
A Framework for Executing Protein Sequence Alignment in
Cloud Computing Services

Leonardo Reboucas de Carvalho1, Alba Cristina Alves Melo1, Aleteia Araujo1

1Campus Darcy Ribeiro, Department of Computer Science – University of Brası́lia
Brası́lia, Brazil.

leouesb@gmail.com, {alves,aleteia}@unb.br

Abstract. Protein sequence alignment is a task of great relevance in Bioinfor-
matics and the Hirschberg algorithm is widely used for this task. This work
proposes a framework for executing sequence alignment with the Hirschberg al-
gorithm in different cloud computing services. In experiments, our framework
was used to align HIV-1 protease sequences using different instances of AWS
EC2 and different configurations of AWS Lambda functions.The results show
that, for this application, there is a tradeoff between the expected execution time
and the cost, e.g., in most cases AWS Lambda provides the best runtime, how-
ever at a higher USD cost. In this context, it is important to have a framework
that helps in deciding which approach is most appropriate.

1. Introduction
Studies in Bioinformatics generally produce computational challenges that require large
volumes of computing resources. An example of this type of challenge is protein align-
ment. In this task, two strings will be compared with the purpose of identifying their
similarities and differences. With a focus on differences, researchers can make great dis-
coveries about the protein in question. In this context cloud computing can collaborate
with Bioinformatics.

The potential requirement for large volumes of computational resources that a
sequence alignment application has signals that its processing is suitable to be sent to
a cloud computing environment, since this type of environment offers the possibility of
fast and dynamic allocation of resources [MELL and Grance 2011]. Cloud computing
currently offers several service models and each feature of these models can result in
benefits or losses, whether in runtime, cost or other aspects. It is therefore important to
choose the type of cloud service best suited to the challenge to be faced.

In this paper, we propose a framework for the provision and execution of a se-
quence alignment application composed of multiple tasks in different service models. In
the provision phase, our framework decides which model (AWS EC2 on demand or AWS
Lambda) is more appropriate for a particular sequence alignment application, considering
two goals (cost and execution time). The alignments are then executed concurrently in the
chosen cloud model and, at the end of the execution, the results are returned to the user.
Finally, the unprovision phase terminates the cloud environment.

The remainder of this paper is organized as follows. Section 2 presents the back-
ground of this work, including the fundamentals of sequence alignment and cloud com-
puting. Section 3 describes the proposal of this work, while Section 4 discusses related



works. In Section 5 the methodology used in the experiment is explained, and in Section
6 the results obtained are detailed. Finally, in Section 7, conclusions are presented.

2. Background
The algorithms based on Needleman and Wunsch [Needleman and Wunsch 1970] and
Smith and Waterman [Smith et al. 1981] seek to solve the alignment of two sequences by
finding the maximum cost of transforming one sequence into the other. These algorithms
compute a dynamic programming (DP) matrix of size m x n, where m and n are the
respective widths of the sequences. Data dependencies must be respected, in such a way
that position (i, j) depends on (i−1, j), (i, j−1) and (i−1, j−1). Both algorithms have
quadratic memory and time complexities O(mn). As the size of the sequences involved in
the alignment grows, so does the space required for processing the alignment, and this can
potentially become a resource scarcity problem. For this reason, the use of an alignment
execution approach oriented to cloud computing is adequate, since the continuous and
dynamic resource allocation capability is able to overcome potential scarcity problems.

2.1. The Hirschberg Algorithm

The Hirschberg algorithm [Hirschberg 1975] consists of a strategy to calculate the simi-
larity between two sequences using the concept of longest common subsequence (LCS). It
uses a divide-and-conquer iterative approach that obtains the alignment recursively, with
linear memory complexity O(m) and quadratic time complexity O(mn). As a result,
the entire matrix is not stored, but only a few rows of it, and the algorithm recalculates
portions of the matrix in each iteration.

Figure 1. Hirschberg’s space-saving scheme [Sarje and Aluru 2009].

