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Abstract. The focus of this study is on the scheduling of moldable Bulk Syn-
chronous Parallel (BSP) tasks on cloud computing environments. “Moldable”
in this context is related to possibly reducing the number of required proces-
sors of a BSP task, recalculating the total execution time using a particular cost
model. From there, we analyze how a moldable BSP task is influenced by the
unreliable behavior of clouds, simulating the execution of several BSP tasks in
existing public cloud computing environment. The objective of this paper is to
analyze the difference between the completion time of the last task (makespan),
in both a simulated setting and in real clouds, analyzing the results and con-
cluding how much a theoretical model can be useful in such environments.

Resumo. O foco deste estudo é escalonamento de tarefas BSP moldáveis em
ambientes de computação em nuvem. “Moldável” neste contexto está rela-
cionado em possivelmente reduzir o número de processadores requisitados por
uma tarefa BSP, recalculando seu custo de execução total a partir de um modelo
de custo. A partir daı́, analisamos como uma tarefa BSP moldável é influenciada
pelo comportamento imprevisı́vel das nuvens, simulando a execução de diver-
sas tarefas BSP em nuvens computacionais públicas. O objetivo desse artigo
é analisar a diferença entre o tempo de término da última tarefa (makespan),
tanto em simulação quanto em nuvens reais, analisando os resultados e con-
cluindo o quanto um modelo teórico é próximo a realidade.

1. Introduction

With the advent of cloud computing, it is not necessary anymore to invest large amounts
of money on computing resources. Instead, it is possible to obtain processing or storing
resources, and even complete systems, on demand, using one of the several available
services from cloud providers like Amazon EC2, Microsoft Azure and Google Compute
Engine.

Therefore, both the IT and academic community started to see the benefits that
cloud computing brings, like resources flexibility, live migrations and reduced costs
both on hardware setup and on the maintenance of the system [Armbrust et al. 2010,
Mell and Grance 2011]. However, problems like low networking performance, per-
formance variation during rush hours and additional computing overhead are the
new challenges that cloud computing brings to High Performance Computing
(HPC) applications [Wei and Blake 2010, Yuvaraj and Palanivel , Chandio et al. 2014,
Nuaimi et al. 2012].

Efficient parallel algorithms in HPC, based on Coarse Grained Multicomputer
(CGM) model, seek to evenly distribute the workload between the available resources
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and to minimize the number of communication rounds [Dehne et al. 1999]. These kind
of algorithms can be implemented directly on the Bulk Synchronous Parallel (BSP)
model [Valiant 1990]. So, these algorithms can both manage resources better and reduce
the total computing time [Calinescu 1997].

In this context, the objective of this work is to study the scheduling of BSP tasks in
cloud computing environments. We simulate tasks coming from real HPC traces, sched-
ule them using different algorithms presented in the literature and analyze the impact of
public clouds in these tasks, simulating the execution in both Microsoft Azure and Google
Compute Engine.

The remainder of this paper is structured as follows: In Section 2, we review the
literature about the area. In Section 3, we introduce the BSP model, and describe the idea
of moldable BSP tasks. In Section 4, we describe the scheduling algorithms presented
in the literature implemented in this work. In Section 5, we describe our experiments
and methodology. In Section 6, we present the results from the experiments. Finally, in
Section 7, we present the conclusion of this work and future work.

2. Related Work

In [Dutot et al. 2005] the authors analyze the problem of scheduling moldable BSP tasks
in computational grids, demonstrating that the scheduling of BSP tasks is a NP-hard prob-
lem. Afterwards, they propose four different algorithms to schedule BSP tasks in poly-
nomial time. However, in this paper all experiments are done in a computational grid
simulator, where the results are deterministic by nature. In our work we benchmark the
algorithms described in this paper in real public clouds, where the performance is not
deterministic.

In [Hunold 2015] the author developed a new algorithm to schedule moldable
tasks with precedence constraints, and for arbitrary speedup functions. It shows the im-
portance of new studies with moldable tasks for HPC applications, and while they do all
experiments in a simulation, they comment the importance of real world testing.

