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Daniel de Oliveira1, Lúcia Maria de Assumpção Drummond1,

1 Instituto de Computação – Universidade Federal Fluminense (UFF)
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Abstract. In this paper, we developed a Spark application, named Diff Sequences
Spark, which compares 540 SARS-CoV-2 sequences from South America in Ama-
zon EC2 Cloud, generating as output the positions where the differences occur.
We analyzed the performance of the proposed application on selected memory
and storage optimized virtual machines (VMs) at on-demand and spot markets.
The execution times and financial costs of the memory optimized VMs outper-
formed the storage optimized ones. Regarding the markets, Diff Sequences Spark
reduced the average execution times and monetary costs when using spot VMs
compared to their respective on-demand VMs, even in scenarios with several spot
revocations, benefiting from the low overhead fault tolerance Spark framework.

1. Introduction
Over the last decades we have witnessed the generation of an unprecedented volume of
data both in academia and industry [Hey and Trefethen 2020]. According to Domo1, in
2020 each person on Earth produced 1.7MB of data every second. One challenge that
arises is how to process/query this volume of data and extract useful knowledge from it
in a timely manner. Since the traditional data management solutions such as Relational
Database Management Systems (RDBMS) do not scale for this volume of (commonly het-
erogeneous) data [Hu et al. 2014], alternative solutions must be considered. In fact, several
new approaches were proposed to bridge this gap. The most successful are the well-known
Big Data frameworks, with Apache Spark being one of the most widely adopted, due to its
high scalability and increasing popularity [Zaharia et al. 2010]. Spark improves the perfor-
mance of applications by performing in-memory data movement (in contrast with Hadoop
where operations are disk to disk) and automatically exploiting parallelism. An interest-
ing characteristic of Spark is that it allows for users to develop their big data analytical
applications without concerning about the parallel processing issues [Perera et al. 2016].

Although Spark can be deployed on a single computer or a cluster, it can further
benefit from cloud environments [Yan et al. 2016]. Cloud providers aim at maximizing
resource utilization and profits by delivering underutilized computing resources. For in-
stance, Amazon AWS cloud offers a variety of resources for executing Spark applications.

*This research is supported by project CNPq/AWS 440014/2020-4, Brazil and by Programa Institucional
de Internacionalização (PrInt) from CAPES (process number 88887.310261/2018-00).
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This environment offers several advantages compared to dedicated infrastructures, such as
rapid provisioning of resources and significant reduction of operational costs. Revocable
virtual machines (VMs) are available at a reduced price on the spot market, that can be up
to 90% cheaper than their on-demand counterparts (which are offered with a fixed financial
cost per time unit of use and are not revoked by the provider). While big data applications
can profit dramatically from executing on spot instances, their performance can, however,
degrade, mainly if no fault-tolerance mechanism is provided. Running Spark in the cloud
presents a range of challenges. For example, one of them is the selection of the proper con-
figuration of parameters, both in Spark and cloud levels [de Oliveira et al. 2021]. There are
many opportunities for optimizations. However, the user has to explore a huge configura-
tion space in order to efficiently execute Spark applications. A poor choice of parameters
not only significantly degrades the execution performance, but may also lead to big finan-
cial costs what can make the execution of the application unfeasible.

To illustrate the problem of optimizing Spark applications in a public cloud, the
following example from the bioinformatics domain is consider: the studies associated
with the Covid-19 pandemic are of particular interest, and the comparison of SARS-CoV-
2 sequences is crucial to understand the behavior of this disease. More than a million
SARS-CoV-2 sequences are available for general use in public genomic databases, e.g.,
NCBI2. The comparisons of such sequences generate big textual files with alignments
[Rochman et al. 2021] and it is difficult for the Biologist to identify mismatched positions,
which correspond to mutations and their analyses is of great interest.

In order to identify the aspects related to performance and costs when running
Spark applications on Amazon AWS cloud, we developed a Spark application, named
Diff Sequences Spark3, which compares biological sequences (all-against-all) and gen-
erates as output the positions where the nucleotide differences occur. We propose two
versions of this Spark application that differ in the way data are structured and pro-
cessed. Analyzes performed in preliminary tests showed that the Collection phase, which
saves the results periodically in the disk, and the Diff phase, executed in memory, domi-
nated the application execution time. Considering those results, we explored both mem-
ory and storage optimized virtual machines (VMs) types and markets (i.e., on-demand
and spot) to compare 540 SARS-CoV-2 sequences from South America. Previously in
[Teylo et al. 2021, Brum et al. 2021], we observed the benefits of spot market when ei-
ther the application can handle failures or it is executed within a framework that provides
recovering mechanism in case of VM revocations. Since Spark provides fault tolerance
mechanisms, we also investigate the effect of spot instances revocations, in terms of exe-
cution time and financial cost in our Spark application.

