayed as
labels above the bars representing parallel test cases. Since all memory transfer times for
the serial executions are equal to zero, this information is not included in the graphs.

The tables bellow the graphs contain the median speedups for each test case con-
sidering the descriptors displayed. The underlined kernels in these tables represent the
kernel or kernel combination for which the speedups are being analyzed.

5.3.1. Original Algorithm

By using the approach described in Section 4.2, we implemented a parallelized version of
the Dist and Sort steps of the original Contextual Spaces Re-Ranking algorithm.

0,9
0,8
0,7
0,6
0,5
0,4
0,3
0,2
0,1

0

Total Execution Time (s)

12

ey
(o) o

Total Execution Time (s)
o

Figure 3 shows the results for the Dist kernel. As expected, the best execution
times were obtained when the kernel is running on the GPU (orange bars with downward
- i.e. from top left to bottom right - diagonal pattern).

I Exec. d-Serial

N
X

My

s-CPU

s-CPU

s-GPU |

s-CPU

Test Case

d-CPU/s-CPU

d-GPU/s-CPU

d-CPU/s-GPU

d-GPU/s-GPU

Median Speedup

2.7 X

33x

25x%

29 x

Mem. Transf. d-GPU
Exec. d-GPU
Mem. Transf. d-CPU

Exec. d-CPU

Figure 3. Comparison of Dist kernel execution times for different descriptors.

Figure 4 displays the results for the Sort kernel. Their most noticeable character-
istic is that the s-GPU cases (dark orange bars with downward diagonal pattern) have very
high running times, performing considerably worse than the serial version.

N,

d-CPU [
d-GPU

d-CPU ¢
d-GPU

d-CPU |
d-GPU

W77 7777 7777 7777 77

BAS CFD
Test Case || d-CPU/s-CPU |d-GPU/s-CPU |d-CPU/s-GPU |d-GPU/s-GPU
Median Speedup 3.9 x 3.3 x 0.2 X 0.2 X

0.2%x-0.2X—

B Exec. s-Serial
Mem. Transf. s-GPU
Exec. s-GPU

Mem. Transf. s-CPU

W77z 7777 777 77777 77

Exec. s-CPU

d-GPU

Figure 4. Comparison of Sort kernel execution times for different descriptors.

Although exploring other sorting algorithms is beyond the scope of this paper, we

140

note that this is due to insertion sort not being a good sorting algorithm for GPUs, so
different approaches could significantly improve the results.

Nonetheless, the s-CPU cases (dark blue bars with upward - i.e. from bottom
left to top right - diagonal pattern) show that the chosen parallelization approach paid off
when it comes to the CPU.

Finally, we analyze the combined running time of both kernels, as shown in Fig-
ure 5. To make the graph simpler, we did not include s-GPU cases. We notice that the
Sort kernel has great impact on the total execution time, going from 50% (BAS d-CPU/s-
CPU) to as high as 76% (SS d-Serial/s-Serial). Therefore, optimizing this kernel is very
important for the algorithm’s overall performance.

This is specially highlighted by the tests with the SS descriptor. While the median
total speedup is 3.3 x for both d-CPU/s-CPU and d-GPU/s-CPU, SS presents speedups of
4.2 x for the same cases, since its Sort kernel takes longer than the others.

4

3,5
~ M Exec. s-Serial
&£ 3
g Mem. Transf. s-CPU
E 25 Exec. s-CPU
o
'% 2 Exec. d-Serial
§ [Mem. Transf. d-GPU
X 1,5
s N Exec. d-GPU
S 1 4.2x-4.2X

A Mem. Transf. d-CPU

0,5 Exec. d-CPU

ASC BAS CFD IDSC SS
Test Case| d-CPU/s-CPU |d-GPU/s-CPU
Median Speedup 33 x 3.3 %

Figure 5. Comparison of total kernel execution times for different descriptors.

5.3.2. Modified Algorithm

As it was argued in Section 5.3.1, optimizing the Sort kernel of the Contextual Spaces
Re-Ranking algorithm is important to improve its execution time. To illustrate this, Fig-
ure 6 has a comparison of the total execution times for the original and modified versions
of our implementation. Again, s-GPU cases were omitted to make the graph more com-
prehensible. For the same reason, the results for BAS and IDSC descriptors were also not
included, as they are similar to the ones observed for ASC.

In a few cases, the effect of the change on the speedup was either neutral (ASC
d-CPU/s-CPU) or somewhat positive (d-GPU/s-CPU cases for ASC and CFD). However,
we must keep in mind that, since the change reduced the number of operations of both
the parallel and serial versions of the algorithm, several speedups obtained with the new
implementation were reduced, the most drastic case being d-CPU/s-CPU for SS, which
went from 4.2x to 3.8%.

[Sort Mem. Transf.
Modified

Il Sort Exec.
Modified

_ M [Dist Mem. Transf.

Modified

4.2x 4.2x E Dist Exec.
Modified

[Sort Mem. Transf.
Original

[Sort Exec.

s Nt
N U w A

N

J—
wu

3.3x 3.5%

: 3.6x []

w
w
X

1 -33x 3
0,5 ’
0 H m

3x
=

Total Execution Time (s)
w
w
X
w
(o)}
X
w
)
X
N
N
X

Original

[Dist Mem. Transf.
Original

[] Dist Exec.

