
An Open-Source Cloud-FPGA Gene Regulatory Accelerator*

Lucas Bragança1, Jeronimo Penha1, Michael Canesche2, Dener Ribeiro1

José Augusto M. Nacif1, Ricardo Ferreira1

1Universidade Federal de Viçosa (UFV)
Avenida Peter Henry Rolfs – 36.570-900 – Viçosa – MG – Brazil

2Universidade Federal de Minas Gerais (UFMG)
Av. Antônio Carlos – 6627 – 31270-901 – Belo Horizonte – MG – Brazil

{lucas.braganca,jeronimo.penha,jnacif,ricardo}@ufv.br

Abstract. FPGAs are suitable to speed up gene regulatory network (GRN) al-
gorithms with high throughput and energy efficiency. In addition, virtualizing
FPGA using hardware generators and cloud resources increases the comput-
ing ability to achieve on-demand accelerations across multiple users. Recently,
Amazon AWS provides high-performance Cloud’s FPGAs. This work proposes
an open source1 accelerator generator for Boolean gene regulatory networks.
The generator automatically creates all hardware and software pieces from a
high-level GRN description. We evaluate the accelerator performance and cost
for CPU, GPU, and Cloud FPGA implementations by considering six GRN mod-
els proposed in the literature. As a result, the FPGA accelerator is at least 12×
faster than the best GPU accelerator. Furthermore, the FPGA reaches the best
performance per dollar in cloud services, at least 5× better than the best GPU
accelerator.

1. Introduction
Evolutionary models aim at understanding the origin and evolutionary dynam-

ics of phenotypical traits [Chaos and et al 2006], where gene interactions are preva-
lent and critical during development. Genes form complex dynamical systems,
named gene regulatory networks (GRN), that can reach several steady states (attrac-
tors) [Chaos and et al 2006]. Biologists use GRN to identify mechanisms of the complex
diseases and therapeutic targets.

Regulatory network models are abstractions of multiple gene interactions. It is
possible to represent GRN models using Boolean graph G(V,E), where V is the set of
Boolean nodes or genes, and E is the set of edges or gene interactions. GRN models are
discrete, and experimental evidence suggests that gene expression is digital and stochastic
at the individual cell level rather than continuous [Chaos and et al 2006]. One essential
operation in GRN models is to compute the steady states or attractors, which has a prac-
tical implication: a cell type may correspond to an attractor [Guo et al. 2014]. However,
the number of states grows exponentially 2|V |, where n = |V | is the number of genes.

*Funding: FAPEMIG, National Council for Scientific and Technological Development -– CNPq (Grants
#313312/2020-6 and #440087/2020-1 – CNPq/AWS 032/2019) Nvidia, Funarbe. We did this work with
the support of the Coordination for the Improvement of Higher Education Personnel – Brazil (CAPES)
– Financing Code 001. Support from the laboratories: Intel Academic Compute Environment and the
Department of Informatics of the Federal University of Viçosa (UFV).

1https://github.com/lesc-ufv/grn_hw_accelerator

The computational problem of finding all the attractors is NP-
hard [Akutsu et al. 1998]. Previous work proposes strategies based on
BDD [Garg and et al 2007] and SAT using CPUs [Dubrova and Teslenko 2011] and
multi-cores [Guo et al. 2014]. Moreover, there are also parallel approaches using
GPUs [Mizera et al. 2019, Borelli and et al 2013], and FPGA-based hardware ac-
celerators [Manica et al. 2020, Ferreira and Vendramini 2010]. Boolean networks
can be efficiently mapped on hardware by using FPGA as shown in previous
work [Manica et al. 2020, Bragança and et al 2017]. However, developing applica-
tions for FPGA is a challenging task, and even approaches that use high-level languages
such as HLS (High-Level Synthesis) are not trivial for programmers or, in this case, for
biologists who study these types of networks.

Amazon AWS cloud resource providers recently started offering FPGA hard-
ware, which becomes widely available to academia and industry to develop accel-
erators [Braganca and et al 2021]. However, there are still many challenges to the
widespread adoption of FPGA for the software community. We propose simplifying it by
providing an accelerator generator tool to automatically create the hardware and software
components from the GRN specification. The user should only write the GRN equations
and the state space to explore. The generated code will be deployed and executed in
Amazon AWS FPGA instances. The main contributions of this work are: (1) A complete
framework that generates code for CPU, GPU, and FPGA to find attractors state in GRNs.
(2) A software-hardware codesign for AWS F1 FPGA instance accelerator to find attrac-
tors state in GRNs. (3) A study on the cost-effectiveness of finding attractors in GNRs
in different types of instances in the AWS cloud. (4) Performance analyses of real-life
GRNs models in different platforms.

