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Abstract. Data replication is the main fault tolerance mechanism implemented
by the HDFS. The placement of the replicated data across the nodes directly
influences replica balancing and data locality, which are essential to ensure
high reliability and data availability. The HDFS Balancer is the official solu-
tion to perform replica balancing through data redistribution. In this work, we
conducted a practical experiment to evaluate different policies for replica rear-
rangement, namely: datanode, blockpool, and custom. The evaluation results
underline the behavior and the effectiveness of each policy. In addition, we in-
vestigated the cost of the HDFS Balancer operation and the performance and
availability improvements promoted by a balanced replica distribution.

1. Introduction
Distributed file systems are widely used to support data-intensive applications. One
of the widespread adopted file systems is the Hadoop Distributed File System (HDFS)
[Foundation 2021]. Besides being the main storage engine of the Apache Hadoop ecosys-
tem, the HDFS is incorporated by several parallel processing frameworks, such as Apache
Spark, Drill, Storm, and Flink, and it is used as a storage layer for technologies like
Apache Kafka, Phoenix, and HBase [White 2015].

Applications that are compatible with HDFS, in general, deal with large datasets
[Foundation 2021]. In this sense, HDFS strives to reliably store the files and provide high
availability and throughput access to application data [Turkington 2013]. To this end, the
data are automatically replicated and distributed across the file system. Optimizing the
placement of the replicas distinguishes HDFS from most other distributed file systems
[Foundation 2021]. Therefore, there is an effort to maintain the replicas in a way that
improves both availability and performance. Over time, however, the data spread among
the nodes can become unbalanced [White 2015].

The HDFS Balancer [Shvachko et al. 2010] is the native reactive solution to ana-
lyze the replica placement and redistribute the stored data to promote replica balancing.
The operation of the tool is guided by a balancing policy that determines when the cluster
should be considered balanced. There are two policies implemented by the HDFS Bal-
ancer, namely, datanode and blockpool [Cloudera, Inc. 2021]. Furthermore, customized
policies designed to improve the balancing process and incorporate new features into the
HDFS Balancer can be found in the literature [Fazul et al. 2019].

This work presents a practical and comparative investigation of different balancing
policies to redistribute data replicas in the HDFS. We highlight the benefits and drawbacks



of using the HDFS Balancer with the default configuration and non-standard policies.
Moreover, we analyze optimizations in data-intensive operations provided by reactive
replica rearrangement in the cluster. The experimental investigation was conducted in a
real, multi-rack, and distributed environment running HDFS. To the best of our knowl-
edge, no work in the literature has compared and evaluated the trade-off of the balancing
policies available for the HDFS Balancer.

The rest of this paper is organized as follows. Section 2 gives some background
on the HDFS and its data replication mechanism. Section 3 is dedicated to data locality
and replica balancing. Section 4 presents the HDFS Balancer and its replica balancing
policies in detail. After looking into the replica balancing process in HDFS clusters,
Section 5 provides an overview of the related work. Section 6 describes and discusses the
evaluation results. Finally, Section 7 concludes the paper and outlines future work.

2. Hadoop Distributed File System (HDFS)
HDFS is a reliable and scalable distributed file system. It is designed to be highly fault-
tolerant even when deployed on low-cost hardware [Foundation 2021]. An HDFS cluster
follows a server-worker architecture composed of two types of nodes: NameNode (NN)
and DataNode (DN). The NN is the master server that manages the system namespace
and metadata, maintains the directory tree, and controls access and distribution of the
files. Meanwhile, the DNs are the workers responsible for storing the data and serving
write and read requests from the clients [Achari 2015].

Since its creation, HDFS has been optimized to store data on the petabyte scale
[Shvachko 2010]. To handle this massive volume of data and support very large files, the
HDFS implements a characteristic storage structure [Foundation 2021]. When a file is
inserted into the system, instead of saving it in its original form, HDFS splits it into a
sequence of data blocks: small data chunks created automatically from the partitioning of
the initial file into data segments of fixed size (128MB by default). The data blocks are
stored across the DNs machines in the cluster.