In [Huang et al. 2013, Huang et al. 2014], the authors proposes an algorithm to
schedule moldable tasks using a similar concept to SaaS (Software as a Service). They
call this approach HPCaaS (HPC as a Service). In this paper, they show the importance of
moldable tasks in modern HPC computing, thanks to the popularity of Message Passing
Interface (MPI) and clouds in HPC applications.

In [Gonçalves et al. 2015] the authors developed a strategy to predict performance
of applications running on clouds based on the observed performance for certain resources
configurations. In this paper the authors had problems with their accuracy in some tests
thanks to the fluctuations on cloud performance, showing how unreliable cloud computing
performance is sometimes.

Our work serves as a bridge between the literature and real world, by testing
scheduling algorithms presented in the literature in existing public clouds and compar-
ing the makespan between real clouds and simulation environments.
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3. The BSP model

Parallel computing models, like PRAM, LogP and others, have been an active
research topic since the development of modern computers [Gibbons et al. 1998,
Juurlink and Wijshoff 1998, Skillicorn and Talia 1998]. Their main goal is to provide a
standard way of describing and evaluating the performance of parallel applications. For
the success of a parallel computing model, it is paramount to also consider the character-
istics of the underlying architecture of the hardware being used.

One of the most well-established models for parallel computing is the Bulk Syn-
chronous Parallel (BSP), first introduced by Valiant in 1990 [Valiant 1990]. Its main goal
was to provide a bridging model that can represent different architectures sufficiently
well, without considering all the hardware details. The BSP model bridges the essential
characteristics of different kinds of machines as a combination of three attributes:

• a set of virtual processors, each associated to a local memory;
• a router, that delivers the messages in a point-to-point manner;
• a synchronization mechanism for all or for a subset of processors.

The computation is organized in a sequence of supersteps, each one divided into
three successive—logically disjointed—phases. On the first phase, all processors use their
local data to perform local sequential computations in parallel (i.e., there is no commu-
nication among the processors.) The second phase is a communication phase, where all
nodes exchange data performing personalized all-to-all communication. The last phase
consists of a global synchronization barrier, that guarantees that all messages were deliv-
ered and all processors are ready to start the next superstep. Figure 1 depicts the phases
of a BSP application. On the BSP model, there is no restriction on when to send the mes-
sages, but all of them should be received by the synchronization barrier. According to the
execution model, the first and second phase may occur simultaneously.

The BSP model has been widely used on different applications contexts. HPC
practitioners have been using the BSP model to design algorithms and software that can
run on any standard architecture with guaranteed performance [Kirtzic 2012]. Modelling
a task using the BSP model is useful to preview the performance of algorithms, and facil-
itates its implementation.

Consider a BSP program that runs on S supersteps using p processors simultane-
ously with clock rate (speed) R. Let g (the gap) be the bandwidth of the network and
L the latency—i.e., the minimum duration of a superstep—which reflects not only the
latency of the network, but also the overhead of the synchronization step.

The cost to execute the i-th superstep is then given by:

wi + ghi + L (1)

where wi is the maximum amount of local computations executed, and hi is the largest
number of packets sent or received by any processor during the superstep. If W =PS

i=1 wi is the sum of the maximum work executed on all supersteps and H =
PS

i=1 hi

the sum of the maximum number of messages exchanged in each superstep, then the total
execution time of the application is given by:

T = W + gH + LS (2)
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It is common to present the parameters of the BSP model as a tuple (w, g, h, L).
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Figure 1. Superstep in a Bulk Synchronous Parallel Model.

There are other parametrized parallel models [Juurlink and Wijshoff 1998,
Skillicorn and Talia 1998], almost all of them using or extending the core of the BSP
model. In [Dehne et al. 1993], the author has studied the problem of designing scalable
parallel geometric algorithms, and he has introduced the Coarse Grained Multicomputer
model (CGM). In this model a set of p processors each with an O(N/p) local memory,
where N is the input size of the problem. There are plenty of algorithms developed for
CGM, and these algorithms can easily be ported to BSP [Cáceres et al. 1997].