This paper is organized as following. Section 2 introduces the GRN basic con-
cepts. Section 3 presents the AWS FPGA resources. Section 4 describes the architecture
of the proposed accelerator. Section 5 evaluates the accelerator performance on six real-
life biological GRNs. Finally, Sections 6 and 7 presents the related work and conclusions.

2. Background
2.1. Gene Regulatory Networks

A Boolean graph G(V,E, F) models a GRN, where V is the set of genes
{g1, g2, . . . , gn}, E is the set of edges that represents the gene interactions, and F is the
set of update functions. These functions will define the future state of each node based
on the previous values of its correlated genes. In this work, we assume a discrete-time
simulation t and the synchronous mode, where every node is updated simultaneously.

Figure 1(a) depicts a simple GRN with two genes a and b. The value of a will
be updated by the function a(t + 1) = fa(t) =!b(t), and the value of b by b(t + 1) =
fb(t) = a(t)&b(t). Assume the initial state a = 0, b = 0, as shown in Figure 1(b).
The simulation computes the state evolution until a steady state or a steady state cycle
is found. The state (10) where a = 1, b = 0 is a steady state, which is referred as an
attractor. All states should be visited to compute the entire state diagram, which models
the GRN dynamics. Figure 1(c) depicts the state diagram for this example, where there
are 4 states or = 2|V | = 22, where |V | is the number of GRN genes. This example has
only one single attractor, and all states converge to this attractor.

Figure 1. (a) A simple GRN; (b) Simulation Computation; (c) State Diagram; (d)
Another update function and a new state diagram with two attractor A1 and A2.

Figure 2. (a) A three genes network; (b) Synchronous mode; (c) Asynchronous
mode; (d) Probabilistic mode.

2.2. Attractors and Update Mode

In general, a GRN has two or more attractors. Let us consider the same simple
GRN with only 2 genes by using another update function of the gene b, where b(t+ 1) =
!a(t). The GRN dynamic is completely different, as shown in Figure 1(d), where the state
diagram has two attractors A1 and A2. Each attractor has two states and a cycle size of 2.
An attractor can be associated with a cell type or behavior.

There are three main models: synchronous, asynchronous, and probabilistic. As-
sume a three-gene network, as shown in Figure 2(a). Figure 2(b) depicts a hardware
implementation of synchronous mode, where all genes are updated every clock cycle.
Figure 2(c) shows the asynchronous mode where it is possible to update one or more
genes at one clock cycle. In this example, the gene v2 is updated, v1 and v3 do not change
their value at time t. Finally, Figure 2(d) illustrates the probabilistic mode where each
gene has one or more probabilistic update rules. In this example v1 has 40% probability
of being updated by v1&v2, and 60% probability by v1‖v2.All three models have a direct
mapping to a hardware implementation in FPGA. In this work, we have designed a syn-
chronous mode generator. However, our design is extensible to handle the probabilistic
and asynchronous modes.

As already mentioned, the problem of attractor computation is NP-
hard [Akutsu et al. 1998], and several approaches have been presented by using
BDD [Garg and et al 2007], SAT solver [Dubrova and Teslenko 2011], decomposi-
tions [Yuan et al. 2019], GPU [Mizera et al. 2019], and FPGAs [Bragança and et al 2017,
Penha et al. 2019, Manica et al. 2020]. In this work, we propose to extend the FPGA-
based GRN generator proposed in [Bragança and et al 2017] to AWS FPGA.

3. AWS Amazon FPGA F1 Instances
[Miskov-Zivanov and et al 2011] presents an FPGA GRN simulator. How-

ever, their I/O interface requires manual configuration. On the other hand,
[Bragança and et al 2017], and [Manica et al. 2020] propose GRN frameworks that con-
vert high-level inputs into Verilog descriptions, targeting, respectively, Intel Harp and an
FPGA attached to a POWER8 processor with a coherent memory system. Nevertheless,
these hardware generators include interfaces tailored to specific FPGA platforms, thus
requiring physical access to these boards. In this regard, Amazon released compute in-
stances equipped with Xilinx FPGA boards that enable sharing single or multiple FPGAs
in the cloud as a service, efficiently scaling and accelerating HPC applications. Neverthe-
less, FPGA programming is still a complex and challenging task.