As an outcome of our contributions, performance results in Amazon EC2 reveals
that Diff Sequences Spark application was able to run even on the VMs revocation sce-
narios, obtaining reductions of execution time up to 22.60% and of financial cost up to
62.22% when using the z1d.xlarge spot instance in comparison to the r5.xlarge on-demand
instance (the cheapest on-demand instance used in the experiments) for 540 SARS-CoV-2
sequences comparison. This shows that clouds can play a fundamental role in ensuring
the efficiency of the execution of such applications with reduced costs. The remainder of

2National Center for Biotechnology Information - https://www.ncbi.nlm.nih.gov/
3https://github.com/alan-lira/diff-sequences-spark
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this paper is organized as follows. Section 2 details the Apache Spark framework. Section
3 brings background and related work. Section 4 describes the developed Spark applica-
tion for all-against-all biological sequences comparison. Section 5 presents experimental
evaluation and, finally, conclusions are drawn in Section 6.

2. Apache Spark in a Nutshell
Apache Spark is a large-scale data processing framework designed for optimizing both
batch and iterative parallel operations over large datasets. Spark executes the applications
by chaining a series of operations [Zaharia et al. 2010] and avoids the significant I/O over-
heads found in other frameworks such as Apache Hadoop. The main advantage of Spark is
that it aims at keeping the data in memory (if possible) during the processing, which avoids
reading data from and writing results back to file. In the context of a Spark application, we
can find the Driver and the Workers. The Driver is the process where the user submits jobs
in Spark (i.e., it controls the execution). Workers are nodes where the data are processed,
and each Worker may have several associated Executors, which in turn execute Tasks in a
specific job. The number of Executors in a Worker is defined by the user, and it can vary
according to the computing environment chosen to execute the Spark application.

One of the key advantages of Spark in comparison to other MapReduce
frameworks is its in-memory structures such as Resilient Distributed Dataset (RDD)
[Zaharia et al. 2012] and DataFrames [Armbrust et al. 2016], which essentially are in-
memory collections of partitioned data instances that can be processed in parallel
[Zaharia et al. 2012, Zaharia et al. 2010]. While RDDs are sets of objects representing
data, DataFrames are distributed collections of data with named columns, i.e., DataFrames
act as tables in relational databases (e.g., PostgreSQL, Oracle, etc.). Besides the advantage
of representing data as a well-known relational table, DataFrames also benefit from the
Spark’s Catalyst Optimizer [Armbrust et al. 2016]. Catalyst is focused on optimizing the
query processing, and thus has several sets of rules that handle different phases of query ex-
ecution: analysis, logical optimization, physical planning, and code generation to compile
optimized queries for execution. Spark also provides more programming abstractions than
other frameworks, such as filter, join, and collect [Zaharia et al. 2012] instead of just clas-
sical Map and Reduce operations found in Hadoop. In particular, all Apache Spark opera-
tors are classified in (i) Transformations and (ii) Actions. A transformation produces a new
RDD from an existing one, whereas an action enables the modification of current datasets
without generating new RDDs. Spark evaluates both RDDs and DataFrames lazily, i.e., it
does not compute their result immediately. Instead, Spark registers that a transformation
is applied to some dataset (in an RDD or DataFrame) and then computes transformations
only when an action requires a result to be sent to the Driver.

Besides the advantage of in-memory data processing, Spark also provides useful
fault tolerance mechanisms. Two types of failures may occur in the context of a Spark
application: (i) Worker failure and (ii) Driver failure. In the case of failure in the Driver,
the SparkContext (i.e., the entry point to Spark) becomes unavailable and all Executors
lose their in-memory data. If the Worker fails, all Executors associated with that Worker
are killed (and of course all data in their memory are lost). However, the data are commonly
replicated to other Worker nodes to achieve fault tolerance. The RDD has the capability of
handling if any failure occurs in the Worker. This is possible since Spark creates a logical
execution plan (i.e., lineage graph) for all tasks executed in the context of an application.