3.1. Moldability of BSP tasks

The idea of a moldable BSP task is to possibly reduce the number of processors from a
task, allowing it to run with less resources than originally planned. Of course, this would
impact the total run time of the task, but thanks to the BSP model we can preview its new
run time.

We will model the time of a new task using the following fact. Assuming each task
uses the same time, and a task needs n processors. If we have n � 1 processors instead,
we will need to allocate one of the tasks in another processor. If a processor receives two
processing tasks instead of one, it’s easy to realize that the task as a whole needs twice as
much time to be concluded.

This occurs because even if the remaining processors already concluded their pro-
cessing task, they need to wait for the processor with the additional tasks to conclude its
work to proceed to the next superstep [Cordeiro et al. 2013]. Therefore in the BSP model
the execution time for n � 1 or n

2 is approximately the same, about twice as much than
the time to execute the task with n processors [Dutot et al. 2005].

Generalizing the idea, if we have less than the number of requested processors by
the task, we may redistribute the tasks evenly between the number of available processors.
Assuming each task have the same run time, we conclude that the new task run time is:

t0 = td n
n0 e (3)
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Figure 2. Microsoft Azure
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Figure 3. Google Compute Engine

Where t is the original task run time and t0 is the new task run time.

To test this in cloud environments, we did an experiment using 32 moldable tasks
(1024x1024 matrix multiplication), running different number of VMs with one proces-
sor, in both Google Compute Engine (using n1-standard-1 instance) and Microsoft
Azure (using Standard A1 instance), distributing the 32 moldable tasks evenly be-
tween the available VMs. Each test configuration was repeated 10 times.

Figure 2 shows a plot of the data for Microsoft Azure, while Figure 3 is the same
for Google Compute Engine. Expected is the time run time calculated from 32 VMs using
Formula 3, while Measured is the measured time after 10 experiments.

This experiment shows that even if not perfect, calculating the new execution time
by the formula described above is a pretty accurate way to preview the new execution
time of a moldable task. So, in this paper we will assume that the processing time of each
BSP task will be td nn0 e, as explained above.

4. Scheduling BSP tasks in cloud

If scheduling of BSP tasks was an easy problem, this work wouldn’t be interesting. How-
ever, in [Dutot et al. 2005], they demonstrate that the problem of scheduling moldable
BSP tasks is a polynomial time reduction from the multi-processor scheduling problem,
proving that our problem is NP-hard. So instead of trying to solve the problem in an op-
timal way, we will use scheduling algorithms based on heuristics found in the literature.

Because of limitations in cloud computing environments, we need to schedule the
tasks in two stages: we first schedule the tasks considering only one computer, after that
we distribute the tasks between the available VMs. This second stage is necessary because
in clouds you can have different combinations of virtual machines (VM) that may result
in the same number of resources. For example, if you need 32 CPUs you can deploy 1
VM with 32 CPUs or 2 VMs with 16 CPUs each.

4.1. Scheduling BSP tasks

We implemented three different algorithms to schedule a set of BSP tasks. However,
before scheduling BSP tasks, we need to pre-process tasks that uses more CPUs than
available in each VM, reshaping then to use the number of available CPUs. This is done
using Algorithm 1 from [Dutot et al. 2005]. From there, we schedule the tasks using one
of the following algorithms.
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Algorithm 1 Pseudo-code to reshape each task before scheduling
1: procedure RESHAPE TASK(task)
2: if task.number of cpus > cpus per vms then

3: ratio d task.number of cpus
cpus per vms e

4: task.run time ratio ⇤ task.run time
5: task.number of cpus = cpus per vms
6: end if

7: end procedure

The first algorithm is a simple First In First Out (FIFO) algorithm, allocating the
tasks in order of arrival. While this algorithm is not really interesting as such, it serves as
a base to analyze the algorithms in Section 4.2.