Although AWS includes an FPGA Developer AMI and Hardware Developer Kit
(HDK), it requires design expertise to develop accelerators. Our generator simplifies these
tasks, and the user should only register the accelerator as an Amazon FPGA Image (AFI)
performing deployment in just a few clicks. In addition, AWS offers different instance
sizes that include up to eight FPGAs per instance. Each FPGA includes local 64 GiB
DDR4, approximately 2.5 million LUTs, and about 6,800 DSPs.

Figure 3. (a) FPGA AWS F1 Platform; (b) Our Proposed HW/SW GRN Generator.

Figure 3(a) depicts the AWS FPGA F1 instance platform. The host processor is
a Xeon multi-core, and it has 64 GiB DDR memory space. Amazon provides libraries
and drivers to communicate to the FPGA. Four PCI-buses implement the communication
between the host and the FPGA device, where the maximum throughput is 16 GB/s.
The FPGA has a split memory space of 64 GiB DDR memory and a throughput of up
to 64 GB/s. AWS reserves a dedicated space (SHELL) inside the FPGA to provide the
host/FPGA communication. The user application can only use the custom logic area.

4. Accelerator Architecture
The proposed GRN accelerator requires three main steps: generation, configura-

tion, and execution. First, the user specifies the GRN set of update functions, as shown in
the step 1 of Figure 3(b). From this high-level GRN description, the generator creates
the front-end C++ code to execute in the host processor and all Verilog code to build the
FPGA accelerator. We use Python and Veriloggen [Takamaeda-Yamazaki 2015] to imple-
ment a flexible generator as shown in step 2 of Figure 3(b). Then, the user should upload
the accelerator code, a Vitis AWS F1 platform project 3 , to configure the F1 FPGA in-
stances. The C++ host software 4 and FPGA hardware code 5 pieces are depicted

in Figure 3(b). Finally, the user specifies the set of states and executes the accelerator
application. The following sections detail the accelerator architecture.

4.1. Generator

Figure 4(a) depicts the accelerator architecture structure. The generated Verilog
code includes the AWS F1 interface, a software/hardware scheduling scheme in addition
to the set of processing elements. The accelerator module has three main components:
Reader, Arbiter, and Writer. The generator supports several parameters, where the user
specifies the number of GRN copies 7 . For each copy, it is possible to create an entire
process element unit (PE). The maximum number of copies depends on the size of the
update function set and the input/output FIFOs. However, AWS libraries automatically
generate the AXI interface, directly impacting the occupied area and throughput. Our
generator creates clusters of PEs to share AWS interface resources better and overcome
these constraints. For instance, assume it is possible to implement 128 GRN accelerator
copies, and the cluster size is 32. The generator automatically creates four clusters or
modules, as shown in Figure 4(a), where each cluster has an AXI interface and 32 PEs.

PE N-1

A
X

I R
e
a
d
e
r

A
X

I W
rite

r

GRN
model
circuit

Attractor
Search
Engine

Input
Control

Fifo

(a) (b)

Output
Control

Fifo

PE0

PE1

From PEs

Round Robin
Arbiter

Process Element (PE)GRN PE Cluster

Figure 4. AXI4 IP Accelerator: (a) A Cluster of PEs; (b) PE internal architecture.

First, the AXI Reader 6 receives a set of initial state packages. Each PE has an ID
and a local task FIFO. We propose a distributed software and hardware scheduler where
the host and the hardware accelerator explore the trade-offs to balance the computation
workload across the PEs better. The size of the GRN parameterizes the Reader interface,
and the input package has three fields: initial state, final state, and ID. The PE input FIFO
interface verifies the ID, and if the ID matches, the PE enqueues the request. Assume a
70 genes GRN. The initial and final state field size is a multiple of 8 bits. For this ex-
ample, each state requires 9 bytes (or 72 bits) package. The reader interface is portable,
parametrized, and flexible to support new F1 devices or other FPGA cloud servers. Fur-
thermore, as already mentioned, the cluster of PEs maximizes the I/O communication
and reduces the resources required to implement the AXI interface. Although AWS pro-
vides a generic library to instantiate as many AXI interfaces as possible, the AWS F1
FPGA instance has four physical AXI4 channels, where each channel has a 512-bit width
(64 bytes). The Reader interface and the PE clusterization optimize the package and the
cluster size to better match the AXI4 bit width.