For example, if a Worker fails during the execution and an RDD is lost, Spark can apply
the same computation on that Worker (by following the lineage graph) to generate the
same dataset again. Spark can also work together with Apache Mesos [Hindman 2011] to
provide another level of fault tolerance, where the Executors are restarted if they fail and a
backup of the master node can be maintained, which is useful in the case of driver failures.

3. Biological Sequences Comparison

A biological sequence is a molecule of nucleic acid or protein. It is represented by a lin-
ear list of residues, which are nucleotide bases (for DNA and RNA sequences) or amino
acids (for protein sequences). An alphabet of four nucleotides (Σ = {A, T,G,C}) is used
for DNA sequences [Durbin et al. 1998]. Even though SARS-CoV-2 sequences represent
the virus responsible for the covid-19 disease (i.e., RNA), DNA sequences of infected
hosts are the ones stored in public repositories. In this study, we use DNA SARS-CoV-2
sequences with host=human. DNA sequences are usually compared with sequence align-
ment algorithms, which produce a textual file where the matching characters are high-
lighted [Durbin et al. 1998]. When highly similar sequences are compared, which is the
case of SARS-CoV-2 sequences and its variants, the biologists are mostly interested in the
differences, which may indicate mutations, not in the similarities, which are highlighted in
the alignment file. Besides, since there are more than a million SARS-CoV-2 in the public
repositories, the analysis is often done by geographical region and period of time, compar-
ing a set of sequences to each other (all-against-all). Therefore, we advocate that a tool
that performs all-against-all comparisons and outputs the differences among the sequences
is extremely useful for SARS-CoV-2 genetic studies [Lau et al. 2021].

3.1. Related Work

SparkSW [Zhao et al. 2015], as remarked by the authors, is the first Spark-based imple-
mentation of the Smith-Waterman algorithm that provides scalability and load-balancing
efficiency for biological sequence pairwise alignment on distributed environment. DSA
[Xu et al. 2017a] leverages data parallel strategy based on SIMD instruction to parallelize
the algorithm in each core associated to a worker node and employs memory-based dis-
tributed file system Alluxio4 as primary storage to speed up I/O performance and reduce
network traffic. CloudSW [Xu et al. 2017b] also leverages Spark and SIMD instructions to
accelerate SW algorithm and supports both alignment scores and trace-backs.

To the best of authors’ knowledge, few works investigate the challenges of ex-
ecuting Spark-based applications on cloud spot VMs. TR-Spark [Yan et al. 2016], is a
framework that allows for executing Spark applications on transient resources (spot in-
stances in the case of AWS EC2) based on resource stability and data size reduction aware
scheduling and lineage-aware checkpointing. [Yan et al. 2016] specify background tasks
on nodes that are temporarily not fully utilized for their primary tasks. In their frame-
work, re-computation costs are minimized by backing up intermediate results according to
resources instability level, re-computation cost, and data lineage. Also, to reduce the re-
computations costs, TR-Spark prioritizes those tasks that output the least amount of data.
They devise a proactive checkpointing policy, by saving data blocks that cannot be read
and processed by its next stage before the virtual instances failure. This revocation time

4https://www.alluxio.io
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is defined following a probabilistic approach. Although they plan to minimize checkpoint-
ing overheads, revocation time is hard to accurately predict. Albeit the paper has shown
promising performance results, close to those Spark executions on stable resources, their
work is based on the stability prediction of the VMs. [Xu et al. 2019] propose iSpot, a
resource provisioning framework that explores the use of transient servers in the cloud.
The framework classifies stable transient servers during the job execution based on the
Long Short-Term Memory (LSTM) method (i.e., an artificial recurrent neural network ar-
chitecture). Also, iSpot includes Spark application performance modeling by predicting
the performance of Spark stages and jobs based on automatic job profiling. Furthermore,
an analytical performance checkpointing mechanism is provided, considering the Spark
performance model, data checkpointing and restoration overheads. Although the results
show a decrease on the financial costs, their analysis relies only on the use of spots.