Fig. 1 shows some iterations of Hirshberg’s algorithm. First, the matrix is pro-
cessed from the beginning to the middle, row by row, storing only two rows: the one that
is being calculated and the previous one. The middle row (middleorig) is saved. Then,
the matrix is processed from the end to the middle, over the reverses of the sequences, up
to the middle row calculation (middlerev). At this point, there are two middle rows, com-
puted differently. Hirschberg proved that the point i, where the addition of middleorig(i)
and middlerev(i) is maximal, belongs to the optimal alignment. This point is used to split
the matrix in four parts and the same approach is applied to the upper left and bottom
right parts (light gray) in the second iteration. In the figure, we can see the third (gray)



and forth (dark gray) iterations of the algorithm. The execution finishes when all the
points that belong to the optimal aligment are retrieved.

2.2. Cloud Computing Service Models
Among the various models of cloud services available on the market today, Function-as-a-
Service [Lynn et al. 2017] stands out, a service model in which the client sends the source
code that he/she wants to be processed and the provider will be carry out the processing,
triggered from its own platform, or through a call to an API. In addition, the provider
takes care of the automatic elasticity of the infrastructure.

Fig. 2 was designed for this paper and shows the cloud user duties on IaaS and
FaaS cloud services. As can be seen, in IaaS the customer has a greater responsibility in
managing the service, especially if there is a need for elastic performance. On the other
hand, in FaaS, the user is relieved of the tasks of configuring the environment, including
aspects of elasticity. Furthermore, in FaaS, the deployment process is replaced by the
publication of the function’s source code on the provider, that will then be responsible for
carrying out the deployment when necessary, in a transparent way to the user.

Figure 2. IaaS x FaaS cloud user duties.

Another important difference between IaaS and FaaS is the suppression of the
need to unprovision the environment in FaaS when the environment is not being used,
since unlike IaaS, in FaaS the charge occurs only when the execution of the function is
required, while in IaaS the charging occurs until the instance is terminated.

The charge on FaaS model is based on the requests made and the runtime that
each request takes. Thus, the provider charges the customer only for the effective runtime,
different from the IaaS model, in which the provider generally charges for the time the
machine is in operation, regardless of its actual use in the customer’s business process.

The current leaders in the cloud market are Amazon Web Services (AWS), Mi-
crosoft Azure and Google Cloud Platform (GCP) [GARTNER 2021]. Founded in 2006,
AWS tops this list and since the beginning of its operations the provider has been driving
the cloud market. AWS offers over 200 cloud services, among them EC2 and Lambda.

AWS EC2 “is a web service that provides secure, resizable compute capacity
in the cloud. It is designed to make web-scale cloud computing easier for developers”
[Amazon 2021]. EC2 allows to provision around 400 types of cloud virtual machine
instances spread over 77 availability zones in 24 different regions of the planet. AWS
charges per hour of use or per second for instances running a Linux Operating System.



AWS Lambda “is a serverless compute service that lets you run code without
provisioning or managing servers, creating workload-aware cluster scaling logic, main-
taining event integrations, or managing runtimes” [Amazon 2021]. Lambda functions can
be written in many programming languages. It is possible to set up to automatically trig-
ger it from 140 AWS services or call it directly from web applications. AWS allows the
creation of Lambda functions with up to 10 GB of memory. Lambda allocates CPU and
other resources linearly in proportion to the amount of memory configured [Poccia 2020],
i. e., AWS grants access to up to 6 vCPUs in each execution environment of Lambda.
AWS charges a fixed amount for each request made to a Lambda function. In addition, it
also charges a value related to the function’s execution time multiplied by the amount of
allocated memory [Amazon 2021].

3. Framework Proposal

Considering the differences in characteristics, purposes and degrees of complexity of use
that can be found between the various models of cloud computing, in particular the IaaS
and FaaS services models, such as AWS EC2 and AWS Lambda, this paper proposes a tool
to make the decision-making process on the adoption of one of these models pragmatic,
simplified and automated for the execution of genetic protein sequence alignments. In
this sense, the proposed flow shown in Fig. 3 is divided into 5 phases:

• Input: to initialize the flow of the framework, it is necessary to provide some
inputs, such as the provider’s credentials in order to obtain access to the cloud
account, as well as a file in FASTA format containing the strings that must pairwise
aligned, and a reference parameter to guide the decision flow in relation to the
expected objective, that is, cost reduction or reduction of the execution time;

• Provision: the framework has a decision-making process that will analyze the
information obtained in the previous phase and decide which type of service is
most suitable for the informed workload. In this initial version EC2 and Lambda
are considered and the size of the sequences must be up to 10k. Once the type
of cloud service is defined, then the environment will be properly provisioned
using an architectural definition component of the orchestrator and Terraform
[HashiCorp 2021], acting as a cloud orchestrator, after provisioning the applica-