The second algorithm is the well-known Largest Task First (LTF), where largest
refers to the task workload (number of processors X task run time), or, using a graphical
representation, this would be the area of each task. In LTF we run Algorithm 1 from 1 up
to the number of CPUs per VM to find the lowest generated makespan in each case, and
select the lowest calculated makespan.

The third algorithm is called Reduce Idle Time (RIT), and its described in
[Dutot et al. 2005]. This algorithm is composed of two steps:

1. Look for the best task such that, when schedule, the idle time is reduced or re-
mains the same. Best means the smallest amount of idle time. We may apply the
Algorithm 1 in each task before scheduling it.

2. If Step 1 fails, schedule the largest task not scheduled yet.

4.2. Distributing groups of tasks in each VM

Distributing groups of tasks in each VM only makes sense when there is more than one
VM available to schedule these tasks. When there is only one VM, we use the scheduling
resulting from the algorithms from Session 4.1 without any additional processing, and all
algorithms listed in this session results in the same scheduling. However, if there are more
than one VM, we need to distribute these tasks, preferably evenly between the different
VMs. In this Section, we will present two algorithms to do this work.

The first algorithm is a simple Round Robin (RR) schedule, that takes the first task
and schedule in the first VM, the second task and schedule in the second VM, and so on
until there is no more VMs, when it starts from the first VM again, and continues until all
tasks are allocated to one VM.

The second algorithm is named Minimal Current Makespan (MCM), a greedy
algorithm that allocates the task in the VM that currently has the lowest makespan. The
algorithm pseudo-code can be seen in Algorithm 2.

The algorithm tries to find the lowest increase of makespan by calculating how
much the new makespan would be if the task was allocated in each existing VM. For this,
in Line 6 we have a function that calculates what the makespan would be if the task was
allocated in the current VM.
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Algorithm 2 The minimal current makespan algorithm
1: procedure MINIMAL CURRENT MAKESPAN(tasks, vms)
2: for all task in tasks do

3: minimal makespan 1
4: best vm ;
5: for all vm in vms do

6: aux calculate new makespan(task, vm)
7: if aux < minimal makespan then

8: best vm vm
9: end if

10: end for

11: allocate task(task, best vm)
12: end for

13: end procedure

Figure 4. Histogram of tasks per total run time

5. Methodology

To simulate real workloads, we use the traces coming from [Feitelson 2015]. They are in
a format that is easy to parse, as described in [Feitelson et al. 2014].

We selected the traces coming from The University of Luxemburg Gaia Cluster log
from 20141. This cluster is mainly used by biologists working with large data problems
and engineering people working with physical simulations, typical tasks that would fit
the BSP model. After parsing the tasks, we removed tasks with run time superior than 5
minutes (300 seconds), and selected the first 250 tasks since the number of tasks in trace
is huge (composed of more than 50000 tasks). In Figure 4 is shown the number of times
(Frequency) a task with total run time (or workload) appears in the filtered trace.

1http://www.cs.huji.ac.il/labs/parallel/workload/l_unilu_gaia/index.
html
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After that, we schedule the tasks using each possible combination of the developed
algorithm schedulers described in Section 4 and calculated the expected makespan by
running the resulting schedule in a simulator.

Before simulating these tasks in the cloud, we executed a program that mea-
sured how many loop cycles (x) are necessary to spend 1 second of CPU time inside
the cloud. We simulate the execution of tasks by multiplying the resulting task run time
after scheduling by x and running this tasks in multiple threads, equals to the number of
processors used by the task.

So, if the task originally used 100 seconds in 4 CPUs, we are simulating these
100 seconds of CPU time by running 100 seconds of work inside the VM, in 4 differ-
ent threads. Except that, thanks to different external factors, this value may decrease or
increase during the experiment.