4. Spark-based All-Against-All Sequences Comparison

Rather than proposing a novel pairwise sequence alignment tool, the all-against-all se-
quences comparison is performed through the following phases: Diff and Collection. The
Diff phase finds all different nucleotide letters occurrences from the input sequences, while
the Collection phase consists of persisting these occurrences as comma-separated-values
output files into non volatile disk storage. Further details are presented as following.

4.1. Notation

Let S = 〈s1, s2, . . . , sN〉 be the input list of nucleotide enumerated sequences to be com-
pared. These sequences are represented in DataFrames, which are distributed collections
of data with named columns. Thus, each DataFrame R is composed of a set of tuples (i.e.,
{r1, ..., rd} with d = |R|), that follows a schema <, with its respective attribute types. In
the context of this paper, the schema< has one attribute for each position of the enumerated
sequence, and each attribute stores a char that represents one of the four nucleotide bases:
(i) adenine - A, (ii) cytosine - C, (iii) guanine - G, and (iv) thymine - T. In the proposed
approach, we define two sets of DataFrames according to the number of sequences they
contain during the processing: (i) single sequence and (ii) multiple sequences. Let Ds be
the set of single sequence DataFrames, where each d(i) ∈ Ds stores a single sequence si.
In turn, Dm is the set of multiple sequences DataFrames, where each d(i) ∈ Dm stores the
sequences {si+1, . . . , sN}.

4.2. Diff Phase

Two different versions of the Diff phase, named DIFF1 and DIFFopt, are presented. Al-
though both approaches focus on comparing pairs of input sequences, their main differ-
ence resides in how the Spark DataFrames are generated and compared. Regarding the
Diff phase itself, it consists of the following Spark transformation functions: join, filter and
drop. Basically, the Diff phase does a positional comparison of DataFrames’ nucleotide
letters to identify which are different. For a given position, if any empty (null) nucleotide
letter is found then the respective position is discarded from dr as it means that one se-
quence is longer than the other, which makes them incomparable in that position.

In DIFF1, an all-against-all comparison is carried out considering only the
DataFrames in Ds, i.e., during the Diff phase, the comparison is held between d(i) ∈ Ds

and d(j) ∈ Ds, ∀i < N, j = i+1, . . . , N . While this version seems quite intuitive, it hides



a Spark application optimization issue: each DataFrame pair comparison (Diff phase) pro-
duces a resulting DataFrame dr. Due to an all-against-all DataFrames comparison, the
estimate Diff phases amount dpa is N(N−1)

2
. Figure 1 illustrates the resulting DataFrames

obtained from DIFF1 implementation when N = 4 micro sequences are compared.

Figure 1. Results of DIFF1 comparisons with N = 4 micro sequences.

DIFFopt, on the other hand, works on both sets Ds and Dm by performing a
Diff phase on d(i) ∈ Ds and the respective d(i) ∈ Dm, for i = 1, . . . , N − 1. Since
the DataFrames being compared are single sequence DataFrames and multiple sequences
DataFrames, Spark optimizes transformation functions (join, filter and drop), by perform-
ing a multisequence parallel comparison. Nonetheless, due to Spark limitations on the
multisequence parallel comparison mainly for large N , a DataFrame has a limited size
maxD. In this way, whenever N > maxD, each d(i) ∈ Dm is divided in N

maxD
DataFrames

of size maxD to be used in the Diff phase with the respective single sequence DataFrame
d(i) ∈ Ds. The estimated Diff phases amount dpa, with a small absolute error, is then,
N(N−1)
maxD

− N(N−maxD)
2maxD

, if 1 ≤ maxD < N
2

; or 2(N − 1) − maxD, if N
2
≤ maxD < N .

Each line in each resulting DataFrame dr(i) produced by DIFFopt refers to the positional
comparison between the nucleotide letter of the sequence in d(i) ∈ Ds and the nucleotide
letters of every sequence in d(i) ∈ Dm. For a given position, if they are mismatched, the
corresponding nucleotide letters is shown in dr(i), otherwise a ‘=’ character is produced.
Figure 2 illustrates the resulting DataFrames obtained from DIFFopt implementation when
the same N = 4 micro sequences are compared with maxD = 3.

Figure 2. DIFFopt comparisons with N = 4 micro sequences and maxD = 3.