Figure 3. Cloud model agnostic genetic sequence aligner framework workflow.



tion will be deployed, in the case of EC2 or function, in the case of Lambda, which
will perform the alignment of the sequences;

• Alignment: once the environment is provisioned, then there will be a URL wait-
ing to be triggered to receive strings to be aligned. Thus, the framework will
command parallel alignments according to the parameters defined by the decision
process in order to meet the objective defined in the input phase;

• Output: the output of the alignments are not stored within the provisioned envi-
ronments, because in the case of FaaS this environment is not permanent, that is,
the provisioning process only defines the function that the provider will effectively
provision only at the time of the request. Therefore, considering the characteristic
of being ephemeral of FaaS, the framework stores the result of alignments in S3,
which is an AWS object storage service. Thus, the framework will be monitoring
S3 until all the alignments are finished, to then load them and deliver them to the
client;

• Unprovision: the last phase of the framework consists of unprovisioning the
environment using the reverse process defined in the architectural artifact for each
environment. Terraform is also used for this process, this time using its “destroy”
process. Finally, the S3 bucket that then received the results of the alignments is
removed. This process prevents unnecessary charges from being applied to the
user’s bill, rationalizing the application of financial resources.

The five phases that make up this proposal allow users to perform genetic sequence
alignments using the Hirschberg algorithm in the cloud service models that best suit their
workload between EC2 and Lambda and meet the given objective (less financial cost or
less time). All of this is done in a transparent, automatic and simplified way. For this, the
user provides only the minimum information for the execution, eliminating the need to
configure and manage the infrastructure.

4. Related Works
A proof-of-concept case study in which 20,000 protein sequences were aligned using the
Smith Waterman algorithm in the AWS Lambda and Google Cloud Platform providers
proposed in [Niu et al. 2019]. This case study shows the potential for leveraging server-
less computing resources for biomedical research in terms of ease of use, instant scalabil-
ity and cost effectiveness. However, it does not explore competitive situations and does
not consider service models besides FaaS, such as IaaS.

In [Crespo-Cepeda et al. 2019] the authors performed the execution of Cloud-
DmetMiner, a Bioinformatics application created as a cloud version of the DMET-Miner
algorithm. The use of the serverless cloud computing model in AWS Lambda has helped
them to ease the execution of code without having to plan resource provisioning and man-
agement. However, they only analyzed input parameters and execution time. They did
not analyzed costs and also did not perform tests using service models other than FaaS.

The paper [Hung et al. 2020] describes a RNA-seq workflow using Unique
Molecular Identifiers (UMI) to obtain deduplicated transcription counts that are then pro-
cessed to obtain a list of genes that have been differentially expressed after treatment with
different combinations of drugs. These readings are then aligned to the human transcrip-
tome using the Burrows-Wheeler Aligner (BWA). The resulting alignments are merged



and deduplicated to calculate the counts for each transcript. The authors processed this
workload in an AWS EC2 instance, Lambda Functions and Google Cloud Functions and
they observed a great reduction in the execution time in FaaS services. However, they did
not present cost analysis for the tests performed.

The study [Malla and Christensen 2020] performed an evaluation of a workload
with an all-against-all pairwise comparison of human proteins using a dynamic program-
ming algorithm. The dataset consists of 20336 human protein sequences split into 41
files (each with about 500 proteins). Pairwise comparison of these 41 files, resulted in
861 tasks in total. They compared the workload execution time on Google Compute En-
gine (IaaS) and Google Cloud Functions (FaaS), both storing the results on Google Cloud
Storage. However, they did not present cost analysis for the tests performed.

None of the described articles proposes a framework for performing sequence
alignments in various cloud service models, as proposed in this work. Nor do they present
performance studies involving FaaS and IaaS services that also analyze costs as in this
study, although this analysis is essential to establish a cost-benefit relationship between
these service models.

5. Methodology

Considering the differences between the IaaS and FaaS models in relation to the way of
delivering computational processing and that each format submits the protein sequence
alignment algorithms to different computability conditions, in this work an experiment
was carried out to evaluate the behavior of the Hirschberg algorithm on different compet-
itive situations in two AWS services: EC2 (IaaS) and Lambda (FaaS).