ASC CFD SS Original

d-cpuss-cpu [[H

d-CPU/s-CPU
d-CPU/s-CPU
d-CPU/s-CPU
d-CPU/s-CPU

d-CPU/s-CP
d-Gpu/s-cpU [

d-Gpu/s-cpU [

d-GPU/s-CPU
d-Serial/s-Serial
d-Serial/s-Serial
d-GPU/s-CPU
d-Serial/s-Serial
d-Serial/s-Serial
d-GPU/s-CPU
d-GPU/s-CPU
d-Serial/s-Serial
d-Serial/s-Serial

Test Case || d-CPU/s-CPU Original | d-CPU/s-CPU Modified | d-GPU/s-CPU Original | d-GPU/s-CPU Modified
Median Speedup 3.3 X 3.3 X% 3.5 % 3.6 X

Figure 6. Comparison of total kernel execution times for different descriptors
considering the original and modified algorithms.

Even so, we can look at the modifications in terms of total execution time. With
the new implementation, the algorithm became 1.6 x faster on average, reaching 1.7x for
the SS d-Serial/s-Serial case. The impact of the Sort kernel was also lessened; while it
used to be on average 62% of the total execution time, it is now only 36%. The biggest
decrease happened in the ASC d-GPU/s-CPU case, where the impact went from 60% to
28%. This way, we see that the modified version of the algorithm is clearly more efficient
than the previous one.

6. Conclusions

In this paper, we used OpenCL to accelerate a modified version of the Contextual Spaces
Re-Ranking algorithm on the GPU and multi-core CPU of an Accelerated Processing
Unit. We analyzed both the effectiveness and efficiency of the proposed approach.

In our efforts to parallelize the original version of the algorithm, we achieved
median speedups of up to 3.3x on the implementation of the Compute Distances step.
Also, although the sorting algorithm employed for the Re-sort Ranked Lists step was not
efficient on GPUs, we obtained median speedups of up to 3.9x when running on the CPU.

The total speedup of the implementation was lessened in many test cases after we
modified the algorithm, as the number of operations in both the serial and parallel versions
was decreased. Still, the change reduced the total execution time by 1.6 on average.

The modification also improved the effectiveness of the algorithm in most of our
test cases. Six out of eleven tests had an increase in the MAP score of at least 1.35% (up
to 5.33%). Two of the cases had a decrease in accuracy, but no greater than 0.26%.

Future work includes extending our implementation to run all steps on both the
CPU and GPU. Also, we can study the use of different sorting algorithms in order to ex-
ploit GPUs and the fact that now only one sort operation with more changes is performed.
Furthermore, using larger image collections will enable us to test the scalability of the
approach and other possible compromises between effectiveness and efficiency.

Acknowledgments

The authors thank AMD, FAPESP (grant 2013/08645-0), CAPES, and CNPq (grants
306580/2012-8, 484254/2012-0) for their financial support.

References

AMD, A. M. D. L. (2013). AMD Accelerated Parallel Processing OpenCL™ Program-
ming Guide. Accessed: July 22, 2015.

Bentley, J. (2000). Programming Pearls. ACM Press Series. Addison-Wesley.

Datta, R., Joshi, D., Li, J., and Wang, J. Z. (2008). Image retrieval: Ideas, influences, and
trends of the new age. ACM Comput. Surv., 40:5:1-5:60.

Ferreira, J. R., Oliveira, M. C., and Freitas, A. L. (2014). Performance Evaluation of
Medical Image Similarity Analysis in a Heterogeneous Architecture. In Proc. IEEE
CBMS, pages 159-164.

Latecki, L. J., Lakmper, R., and Eckhardt, U. (2000). Shape Descriptors for Non-rigid
Shapes with a Single Closed Contour. In Proc. CVPR, pages 424-429.

Pedronette, D. C. G. and da S. Torres, R. (2010). Shape Retrieval using Contour Features
and Distance Optmization. In Proc. VISAPP, pages 197-202.

Pedronette, D. C. G. and da S. Torres, R. (2011). Exploiting contextual spaces for image
re-ranking and rank aggregation. In Proc. ICMR, pages 13:1-13:8.

Pedronette, D. C. G., da S. Torres, R., Borin, E., and Breternitz, M. (2012). Efficient
Image Re-Ranking Computation on GPUs. In Proc. ISPA, pages 95-102.

Pedronette, D. C. G., da S. Torres, R., Borin, E., and Breternitz, M. (2013). Image re-
ranking acceleration on gpus. In Proc. SBAC-PAD, pages 176-183.

Sevilla, J., Bernabe, S., and Plaza, A. (2014). Unmixing-based content retrieval system
for remotely sensed hyperspectral imagery on GPUs. J. Supercomput., 70(2):588-599.

Steele, J. and Cochran, R. (2007). Introduction to GPGPU Programming. In Proc. ACM-
SE 45, pages 508-508.

Stone, J. E., Gohara, D., and Shi, G. (2010). OpenCL: A Parallel Programming Standard
for Heterogeneous Computing Systems. Comput. Sci. Eng., 12:66-73.

Teodoro, G., Valle, E., Mariano, N., Torres, R., Meira Jr, W., and Saltz, J. H. (2014). Ap-
proximate similarity search for online multimedia services on distributed CPU-GPU
platforms. VLDB J., 23(3):427-448.

Wang, J., Li, Y., Bai, X., Zhang, Y., Wang, C., and Tang, N. (2011). Learning context-
sensitive similarity by shortest path propagation. Pattern Recognit., 44(10-11):2367—
2374.

Yang, X., Bai, X., Latecki, L. J., and Tu, Z. (2008). Improving Shape Retrieval by Learn-
ing Graph Transduction. In Proc. ECCV, volume 4, pages 788—-801.

Yang, X. and Latecki, L. J. (2011). Affinity learning on a tensor product graph with
applications to shape and image retrieval. In Proc. CVPR, pages 2369-2376.