4.3. Spark DataFrames Customized Partitioning

Partitions are logical chunks of data which Spark defines and distributes over Worker nodes
in the cluster in order to minimize the amount of I/O operations and to achieve efficient pro-
cessing. Thus, each chunk of data assigned to a partition resides in a unique Worker. Let Np

be the number of partitions of a DataFrame and Nc, the number of CPU cores in the clus-
ter. Whenever DataFrames are created, Spark automatically sets Np = Nc. Furthermore,
when any Spark transformation that triggers data shuffling over DataFrames is performed
(e.g., join function), the resulting DataFrame’s Np is auto set to 200. Having Np defined,
Spark creates a task per partition executed by Executor designated by Spark Scheduler.
The auto setting can lead to poor performance depending on the amount of data loaded to
each partition: either a small amount of data is distributed over too many partitions, corre-
sponding to a large set of Spark tasks; or the opposite, each task is assigned to a large load
that results in long running Spark tasks (too long tasks can cause an out of memory error).
Yet, one must bear in mind that there is an overhead incurred due to Spark task creation,
scheduling and management. This work proposes the use of the guidelines presented in
Spark Tuning5, and therefore, sets Np = 3Nc on DataFrames creation. Furthermore, the
DataFrames re-partitioning after the join operation is carried out taking in account their
estimated resulting size in bytes, Nc and a maximum size of 128 MB for each partition.

4.4. Collection Phase

The main purpose of the Collection phase is to consolidate the Spark transformations
performed during the Diff phase. By calling a Spark ‘write.csv’ action, all Spark Executors
write into their non-volatile storage the Diff result’s partial data as comma-separated values
files. Each line of these files contains the position (index) of a diff occurrence and the
corresponding nucleotide letters, one for each sequence that integrated the last Diff. Two
versions of the Collection phase were explored: Distributed Write (DW) and Merged Write
(MW). In the case of DW, for each Diff performed, every Executor Ek writes its Diff result’s
partial data into p local files, where p ≤ Np is the number of exclusive partitions (tasks)
assigned to Ek. On the other hand, in the case of MW, for each Diff performed, every
Executor sends its Diff result’s partial data to one Executor designated by Spark, which
will merge and write all received data into a single local file.

4.5. Preliminary Experimental Evaluation

In order to evaluate DIFF1 and DIFFopt implementations, some preliminary experiments
were conducted. Nine Amazon EC2 t2.medium virtual instances were used, of which:
one was set as Spark Driver (Master) and the remaining eight used as Spark Workers.
Each virtual instance had 2 vCPUs, 4 GiB of Memory and 8 GiB Storage (EBS). The
Spark Driver instance was launched as on-demand, costing 0.0464 USD per hour, while the
Spark Executors were launched using spot price market, each one costing 0.0139 USD per
hour. A Spark 3.1.2 standalone cluster in client deploy mode was set up and the following
job submit options were defined: 8 Executors (1 per Worker node), 2 GiB Memory per
Executor and 16 Cores in total (2 Cores per Executor). The experiments were carried out
considering subsets of SARS-CoV-2 nucleotides taken from 540 South America SARS-
CoV-2 nucleotide merged sequences, which were obtained from the NCBI-Virus6 database

5https://spark.apache.org/docs/latest/tuning.html#level-of-parallelism
6https://www.ncbi.nlm.nih.gov/labs/virus/vssi/
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and split as individual sequences files using the Fasta-Splitter7 tool, making possible the
individual sequences comparisons. For the DIFFopt assessment, a maxD = 63 value was
set. Each experiment was executed three times. Table 1 summarizes the average times to
execute the Diff and Collection phases, separately, and the overall average execution times
and monetary costs, for three rounds of preliminary experiments as discussed next.

Table 1. Diff and Collection phases average times, overall execution times and
monetary costs for DIFF1 and DIFFopt.

Experiments
Round

N SARS-CoV-2
Sequences

Average Diff Phase
Time (Minutes)

Average Collection Phase
Time (Minutes)

Average Execution
Time (Minutes)

Average Execution
Cost (USD)

DIFF1 DIFFopt DIFF1 DIFFopt DIFF1 DIFFopt DIFF1 DIFFopt

F
R
P
E

2 0.0022 0.0053 0.2815 0.2893 0.4256 0.4362 0.0011 0.0011
4 0.0045 0.0083 0.9854 0.5825 1.1537 0.7530 0.0030 0.0020
8 0.0105 0.0196 2.8430 1.1275 3.0950 1.3454 0.0081 0.0035