5.1. Experiment Architecture

Fig. 4 shows the architecture used in the experiment. It is possible to observe that the
experiment was orchestrated from a local environment using a shell script. This script
iteratively triggered the Lambda instances, or functions, involved in the experiment, each
submitting the respective loads of bids according to the test case.

Figure 4. Experiment Architecture.

Each Lambda function had a different configuration for RAM, but it ran the same
source code with the respective Hirshberg alignment algorithm1. As in AWS Lambda the

1The implementation used the algorithm developed by Gang Li at https://github.com/leebird/alignment

https://github.com/leebird/alignment


amount of RAM memory defines the number of vCPUs allocated in each execution of the
function, so the values of vCPU are linearly linked to the value defined for RAM. The
Lambda functions involved in the experiments are listed in Table 1, as well as the amount
charged for an eventual execution of this function for a period of one hour in the US East
(N. Virginia) region.

Table 1. Services involved in the test and their prices recorded on April 5, 2021.
Service Name Memory vCPU Price / h ($)

Lambda Configuration A 1 0.6 0.06072032

Lambda Configuration B 1.5 0.9 0.09072038

Lambda Configuration C 2 1.2 0.12072044

Lambda Configuration D 2.5 1.5 0.15072050

Lambda Configuration E 3 1.8 0.18072056

EC2 c5a.2xlarge 16 8 0.38000000

EC2 c5a.4xlarge 32 16 0.76000000

EC2 c5a.8xlarge 64 32 1.52000000

EC2 t3a.xlarge 16 4 0.17860000

The EC2 instances involved in the experiment were selected using the AWS
provider instance search tool on their console. The following parameters were used as
selection criteria: x86 64 architecture; minimum 4 vCPUs and maximum 32 vCPUs.
Next, those that offered the lowest on-demand prices for the Linux per hour and had 4,
8, 16 and 32 vCPUs were selected. Thus, the instances selected for the experiments are
listed in Table 1, as well as their respective prices announced by the provider for an hour
of execution in the US East (N. Virginia) region.

In order to be triggered, the Lambda functions were configured to interact with the
AWS API Gateway service that exposes a REST API and delivers a URL address through
which it is possible to forward POST requests to a Lambda function. To act in a similar
way with the AWS API Gateway, in each instance a layer of REST API was configured to
receive the requests and forward them to the Hirshberg alignment algorithm. This layer
was created using the FastAPI library in Python, which is the same language used in the
Lambda’s sequence alignment algorithm and in the instances application.

5.2. Experiment Workflow

Test cases were generated from the sequences selected for the experiment. These cases
were assembled by joining two sequences drawn at random within the group of sequences.
Lots of test cases were then generated with quantities related to the competition that the
test intended to submit in the environments, that is, for a competition test of 20 simulta-
neous alignment requests, 20 test cases were generated and these same cases were used
in all environments in order to guarantee a level playing field during the experiment. For
this experiment, lots were generated that allowed the execution of competition tests with
1, 20, 40, 60, 80 and 100 simultaneous alignments.

Once the batches of test cases were generated, as can be seen in Fig. 5 which
shows the workflow of the experiment execution, for each type of environment (FaaS and
EC2) there was a different flow.



Figure 5. Experiment Workflow.

For FaaS, the alignment occurred directly from a POST request to the REST API
created for the Lambda function. At the end of the alignment execution, the function
itself saved the result in the AWS S3 storage service. For EC2, there was a step before
the request for alignment, which was the provisioning of the environment. This step was
also automated during the tests using Terraform, as well as the step after the alignment,
which is the unprovisioning of the environment. With each test run, the environment
was unprovisioned, even if the tests were to take place on an instance of the same type.
This ensures that the instances would not eventually be accumulating remnants from the
previous tests that could interfere with the results of the subsequent tests. Both process
saved the results in the AWS S3 for later collection and analysis.

5.3. Experiment Dataset

To exercise the workloads of the experiment, sequences of random strings with a width
of around 10,000 characters would suffice. This limit was obtained from tests performed
with the Hirshberg Aligner running in the best Lambda configuration under the constraints
of runtime and number of allocable resources imposed by the provider. However, for this
study, it was adopted a real dataset. From a search in the Stanford University’s database
of HIV-resistance drugs, 112 complete sequences were found, with a length of around
10,000 characters.