The NN keeps a reference to every file and block stored in the filesystem in mem-
ory, which means that on very large clusters with many files, the memory becomes the
limiting factor for scaling [White 2015]. The prior HDFS architecture (Hadoop version
1.x) allows only a single namespace, managed by a single NN, for the entire cluster
[White 2015]. To address this limitation, Hadoop 2 release series introduces the con-
cept of HDFS Federation [Foundation 2021]: a feature that improves the existing HDFS
architecture through a clear separation of namespace and storage, enabling a generic block
storage layer. In order to scale the name service horizontally, HDFS federation enables
support for more than one namespace in the cluster, which improves scalability and iso-
lation as each NN manages an isolated portion of the filesystem namespace.

The NNs are federated, which means they are independent and do not require
coordination with each other. The DNs register with each NN in the cluster and then they
can be used as common storage for all the existing block pools: a set of blocks that belong
to a single namespace [Foundation 2021]. Each block pool is managed independently, so
an NN failure does not prevent the DNs from serving the remaining NNs in the cluster.
In addition to NN failures, the chances of DN failures in an HDFS cluster are high since
it runs on commodity hardware [White 2015]. Even with this condition, it is necessary



to ensure high availability and reliability, so that the services are maintained and no data
is definitely lost. In this sense, Section 2.1 presents the main fault tolerance mechanism
implemented by the HDFS.

2.1. Data Replication

A common way to ensure high reliability and data availability in distributed environ-
ments is through replication, in which data redundancy is preserved in the system
[Lamehamedi et al. 2002]. HDFS uses block replication as the primary mechanism for
fault tolerance and the central element of its storage model. With replication, copies of
the data are kept at multiple nodes so that a block can be accessed from any DN that
maintains its replicas. It is expected that, in the event of failures, at least one of the copies
of the data is still available. The number of replicas is defined by the Replication Factor
(RF), which is configured per file and has a default value of three [Achari 2015].

The NN is responsible for monitoring the number of data replicas available for
each block stored in the file system, ensuring that the specified RF is respected. To this
end, the DN processes communicate periodically with the NN through heartbeat messages
[Foundation 2021]: a fault tolerance mechanism that allows the detection of operational
failures in DNs. If the NN does not receive heartbeats from a DN within a predefined
period, it marks this DN as inactive. The data held in an inactive DN are not available
for HDFS, which can take the RF of the blocks previously stored in its node to a value
below the specified. Since the NN constantly tracks which blocks need to be replicated,
it triggers the re-replication of the under-replicated blocks whenever necessary.

The distribution of the replicas, originating from both the initial replication of the
blocks and the re-replication process, is essential for reliability and performance. Op-
timizing the placement of replicas in the cluster distinguishes HDFS from most other
distributed file systems [Foundation 2021]. As the master server, the NN is in charge of
selecting which DNs will store the replicas of each block. Therefore, it follows a Replica
Placement Policy (RPP) [White 2015], that aims to improve system reliability and data
availability, as well as the use of network bandwidth according to the cluster architecture.
For the common case, when the RF is three, the RPP stores the first replica on the same
node as the client (i.e., in the local machine). The second replica is placed on a node, cho-
sen at random, in a different rack from the first (off-rack) and the third replica is placed
on a different node in the same remote rack as the second replica.

The strategy implemented by the RPP ensures high reliability since, even if an
entire rack fails, no data blocks will be lost. Moreover, with its rack-aware distribution
model, the RPP makes it possible to identify the rack closest to the client that stores the
requested replica. As a result, local replicas – or closer to the reader – are preferred
over remote replicas [Foundation 2021], which tends to decrease the time spent on data
transfers. Section 3 explains how the location of the blocks is exploited by the file system
to meet high access demands and, in this context, how an unbalanced data distribution
can affect the functioning of the file system.

3. Data Locality and Replica Balancing
HDFS considers that the most efficient data processing pattern is the write once, read
many access model. In this sense, to maximize throughput during reading operations,



Hadoop moves the computing tasks to where replicas are kept and, if it is not possible, to
nodes that have a faster network path for the DNs that maintain the requested blocks. This
feature, known as data locality optimization [White 2015], increases the overall system
throughput when processing large volumes of data, in addition to minimizing read latency
and network congestion.