16 0.0267 0.0468 8.1126 1.9528 8.6050 2.2651 0.0226 0.0059
32 0.0762 0.1850 29.6007 3.5592 30.9374 4.2317 0.0813 0.0111
64 0.3822 0.5770 123.6268 5.6632 130.7519 9.2003 0.3434 0.0242

S
R
P
E

2 0.0112 0.0141 0.2579 0.2881 0.4139 0.4731 0.0011 0.0012
4 0.0200 0.0218 0.8406 0.4648 1.0336 0.6453 0.0027 0.0017
8 0.0458 0.0419 2.6194 0.9115 2.9148 1.1462 0.0077 0.0030

16 0.1237 0.1021 6.5475 1.7639 7.2007 2.1544 0.0189 0.0057
32 0.4009 0.1576 18.9651 2.8872 20.9013 3.5074 0.0549 0.0092
64 1.4076 0.5242 65.6623 4.9424 72.4692 6.5623 0.1904 0.0172

T
R
P
E

2 0.0112 0.0127 0.1836 0.1746 0.3596 0.3291 0.0009 0.0009
4 0.0204 0.0215 0.5877 0.3152 0.7770 0.4955 0.0020 0.0013
8 0.0478 0.0455 1.7232 0.5287 2.0287 0.7694 0.0053 0.0020

16 0.1358 0.0883 5.0213 0.9464 5.7202 1.3004 0.0150 0.0034
32 0.3989 0.2186 16.1036 1.8633 18.0104 2.5403 0.0473 0.0067
64 1.4035 0.7150 61.7254 3.4916 68.4508 5.2757 0.1798 0.0139

The first round of preliminary experiments FRPE assesses DIFF1 and DIFFopt

when using DataFrames auto partitioning and DW. Their standard deviation values ranged
from 0.0002 to 0.21, from 0.01 to 16.78, from 0.0087 to 19.80 and from 0.0001 to 0.05,
respectively. As N increases, DIFF1 loses performance in relation to DIFFopt, which was
approximately 14.2 faster and cheaper than DIFF1 considering 64 SARS-CoV-2 sequences.

A second round of preliminary experiments SRPE analyzes the efficiency regard-
ing a customized DataFrames partitioning scheme, but also using DW. Their standard de-
viation values ranged from 0.0001 to 0.07, from 0.02 to 4.08, from 0.02 to 3.78 and from
0.0001 to 0.01, respectively. Compared to FRPE results, both DIFF1 and DIFFopt achieved
better performance (except for DIFFopt when N = 2). Interestingly, for N = 64 and
SRPE , DIFF1 execution time and monetary cost had an average percentage decrease of
44.5% while DIFFopt reduced around 28.7%.

The third round of preliminary experiments TRPE evaluates the efficiency of MW.
Their standard deviation values ranged from 0.0015 to 0.02, from 0.0121 to 0.85, from
0.0080 to 0.85 and from 0.0001 to 0.0022, respectively. A percentage decrease on the
collection time (write to disk) was noticed when switching from DW to MW. In the case of
64 SARS-CoV-2 sequences, the decrease in TRPE was approximately 6% for DIFF1 and
29.3% for DIFFopt.

Therefore, bearing in mind the results obtained so far, the Diff Sequences Spark
application proposed in this work employs customized DataFrames partitioning scheme,

7https://github.com/alan-lira/fasta-splitter
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DIFFopt during the Diff phase and Merged Write (MW) during the Collection phase.

5. Diff Sequences Spark Application on Amazon EC2
Amazon EC2 offers a wide variety of virtual instance types which are optimized suited
to different use cases. These instances consist of various combinations of CPU, memory,
storage, and network capacity. In EC2, the user can select the following instance types to
run an application: (i) general purpose, (ii) compute optimized, (iii) memory optimized,
(iv) accelerated computing and (v) storage optimized. As shown previously, the execution
time of the Diff Sequences Spark application is dominated mainly by: the Diff phase, which
executes the tasks predominantly in memory (memory intensive); and the Collection phase
that is disk intensive. Thereby, this work executed the Diff Sequences Spark application
using the instances as seen in Table 2. All selected instances are from the us-east-1a region
with a x86 64 processor and they are available on the spot market, costing less than 0.50
USD per hour on the on-demand market. The work developed here aims to analyze the
benefits of executing Diff Sequences Spark application on different types of both spot and
on-demand instances. Wherefore, this experimental evaluation also has the objective to
indicate some relevant metrics for memory and disk intensive Spark applications for future
deeper analysis.