The source code of the Lambda function that was used in this experiment, as well
as the source code of the application that was configured for the EC2 instances that took
part in this experiment were published on GitHub2. In a separate project, the description
of the sequences used in the experiment and scripts for orchestrating the experiment were
also published on GitHub3, as well as their secondary tools responsible for generating the
test batches and the results obtained in the execution of the test cases.

6. Results

After the tests were performed, which took place between April 4th and 6th, 2021, the
results generated in the AWS S3 service were collected. Considering the start of the first
alignment and the end of the last alignment of each test case, it was possible to calculate

2https://github.com/unb-faas/sequence comparison app
3https://github.com/unb-faas/sequence comparison

https://github.com/unb-faas/sequence_comparison_app
https://github.com/unb-faas/sequence_comparison


Table 2. Average duration results.

Service
Concurrence (simultaneous alignments)

1 20 40 60 80 100

Lambda (1.0GB / 0.6vCPU per request) 00:08:31 00:09:31 00:14:46 00:09:15 00:09:24 00:09:29

Lambda (1.5GB / 0.9vCPU per request) 00:05:53 00:06:09 00:06:23 00:07:04 00:06:26 00:06:32

Lambda (2.0GB / 1.2vCPU per request) 00:05:03 00:05:19 00:05:37 00:05:27 00:05:19 00:05:26

Lambda (2.5GB / 1.5vCPU per request) 00:05:02 00:05:34 00:05:21 00:05:12 00:05:23 00:05:42

Lambda (3.0GB / 1.8vCPU per request) 00:04:55 00:05:16 00:05:13 00:05:15 00:05:33 00:05:21

T3a.xlarge (16GB / 4vCPU) 00:05:52 00:46:30 01:29:32 02:15:27 03:20:19 03:50:57

C5a.2xlarge (16GB / 8vCPU) 00:03:49 00:17:05 00:34:11 00:50:50 01:06:47 01:20:53

C5a.4xlarge (32GB / 16vCPU) 00:03:46 00:10:04 00:17:19 00:25:45 00:35:08 00:42:48

C5a.8xlarge (64GB / 32vCPU) 00:03:53 00:05:47 00:10:29 00:12:58 00:17:54 00:21:34

the average times of each test as shown in Table 2. The standard deviation was less than
0.1% in all cases. This demonstrates the existence of a low dispersion of data, that is,
it is possible to consider the average of these durations as information that adequately
represents the universe of data generated during the tests.

Table 3. Effective cost ($) results.

Service
Concurrence (simultaneous alignments)

Sum per service
1 20 40 60 80 100

Lambda (1.0GB / 0.6vCPU per request) 0.0087 0.1802 0.3639 0.5304 0.7127 0.8892 2.6851

Lambda (1.5GB / 0.9vCPU per request) 0.0090 0.1753 0.3546 0.5273 0.7051 0.8865 2.6577

Lambda (2.0GB / 1.2vCPU per request) 0.0102 0.2031 0.4062 0.5991 0.8042 0.9985 3.0212

Lambda (2.5GB / 1.5vCPU per request) 0.0127 0.2507 0.5014 0.7421 0.9995 1.2494 3.7558

Lambda (3.0GB / 1.8vCPU per request) 0.0149 0.3004 0.5967 0.8860 1.1935 1.4868 4.4783

T3a.xlarge (16GB / 4vCPU) 0.0175 0.1384 0.2665 0.4032 0.5963 0.6875 2.1093

C5a.2xlarge (16GB / 8vCPU) 0.0242 0.1082 0.2165 0.3219 0.4230 0.5123 1.6060

C5a.4xlarge (32GB / 16vCPU) 0.0477 0.1275 0.2193 0.3262 0.4450 0.5421 1.7079

C5a.8xlarge (64GB / 32vCPU) 0.0984 0.1465 0.2656 0.3285 0.4535 0.5464 1.8388

Sum per test-case 0.2432 1.6303 3.1907 4.6647 6.3327 7.7985 23.8601

The analysis of the duration of the tests shows, in general, the alignments execut-
ing in the Lambda functions executed in a shorter average time in relation to the alignment
they performed in EC2 instances. As can be seen in Fig. 6 (a), where the blue lines repre-
sent the Lambda services and the green ones represent the EC2 instances. The execution
times of lambda functions remained at close levels under all concurrency levels, except
for level 40, where there was an elevation for the function with the lowest resource avail-
ability setting. It is likely that during the execution of these test batteries, the cluster that
supports the FaaS in the provider suffered some momentary overload that impacted the
service, either due to network traffic or even processing bottlenecks.