We executed these experiments in both Microsoft Azure and Google Compute
Engine clouds. For these tests, we used VMs optimized for computing (Microsoft Azure
Standard G{2-5} instances, Google’s Compute Engine n1-highcpu-{4-32} in-
stances). Each experiment was repeated 10 times, and the calculated standard deviation
for population from each experiment was less than ±1%.

The code used in these experiments is available in GitHub2, under MIT License.

6. Results

In Figures 5, 7 and 9, we have a comparison between the measured makespan after run-
ning the tasks on Microsoft Azure (Measured) and the expected makespan from simu-
lation (Expected), while in Figures 6, 8 and 10 we have the same for Google Compute
Engine.

Just an observation about the graphics, when we use a VM with 32 CPUs, we
only have one VM in these cases. So both Minimal Current Makespan and Round Robin
algorithms returns the same scheduling, and the results are the same, as explained in the
beginning of Section 4.2. But the results were plotted anyway to avoid confusion.

Starting with Microsoft Azure, the expected run time and the measured run time
were closer than the result obtained in Google Compute Engine. Sometimes, the measured
run time was faster than the expected run time. This can probably be explained because
when there are idle CPUs, a task can run faster than expected. This should explain why
only FIFO and RIT algorithms had this behavior, while in MCM, an algorithm that has
better CPU utilization, did not have the same behavior.

In Google Compute Engine the measured run time is always slower than the ex-
pected run time, sometimes by a fair amount. This may be explained by Google’s using
more aggressive power consumption modes, or maybe Google is giving us logical threads
(as in Intel Hyper-Threading technology) instead of physical cores. This may explain why
we had worse performance when using a VM with more CPUs.

Comparing the task algorithm schedulers performance, LTF was the algorithm
with the lowest run time, followed by RIT and FIFO, as expected by our simulations.
When comparing the performance of algorithms to distribute the tasks between VMs,

2https://github.com/m45t3r/cloudsched
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however, the run time MCM was not significantly lower than RR, even getting a higher
run time sometimes (combined with FIFO in Figure 7, for example). It is interesting
to note that, sometimes, the expected run time of MCM is significantly lower than RR
(compare RIT-MCM and RIT-RR in Figure 6, for example), but the measured run time
is not. It may be thanks to the fact that MCM distribute the tasks more evenly between
VMs, resulting in higher CPU utilization and, consequently, lower performance per task.

The overall standard deviation was very small (less than ±1%). The tests were
run over the course of a weekend, in different times, however even then we did not get
too much variation in performance. This may be explained because of the use of VMs
optimized for computation instead of standard VMs, or during our tests the utilization of
other VMs in the cloud was low.

7. Conclusions and Future Work

Measuring performance in clouds is hard. Even when we did not have much performance
variation between tests (we expected much higher standard deviations from our measure-
ments), we still had distinct behaviors running the same tests in different cloud providers.
Using VMs optimized for different use cases (general purpose, high CPU usage, etc.)
seems to mean different things between public cloud providers, and even if we use a
similar type of VMs between our tests, the results were still very different.

However, even when the expected run time is very different from the measured
one, the performance was consistent. When the expected makespan for one scheduling is
lower than another, the measured makespan is generally lower too. Our work shows that
it is possible to study task scheduling algorithms in clouds, however it is necessary more
tests and better heuristics to improve the accuracy of our scheduler, making the real run
time match the expected run time more closely. This will be done in a future work.

Another future work, we will implement a backfilling strategy in both FIFO and
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LTF algorithms [Mu’alem and Feitelson 2001]. Backfilling allows small tasks to fill gaps
during the execution of tasks. This strategy helps to reduce the processor idle time and
total makespan.

In addition, we will study how reshaping a BSP task might affect its performance.
In this paper we used a linear model (reducing the number of processors increase the task
run time linearly), but this is not necessary true for real parallel tasks, since in real parallel
tasks have sequential parts and communication between processors.

Finally, we will expand this work to malleable BSP tasks. Since each BSP task
has a defined state between each superstep, it is possible to stop execution of a task when
it reach a superstep, checkpoint its state, and continue the execution using another set of
resources.
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