Table 2. EC2 VMs selection: memory and storage optimized instances.
Optimization

Family
Instance

Name
Number
of vCPUs

Memory
(GiB)

Storage
Type

Network
Speed (Gbps)

Cost per Hour (USD)
On-Demand Spot

Memory
r5.xlarge 4 32 EBS Up to 10 0.2520 0.1374

r5dn.xlarge 4 32 1x 150 NVMe SSD Up to 25 0.3340 0.1232
z1d.xlarge 4 32 1x 150 NVMe SSD Up to 10 0.3720 0.1116

Storage
i3en.xlarge 4 32 1x 2500 NVMe SSD Up to 25 0.4520 0.1356
h1.2xlarge 8 32 1x 2000 HDD Up to 10 0.4680 0.1404
d3.xlarge 4 32 3x 2000 HDD Up to 15 0.4990 0.1497

5.1. Computational Results
In these experiments, one instance was set as Spark Driver (Master) and another eight
instances as Spark Workers. The instances features are those in Table 2. A Spark 3.1.2
standalone cluster in client deploy mode was set up and the following job submit options
were defined for all instances: 8 Executors (1 per Worker node), 29 GiB Memory per
Executor and 32 Cores in total (4 Cores per Executor). The experiments were carried out
considering the entire 540 South America SARS-CoV-2 nucleotide sequences (N = 540)
and maxD = 63. Each experiment was executed three times.

The first round of the main experiments FRME compared the execution times and
monetary costs considering all the virtual instance types. Table 3 summarizes the average
(Avg) execution times and monetary costs obtained when launching Workers using spot
instances. Their standard deviation (SD) values ranged from 0.72 to 5.76 and from 0.02 to
0.15, respectively. Furthermore, r5.xlarge instance results were used as baseline to calcu-
late the relative percentage changes obtained from the other instances’ execution. Table 4
shows the average (Avg) execution monetary costs and the cost percentage changes when
switching all Spark Workers from on-demand to spot instances. Their standard deviation
(SD) values ranged from 0.05 to 0.39 and from 0.02 to 0.15, respectively. As can be seen
in Table 3, z1d.xlarge, a memory optimized instance, produced the best results regarding
both execution time and financial cost, while h1.2xlarge produced the worst ones.



Table 3. FRME: Averages of execution times and costs.
Instance

Name
Execution Time (Minutes) Execution Cost (USD) Percentage Change

Avg SD Avg SD Time Cost

r5.xlarge 174.6113 3.0408 3.9322 0.0685 0% 0%
r5dn.xlarge 174.3515 1.0521 3.8346 0.0231 −0.1487% −2.4820%
z1d.xlarge 135.1479 1.9064 2.8489 0.0402 −22.6007% −27.5494%

i3en.xlarge 169.0511 5.7611 4.3300 0.1476 −3.1843% +10.1164%
h1.2xlarge 201.6883 1.1435 5.3488 0.0303 +15.5070% +36.0256%
d3.xlarge 165.1419 0.7194 4.6697 0.0203 −5.4231% +18.7554%

Table 4. FRME: Averages of on-demand and spot execution costs.

Instance
Name

On-Demand
Execution Cost (USD)

Spot
Execution Cost (USD) % Cost

ChangeAvg SD Avg SD

r5.xlarge 6.6003 0.1149 3.9322 0.0685 −40.4239%
r5dn.xlarge 8.7350 0.0527 3.8346 0.0231 −56.1007%
z1d.xlarge 7.5413 0.1064 2.8489 0.0402 −62.2226%

i3en.xlarge 11.4617 0.3906 4.3300 0.1476 −62.2220%
h1.2xlarge 14.1585 0.0803 5.3488 0.0303 −62.2219%
d3.xlarge 12.3609 0.0538 4.6697 0.0203 −62.2220%