The EC2 instances established an upward trend in runtime as competition has
increased. It is possible to notice in Fig. 6 (a) a highlight for the instance t3a.xlarge,
which showed a sharp increase in the execution time during the tests. Such an instance
has only 4 vCPUs and the workload is CPU bound, the processing overhead naturally



Figure 6. Experiment results: (a) duration and (b) costs.

caused a queuing that consequently impacted the execution time.

Considering the execution time of each test and the cost of each service, it was
possible to calculate Table 3 with the costs of the tests. The cost calculation is done
differently between EC2 instances and Lambda configurations. For EC2 AWS charges
different amounts depending on the flavor of the instance, the mode of hire, which can
be dedicated or on-demand, and the operating system. For instances running Linux the
charge is made every second. Thus, for the experiment performed, the calculation of
each test case is expressed by Equation 1, where the calculated cost for the different
competition situations (TCEC2) is obtained by multiplying the execution time in seconds
by the amount charged for the flavor of the on-demand instance running Linux.

TCEC2 = Runtime ∗ FlavorPriceInstance (1)

For Lambda, AWS practices a charging policy based on two aspects: the execution
time per gigabyte (GB) in seconds plus a fixed amount charged per service request, as can
be seen in Equation 2. Considering that in the experiment performed, configurations with
different amounts of memory were used, from 1GB up to 3GB, then the calculation of
the cost for the test cases using Lambda (TCLambda) is shown in Equation 3. In this
calculation, the execution time is obtained from the average of the execution times of
the alignments, since they occur in parallel. Furthermore, the cost is multiplied by the
respective concurrency used in the test case, since for alignments requested in Lambda it
entails an effective execution of the function.

CostLambda = PriceGB/s ∗MemoryGB + PriceRequest (2)

TCLambda = Runtimeavg ∗ CostLambda ∗ Concurrence (3)

The results expressed in Table 3 brought a new perspective to the test results,
although the Lambda functions performed the tests more quickly. Since their charging
occurs by request and by the time of execution, the cost of tests using the Lambda func-



tions was in general much higher than those on the EC2 instances, whose pricing occurs
only for the time that the instance remains on.

As can be seen in Fig. 6 (b), only when running without competition do Lambda
functions have a lower cost than EC2 instances. After 20 simultaneous executions, the
cost of the instances remains lower than that determined by the Lambda functions. These
results shows that using a dataset composed of HIV sequences with widths of about 10k
characters and subjecting the services to competitive situations that varied from 1 to 100
simultaneous alignments, it is possible to notice the existence of a trade-off between the
expected execution time and the tolerable cost. In other words, running this type of work-
load using FaaS can lead to faster results, but with higher costs. On the other hand, if
time is not a critical factor, it is more cost-effective to run these workloads using an IaaS
instance-oriented approach.

Another perceived fact was due to the automatic elasticity service offered in con-
junction with the AWS Lambda. In this service, as requests are received by the environ-
ment, more resources are allocated dynamically so that the performance of the environ-
ment remains uniform regardless of the competition to which it is submitted. This differs
from the behavior of a traditional IaaS environment, such as EC2, in which elasticity
needs to be actively controlled by the customer.

The results described above allow us to infer that although FaaS services initially
present more attractive prices, it is important to consider that each request made to the ser-
vice will be charged according with their configuration (memory, CPU , etc) and the time
it spend. Cumulatively, the amount for processing workloads such as the one presented
in this work may exceed the fixed amount that is charged for IaaS services. Therefore,
having a framework available that makes the decision process about which cloud service
model is the most suitable for genetic sequence alignment processing can represent the
difference between being able to make a major biological discovery within feasible time
and cost, or then fail disastrously.

7. Conclusion
In this work, a framework is proposed to simplify the execution of genetic sequence align-
ments in multiple cloud computing services. An experiment was carried out to perform
protein sequence alignments using the Hirshberg algorithm on AWS EC2 instances of
different configurations with varied numbers of allocated vCPUs, and on AWS Lambda
functions with different memory configurations that resulted in vCPU allocations from
0.6 to up to 1.8 per run.