Each cluster or module has an arbiter 8 which performs a round-robin policy to
send the results back to the host CPU through the writer interface. The number of cycles
to compute an attractor depends on the GRN dynamic and the initial state. Therefore

the PE workload is not homogeneous. In addition, a PE can receive a range of states
to compute. For instance, the host sends the package (0,9,3), where 0 is the first state,
9 is the last state, and 3 is the PE ID. Therefore, the PE3 computes the attractors for
the states 0, 1, 2, . . . 9, and send back 10 output packages. Each output package has the
attractor state ID, the number of cycles to reach this attractor (transient), and the size
of the attractor. Therefore, the host software dynamically adjusts the PE workload for a
given GRN without creating and instantiating a new hardware accelerator. When the PE
finishes the computation, the attractor engine inserts the result in the output FIFO, which
waits until the next round-robin time slot to send it back to the CPU. Finally, the AXI
writer 9 handles the output package to send back to the host CPU.

Figure 4(b) depicts an overview of the PE internal structure. First, the input 10

and output 11 control FIFO implement an asynchronous PE interface to mitigate the
unbalanced workload. One PE can receive more than one state package until fulfill the
input FIFO. For each state in the assigned state ranging, the PE computes the attractor
by using the one-two steps algorithm proposed in [Bhattacharjya and Liang 1996]. The
attractor search engine 10 has two registers T and L, to store the transient and the attractor
lengths, similar to the PE proposed in [Bragança and et al 2017].

4.2. Execution

The generator also creates the host code in OpenCL. Although OpenCL provides
a standard interface for parallel computing using task – and data-based parallelism, the
code is verbose even for simple tasks. Our generator reduces the accelerator software
complexity by automatically creating the FPGA OpenCL code and the specific AWS li-
braries. Thus, the user should only create an input file with a set of state ranges to explore.
The accelerator then uses this input file to compute the attractors and their transients and
outputs a CSV file with this information, which can be analyzed later.

5. Experimental Results

This section presents the experiments to evaluate the generator and compare the
results with other AWS services. For this, we create three code generators targeting:
(a) a sequential CPU, (b) a multi-core CPU by using openMP, and (c) GPU by using
CUDA. Our goal is to compare the performance of heterogeneous cloud architectures. In
addition, we also evaluated the cost to allocate these architectures in Amazon cloud ser-
vices [Hashemipour and Ali 2020]. There is a wide range of devices in AWS. Therefore,
we have selected low-cost as well as high-performance and instances for each platform.

5.1. Experimental setup

Table 1 shows the main features of each AWS instance used in the experimental
setup. For FPGA, we select the f1.2xlarge instance, which is equipped with 8 vCPUs
comprised of Intel Xeon E5-2686 v4 series processors (Broadwell) running at frequencies
up to 2.2 GHz, Xilinx VU9P FPGAs and 122 GB of RAM [Hashemipour and Ali 2020].
We perform our experiments in this FPGA instance. However, the generated code can
also execute in the f1.4xlarge and f1.8xlarge, which have four and eight FPGA boards,
respectively. The instance price grows linearly with the number of FPGA devices.

For a multi-core, we select two configurations. The first one is the c5a.16xlarge
instance, which is ideal for algorithms that require high-performance processors.
This instance has 64 vCPUs composed of second-generation AMD EPYC 7002
series processors running at frequencies up to 3.3 GHz and 128 GB of RAM
[Hashemipour and Ali 2020]. The code generator creates a parallel version of the at-
tractor algorithm [Bhattacharjya and Liang 1996] using the OpenMP library to explore
multithreading capabilities.

For GPU devices, we evaluate three AWS options to explore the cost/performance
trade-offs. Since our application does not require specific resources such as tensor cores
nor high memory throughput, it is interesting to compare the relative cost and performance
trade-offs of a V100 7th generation GPU, low energy T4 8th generation GPU, and a K80
3rd generation GPU. The lowest-cost AWS instance with GPU is the g4dn.xlarge. On the
other hand, the highest-cost GPU instance is the p3.2xlarge with a V100 GPU, 8 vCPUs
Xeon E5-2686 v4, 2.2 GHz, and 61 GB of RAM.