The second round of main experiments SRME aims to present the impact of Spark
Workers spot instances revocations over execution times and monetary costs of the two
best instances, one for each optimization family, in terms of cost-benefit that were ob-
tained of FRME: z1d.xlarge and i3en.xlarge. Their respective previous results (with no
instances revocation) were used as baseline for the following spot instances revocation
scenarios comparisons: RS1: two Spark Workers revoked after 30 minutes of execution;
RS2: two Spark Workers revoked after 60 minutes of execution; RS3: two Spark Work-
ers revoked after 120 minutes of execution time. Table 5 summarizes the average (Avg)
execution times and monetary costs considering these scenarios. Their standard deviation
(SD) values ranged from 1.48 to 5.76 and from 0.03 to 0.15, respectively. The time and
cost percentage changes are also presented for each instance, considering their respective
baseline values. As it can be noticed, the fewer Workers available, the longer Diff Se-
quences Spark application run. The RS1 revocation scenario had the biggest increase of
average execution times for both z1d.xlarge and i3en.xlarge instances, 4.19% and 8.67%
respectively, meaning that the application performed better when there were more Work-
ers executing the first hundreds DataFrames comparisons, as they were typically larger.
On the other hand, Workers revocations on RS3 (near the end of execution) did not cause
a big increase of average execution time for i3en.xlarge instance (4.07%), which can be
explained by smaller DataFrames comparisons. Interestingly, z1d.xlarge obtained 1.64%
average execution time reductions for RS3, possibly because performed more Diffs during
the first hour of execution (1114 Diffs on average) compared to the no-revocation scenario
(1084 Diffs on average), somewhat compensating the Workers revocation near the end of
execution. Regarding execution costs, all revocation scenarios caused cost reductions. RS1

had the greatest reductions: 10.28% and 23.77% for z1d.xlarge and i3en.xlarge instances,
respectively. The relatively small size of SARS-CoV-2 nucleotide sequences may be the
reason for this cost savings when losing Workers, as, in the no-revocation scenario, Spark
must have spent more time creating, scaling and managing tasks than the Workers spent



doing the task computation itself. Knowing that RS1 is the worst revocation scenario,
nevertheless using the spot instances allowed 66.11% and 71.20% average execution cost
savings for z1d.xlarge and i3en.xlarge spot instances, respectively, while their respective
average execution times increased only 4.19% and 8.67%, in comparison with their on-
demand instances prices market. Finally, memory optimized instances presented better
execution times and financial costs than the storage optimized ones, and, particularly, the
z1.xlarge instance outperformed all the other selected instances.

Table 5. SRME: Average execution and financial costs in several Worker spot
instances revocations scenarios.

Instance
Name

Revocation
Scenario

Execution Time (Minutes) Execution Cost (USD) Percentage Change
Avg SD Avg SD Time Cost

z1d.xlarge

None 135.1479 1.9064 2.8489 0.0402 0% 0%
RS1 140.8041 1.5435 2.5560 0.0268 +4.1851% −10.2811%
RS2 139.2890 1.6629 2.6413 0.0289 +3.0641% −7.2870%
RS3 132.9266 5.0956 2.7540 0.0885 −1.6436% −3.3311%

i3en.xlarge

None 169.0511 5.7611 4.3300 0.1476 0% 0%
RS1 183.7072 2.0837 3.3008 0.0362 +8.6696% −23.7690%
RS2 177.4600 1.4847 3.3039 0.0258 +4.9741% −23.6974%
RS3 175.9235 2.9039 3.5004 0.0504 +4.0652% −19.1593%

6. Conclusions and Future Directions
Aiming to analyze the execution of Spark applications with reasonable time and cost in
a public cloud, this work proposed the Diff Sequences Spark application. When using
memory and storage optimized spot instances without any revocations, reductions of up
to 22.60% of the average execution time and up to 62.22% of the average monetary cost
were observed compared to their respective on-demand instances for the study case of 540
SARS-CoV-2 all-against-all sequences comparison. Nonetheless, on the worst tested spot
revocation scenario, it was possible to reduce the monetary cost in 10.28% and 23.77%
respectively for the z1d.xlarge and i3en.xlarge instances, while their respective execution
times slightly increased to 4.19% and 8.67%, benefiting from the low overhead fault tol-
erance Spark framework. The experiments also showed cost-benefit of running it on the
memory optimized instances, most outstanding being z1d.xlarge. As future directions,
considerations on data input variations (i.e., size and quantity of biological sequences),
worker nodes and executors per worker, as well as VMs resources metrics (e.g., IOPS,
bandwidth) will allow better analysis of the performance and of the scaling bounds for
Spark applications in the cloud.
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