Thus, it is possible to conclude that the execution of CPU bound workloads that
hold Lambda functions for considerable periods can generate high costs in relation to the
same workload executed in EC2 instances. On the other hand, in situations of growing
competition, environments oriented to Lambda functions will keep their execution times
uniform and more predictable, while environments using EC2 instances will suffer degra-
dation in the execution time.

In future work it is possible to extend the types of cloud services supported by the
framework, as well as the providers, such as GCP and Azure, for example. Other algo-
rithms can also compose the decision process in order to establish alignment strategies
that favor not only low memory consumption, but execution time as well.



References
[Amazon 2021] Amazon (2021). Amazon web services. https://aws.amazon.com/

about-aws/. [Online; accessed 21-April-2021].

[Crespo-Cepeda et al. 2019] Crespo-Cepeda, R., Agapito, G., Vazquez-Poletti, J. L., and
Cannataro, M. (2019). Challenges and opportunities of amazon serverless lambda
services in bioinformatics. BCB ’19, page 663–668, New York, NY, USA. Association
for Computing Machinery.

[GARTNER 2021] GARTNER (2021). Magic quadrant for cloud infrastructure and plat-
form services. https://www.gartner.com/en/documents/3989743/
magic-quadrant-for-cloud-infrastructure-and-platform-ser.
[Online; accessed 28-August-2021].

[HashiCorp 2021] HashiCorp (2021). Terraform: Write, plan, apply. https://www.
terraform.io/. [Online; accessed 31-May-2021].

[Hirschberg 1975] Hirschberg, D. S. (1975). A linear space algorithm for computing maxi-
mal common subsequences. Commun. ACM, 18(6):341–343.

[Hung et al. 2020] Hung, L.-H., Niu, X., Lloyd, W., and Yeung, K. Y. (2020). Accessible
and interactive RNA sequencing analysis using serverless computing. bioRxiv.

[Lynn et al. 2017] Lynn, T., Rosati, P., Lejeune, A., and Emeakaroha, V. (2017). A prelimi-
nary review of enterprise serverless cloud computing (function-as-a-service) platforms.
In IEEE CloudCom), pages 162–169.

[Malla and Christensen 2020] Malla, S. and Christensen, K. (2020). Hpc in the cloud: Per-
formance comparison of function as a service (faas) vs infrastructure as a service (iaas).
Internet Technology Letters, 3(1):e137.

[MELL and Grance 2011] MELL, P. and Grance, T. (2011). The NIST definition of cloud
computing. National Institute of Standards and Tecnology.

[Needleman and Wunsch 1970] Needleman, S. B. and Wunsch, C. D. (1970). A general
method applicable to the search for similarities in the amino acid sequence of two
proteins. Journal of Molecular Biology, 48(3):443–453.

[Niu et al. 2019] Niu, X., Kumanov, D., Hung, L.-H., Lloyd, W., and Yeung, K. Y. (2019).
Leveraging serverless computing to improve performance for sequence comparison.
BCB’19, page 683–687. Association for Computing Machinery.

[Poccia 2020] Poccia, D. (2020). New for AWS lambda – functions with up to 10 GB of
memory and 6 vCPUs.

[Sarje and Aluru 2009] Sarje, A. and Aluru, S. (2009). Parallel genomic alignments on the
cell broadband engine. IEEE TPDS, 20(11):1600–1610.

[Smith et al. 1981] Smith, T. F., Waterman, M. S., et al. (1981). Identification of common
molecular subsequences. Journal of molecular biology, 147(1):195–197.

https://aws.amazon.com/about-aws/
https://aws.amazon.com/about-aws/
https://www.gartner.com/en/documents/3989743/magic-quadrant-for-cloud-infrastructure-and-platform-ser
https://www.gartner.com/en/documents/3989743/magic-quadrant-for-cloud-infrastructure-and-platform-ser
https://www.terraform.io/
https://www.terraform.io/

	Introduction
	Background
	The Hirschberg Algorithm
	Cloud Computing Service Models

	Framework Proposal
	Related Works
	Methodology
	Experiment Architecture
	Experiment Workflow
	Experiment Dataset

	Results
	Conclusion