Table 1. AWS instance properties

Name AWS
Instance CPU Memory

(GB) Cores Accelerator Price
On-Demand ($)

T4G t4g.medium AWS Graviton2 4 2 - 0.0336
T4 GPU g4dn.xlarge Xeon Scalable v2 16 4 NVIDIA T4 0.526

K80 GPU p2.xlarge Xeon E5-2686 v4 61 4 NVIDIA K80 0.9
FPGA f1.2xlarge Xeon E5-2686 v4 122 8 Xilinx VU9P 1.65
C5A c5a.16xlarge AMD EPYC 7R32 128 64 - 2.464

V100 GPU p3.2xlarge Xeon E5-2686 v4 61 8 NVIDIA V100 3.06

5.2. Real-life Biological Genetic Regulator Networks
We perform our experiments with real-life biological GRN. We have

selected six GRN of the literature: (a) the B bronch, a respiratory bac-
terium and a gastrointestinal helminth (BTC) [Thakar et al. 2012]; (b) the Colitis-
Associated Colon cancer(CAC) [Lu and et al 2015]; (c) the epidermal growth fac-
tor receptor (EGFR)[Samaga and et al 2009]; (d) the CD4+ immune effector T-cell
(CD4) [Conroy and et al 2014]; (e) the ErbB receptor signal transduction in human mam-
mary epithelial cells (ERB) [Helikar et al. 2013]; and (f) the macrophase for the immu-
nity system (SMA) [Raza and et al 2008]. Table 2 shows the main characteristics of each
GRN. For these GRNs, the state space size ranges from 1015 up to 1096, which is higher
than the number of atoms in the observable universe.

Table 2. Real-life Biological Genetic Regulator Network properties
Full Name Name Nodes Edges Operations

B bronchiseptica and T retortaeformis coinfection BTC 53 160 139
Colitis-Associated Colon cancer CAC 70 154 118

EGFR & ErbB signaling EGFR 104 377 370
CD4 T cell signaling CD4 188 406 301

ErbB (1-4) Receptor Signaling ERB 247 1,954 2,242
Signaling in Macrophage Activation SMA 321 553 254

Table 2 sorts the GRN by the number of nodes. The execution time grows as a
function of the number N of nodes. However, it also depends on the network dynamic

Table 3. FPGA resource usage
LUT Fmax

GRN Copies LUT REG as Mem MHz
BTC 128 74.0K 127.2K 18.0K 251

(8.3%) (6.5%) (3.3%)
CAC 128 89.2K 153.5K 21.0K 250.38

(9.98%) (7.86%) (3.83%)
EGFR 128 110.0K 199.1K 28.2K 251.13

(12.31%) (10.20%) (5.13%)
CD4 32 46.4K 82.3K 11.8K 251.13

(4.65%) (3.86%) (2.05%)
ERB 32 76.4K 136.3K 19.5K 251.13

(7.68%) (6.42%) (3.40%)
SMA 32 69.K 107.5K 15.6K 239.87

(7.01%) (5.07%) (2.73%)

Figure 5. Design utiliza-
tion for EGRF GRN.

controlled by the update functions. First, if the average transient and the attractor size are
shorter, the accelerator process each state in a few cycles. Second, the edge complexity
and the size of each update rule (column operations) also have a direct impact on the
execution time as well as in the FPGA area occupied by the GRN circuit. For instance,
the ERB GRN has 247 nodes, significantly smaller than SMA GRN, with 321 nodes.
However, the ERB has several operations about 8.8 times greater than that of the SMA.

5.3. FPGA Resources
Table 3 summarizes the FPGA resources required for each GRN hardware accel-

erator. As already mentioned, it is possible to increase the number of accelerator copies
for smaller networks to improve the performance by using spatial parallelism. For exam-
ple, BTC, CAC, and EGFR GRN accelerators can allocate 128 copies, organized into four
clusters of 32 copies each. For the more extensive networks, with more than 188 nodes,
the FPGA place and routing tools have successfully mapped 32 copies. Column LUT,
REG, and LUTasMEM depict the total number of FPGA lookup tables, registers, and
memories for the accelerator module. These values do not include the interface resources
and the AWS hardware APIs. The clock frequency was kept stable at the highest possible
value allowed by the AWS FPGA platform at 250 MHz depicted in the last column.

Although the FPGA resource utilization is relatively low for kernel circuits, it is
important to highlight that the input/output controller circuitry and the AWS shell con-
sume a significant amount of FPGA resources. For EGFR, the total resources used is
30.6% of LUT, 10.3% of LUTAsRAM, and 24.3% of REG. Figure 5 depicts a graphi-
cal representation of the FPGA resource utilization. The blue area represents the AWS
SHELL, and the accelerator can not allocate these quadrants to place the custom logic.
The red area is the allocated resources for data inputs/outputs, and only the green area
represents the accelerator kernel itself. The major challenge in increasing the number of
copies was related to internal limitations in the FPGA used due to the maximum number
of proper buses for clock signal propagation. Despite the limitations, the FPGA accelera-
tor achieves lower execution time than multi-threaded executions on CPU and GPUs, as
shown in the next sections.

5.4. Performance Analysis
To perform the performance analysis of the three platforms we generated the codes

for the six real-world GRNs described in Table 2. For the smaller networks BTC, CAC,

EGFR, and CD4, we explore 225 states, and for the larger networks, we explore 224 states.
As the number of evaluated states differs according to each network, we normalize the re-
sults. The execution time was measured by using chrono::highresolutionclock functions.

Figure 6. (a) Execution time in milliseconds for the GRNs on each AWS instance.
Lower is better; (b) FPGA Speedup.

Figure 6(a) depicts the execution time in milliseconds for the six evaluated accel-
erator devices available in the AWS: an FPGA F1 instance, a low and a high-performance
multi-core instances T4G and C5A, and three GPU instances (V100, T4, and K80). We
sort the AWS instances in ascending order for the execution time. The FPGA accelerator
shows a lower execution time for all evaluated scenarios. Figure 6(b) depicts the average
speedup factor for the FPGA approach in comparison to multi-core and GPU devices.

FPGA accelerator explores spatial parallelism at two levels. As shown in Fig-
ure 2(a), the hardware implementation evaluates all update rules in parallel in one clock
cycle, which provides a significant increase in the instruction-level parallelism (ILP). In
addition, the generator creates as many GRN copies as possible, which increases the task
parallelism (see Table 3). Considering the multi-core implementation, we used the max-
imum number of thread/core: 2 for the T4G AWS instances and 64 for the C5A AWS
instances. Finally, each GPU thread executes an entire attractor computation for a given
state by exploring the SIMT parallelism for GPU execution. Although the CPU and GPU
operational frequency is more than 10× faster than the FPGA, the ILP and task FPGA par-
allelisms overcome this drawback to provide better acceleration. The GPU takes advan-
tage of the massive number of cores to provide better acceleration than the CPU devices.
However, each GPU thread consumes a large number of registers due to the complexity
of the GRN update rules, which reduces the number of scheduled execution threads in
the GPU stream processors. A GPU V100 has 5,120 cores, and it is around 4.7× faster
than a 64-core CPU. However, it has 80× more cores. It is important to highlight that it
is a simple comparison since a GPU core cost and performance are not equivalent to the
simple GPU cores. In summary (see Figure 6(b), the FPGA is 12×, 18×, 27×, 56×, and
1031× faster than the V100 GPU, T4 GPU, K80 GPU, 64-core high performance CPU,
2-core low-cost CPU, respectively.

Cloud computing delivers computing resources as a service, where various pricing
and tariff models create new cost metrics. In addition to execution time, we propose to
evaluate the performance per Dollar by measuring the number of attractor computations
per Dollar. Figure 7(a) depicts the number of Giga states processed per Dollar for the
six GRN networks in the six AWS instances, where a high number means a better per-
formance per Dollar. These results demonstrate one more advantage in the use of FPGAs
when compared to other accelerator approaches. Although an FPGA cost is 1.65 US$ per

Figure 7. Performance per dollar: (a) Giga processed states per Dollar in the six
evaluated AWS instances. High is better. (b) Increasing cost factor, where lower
is better.

hour, which is 3.1× more expensive than T4 GPU, the FPGA is 18.1× faster than T4. On
average, the increase in cost per state is approximately 5.7×. Moreover, expensive GPU
resources such as tensor cores in V100 are useless to compute attractors. Even the T4
GPU is 1.5× slower than the V100, and it is 6× less expensive. Therefore, it is better to
instantiate six T4 instead of one V 100, which will be 4× faster. Figure7(b) depicts the
increase in cost factor to compute the attractor per Dollar relative to the FPGA perfor-
mance per Dollar. The AWS instances pricing has been reported in Table 1. The 64-core
instance has the worst performance per Dollar. It is 85× worst than the FPGA, while the
2-core is only 21×. However, the 2-core is 1031× and 18× slower than the FPGA and the
64-core, respectively. Therefore, the FPGA achieves the best performance and the best
performance per Dollar in all scenarios.

6. Related Work

GRN models involve expensive computation tasks, where HPC approaches
using parallel accelerators and divide-and-conquer techniques can be applied.
[Borelli and et al 2013] propose a GPU-based approach to perform the GRN inference
from gene expression data. This work focus on the attractor computation of GRNs. The
first challenge is the scalability, which was held in 2006 by [Irons 2006] to deal with
Boolean networks up to 80 nodes. Then, [Guo et al. 2014] present a block decomposition
approach to reduce the problem complexity by using strongly connected components and
SAT solver to identify the attractors in the state transition graph of each block. Further-
more, a parallel multi-core approach is presented, which reaches an average speedup of
1.47, 2.06, and 2.64 on 2-core, 4-core, and 8-core [Guo et al. 2014].

[Yuan et al. 2019] deal with GRN sizes range from 100 to 500 nodes on synthetic
random generated networks and real-life biological networks up to 100 nodes using a
decomposition-based technique. However, this step is performed on the network struc-
ture and not on the network state transition [Guo et al. 2014]. Therefore, a block partially
preserves the attractors of the original GRN. The block attractors are detected, and the de-
pendency relationships between blocks reduce the state-space, thus accelerating execution
time. Finally, the attractors of the entire GRN are computed from the block’s attractors.

Recently, [Manica et al. 2020] achieves an order of magnitude speedup over a
multi-threaded by using FPGA-based implementation, which first converts the model
to Verilog to execute on an FPGA coherently attached to a POWER8 processor. The
proposed FPGA-implementation is around 102 − 103× faster than the Boolnet R pack-

age [Müssel et al. 2010] by computing on average 2M attractors per second. Considering
the CAC GRN, their FPGA implementation requires 1.57s to visit 225 states, while our
approach spends 131 ms being 11× faster. The authors in [Manica et al. 2020] argue that
it is possible to explore spatial parallelism although not presenting any implementation.

7. Conclusions
This work proposes to explore the emergence of FPGAs in the cloud to develop

a hardware accelerator for gene regulatory networks by deploying it in the AWS FPGA
cloud. We are the first to report GRN hardware acceleration using Amazon AWS FPGAs
to the best of our knowledge. Our GRN accelerator generator provides an easy interface
for users to computer attractors without being responsible for the hardware design flow
and FPGA resources management. Furthermore, we evaluate the performance per dollar,
which is an important metric in the cloud services. The FPGA offers high instruction-
level parallelism at the bit level and scalability to instantiated more accelerator copies by
exploiting the spatial parallelism. Our accelerator is 12× faster than the best solution on
GPU, and it reaches a performance per dollar 5.7× better than the best GPU solution. The
generator code is open source2 and modular to be reused to develop a new accelerator
for GRN and AWS F1 instances. Future work will investigate the GRN algorithm for
synchronous, asynchronous, and probabilistic models.

References
Akutsu, T., Kuhara, S., Maruyama, O., and Miyano, S. (1998). A system for identify-

ing genetic networks from gene expression patterns produced by gene disruptions and
overexpressions. Genome Informatics, 9:151–160.

Bhattacharjya, A. and Liang, S. (1996). Median attractor and transients in random boolean
nets. Physica D: Nonlinear Phenomena, 95(1):29–34.

Borelli, F. F. and et al (2013). Gene regulatory networks inference using a multi-gpu
exhaustive search algorithm. BMC bioinformatics, 14(18):1–12.

Braganca, L. and et al (2021). An open source custom k-means generator for aws cloud
fpga accelerators. In Brazilian Symp on Computing Systems Engineering (SBESC).

Bragança, L. and et al (2017). Exploring the dynamics of large-scale gene regulatory
networks using hardware acceleration on a heterogeneous cpu-fpga platform. In IEEE
International Conference on ReConFigurable Computing and FPGAs (ReConFig).

Chaos, A. and et al (2006). From genes to flower patterns and evolution: dynamic models
of gene regulatory networks. Journal of Plant Growth Regulation, 25(4):278–289.

Conroy, B. and et al (2014). Design, assessment, and in vivo evaluation of a computational
model illustrating the role of cav1 in cd4+ t-lymphocytes. Frontiers in immunology, 5.

Dubrova, E. and Teslenko, M. (2011). A sat-based algorithm for finding attractors in
synchronous boolean networks. IEEE Trans. on Comp. Biology and Bioinformatics.

Ferreira, R. and Vendramini, J. (2010). Fpga-accelerated attractor computation of scale
free gene regulatory networks. In Field Programmable Logic and Applications (FPL).

2https://github.com/lesc-ufv/grn_hw_accelerator

Garg, A. and et al (2007). An efficient method for dynamic analysis of gene regulatory
networks and in silico gene perturbation experiments. In Int Conf on Research in
Computational Molecular Biology.

Guo, W., Yang, G., Wu, W., and Sun, M. (2014). A parallel attractor finding algorithm
based on boolean satisfiability for genetic regulatory networks. PloS one, 9(4).

Hashemipour, S. and Ali, M. (2020). Amazon web services (aws)–an overview of the
on-demand cloud computing platform. In Int Conf for Emerging Technologies in Com-
puting. Springer.

Helikar, T., Kochi, N., Kowal, B., Dimri, M., Raja, S. M., Band, V., Band, H., and Rogers,
J. A. (2013). A comprehensive, multi-scale dynamical model of erbb receptor signal
transduction in human mammary epithelial cells. PLoS One, 8(4):e61757.

Irons, D. J. (2006). Improving the efficiency of attractor cycle identification in boolean
networks. Physica D: Nonlinear Phenomena, 217(1):7–21.

Lu, J. and et al (2015). Network modelling reveals the mechanism underlying colitis-
associated colon cancer and identifies novel combinatorial anti-cancer targets. Scien-
tific reports, 5(1):1–15.

Manica, M., Polig, R., Purandare, M., Mathis, R., Hagleitner, C., and Martinez, M. R.
(2020). Fpga accelerated analysis of boolean gene regulatory networks. IEEE/ACM
Transactions on Computational Biology and Bioinformatics, 17(6):2141–2147.

Miskov-Zivanov, N. and et al (2011). Emulation of biological networks in reconfig-
urable hardware. In ACM Conference on Bioinformatics, Computational Biology and
Biomedicine, pages 536–540.

Mizera, A., Pang, J., and Yuan, Q. (2019). Gpu-accelerated steady-state computation of
large probabilistic boolean networks. Formal Aspects of Computing, 31(1):27–46.

Müssel, C., Hopfensitz, M., and Kestler, H. A. (2010). Boolnet—an r package for gener-
ation, reconstruction and analysis of boolean networks. Bioinformatics, 26(10).

Penha, J., Braganca, L., Nacif, J., and Ferreira, R. (2019). Add: Accelerator design
and deploy-a tool for fpga high-performance dataflow computing. Concurrency and
Computation: Practice and Experience, 31(18):e5096.

Raza, S. and et al (2008). A logic-based diagram of signalling pathways central to
macrophage activation. BMC systems biology, 2(1):36.

Samaga, R. and et al (2009). The logic of egfr/erbb signaling: theoretical properties and
analysis of high-throughput data. PLoS computational biology, 5(8):e1000438.

Takamaeda-Yamazaki, S. (2015). Pyverilog: A python-based hardware design processing
toolkit for verilog hdl. In Applied Reconfigurable Computing, volume 9040 of Lecture
Notes in Computer Science, pages 451–460. Springer International Publishing.

Thakar, J., Pathak, A. K., Murphy, L., and Cattadori, I. M. (2012). Network model of
immune responses reveals key effectors to single and co-infection dynamics by a res-
piratory bacterium and a gastrointestinal helminth. PLoS computational biology, 8(1).

Yuan, Q., Mizera, A., and Qu, H. (2019). A new decomposition-based method for detect-
ing attractors in synchronous boolean networks. Science of Computer Programming.