Considering that each block is replicated, by default, in three distinct DNs, the
chances that a computational task will be able to process most of the data locally are high
[Achari 2015]. However, an unbalanced distribution affects data locality, resulting in a
large number of intra-rack or even off-rack transfers, since tasks assigned to nodes that do
not maintain many replicas are unlikely to have access to local data. Besides increasing
the global bandwidth consumption in the cluster, the imbalance can cause some DNs to
become full, preventing them from receiving new replicas and, thus, reducing the reading
parallelism and leading to performance degradation [Foundation 2021]. Therefore, HDFS
works best when the blocks are evenly distributed across the cluster [White 2015].

The replica imbalance in the HDFS may have different causes, such as
[Cloudera, Inc. 2021]: (i) the RPP itself, which stores two-thirds of the replicas in the
same rack and does not guarantee a balanced distribution of replicas; (ii) the behavior of
the client’s application that, if executed directly on a DN, always stores one of the repli-
cas on the local node to reduce write bandwidth consumption; (iii) the occurrence of DN
failures, since inactive DNs result in the re-replication process of multiple blocks, which
is also based on the RPP; and (iv) the insertion of new DNs in the file system, as the
existing blocks are not automatically moved and they will be candidates for block place-
ment alongside all the other active DNs in the cluster to receive new replicas, causing
under-utilization of computational resources for a significant period [Turkington 2013].

To mitigate the problems inherent in the imbalance in the distribution of data repli-
cas, maintain maximum cluster health and avoid performance bottlenecks, it is necessary
to redistribute the data already stored in the file system [White 2015]. The official solution
for replica balancing in HDFS is presented in Section 4.

4. HDFS Balancer
HDFS Balancer [Shvachko et al. 2010] is a tool integrated into the Hadoop distribution,
aimed at balancing replicas between storage devices on HDFS. It operates iteratively by
moving data replicas of DNs that have high utilization (source) to DNs that have a smaller
amount of stored data (target) until there is less discrepancy between the data volume held
on the nodes. The tool, as a reactive balancing solution, needs to be triggered on demand
by the cluster administrator.

Two native policies can be used to determine whether the cluster is balanced,
namely datanode and blockpool [Cloudera, Inc. 2021]. The former is the HDFS Bal-
ancer’s default policy, which balances the data storage at the DN level (i.e., the cluster
is balanced if each DN is balanced). The latter means that the cluster is balanced if each
pool in each node is balanced, which is especially relevant to clusters running a federated
HDFS service. The blockpool is a more strict policy than the datanode in the sense that
the blockpool requirement implies the datanode requirement [Cloudera, Inc. 2021], that
is, it balances the storage at the block pool level as well as at the DN level. Next, Section
4.1 presents the execution flow of the rebalancing process in HDFS.



4.1. Cluster Balancing Flow
The operation performed by the HDFS Balancer is guided by a threshold, which has a
default value of 10%. Let Gi,t represents the group of devices of type t (e.g., disk or
SSD) of a DN i. With the standard balancing policy (datanode), the threshold limits the
maximum difference between the utilization of a Gi,t (Ui,t) and the average utilization
of the cluster (Uµ,t) considering the storage devices of the type t. When the utilization
of each DN is within this limit, the cluster is considered balanced. With the blockpool
policy, in turn, the threshold limits the maximum difference between the utilization of a
block pool partially stored in a given Gi,t and the average utilization of the block pool in
relation to the storage capacity of the devices of type t in the cluster. It is important to
reinforce that as nodes can store blocks belonging to multiple block pools, balancing each
of the pools in each node also implies the guarantees of the datanode policy.

The HDFS Balancer runs in iterations. Each iteration consists of four main steps
[Cloudera, Inc. 2021]. Initially, in the storage group classification step, the Balancer asks
the NN for information about the utilization and occupation of the DNs and then classifies
each Gi,t as follows: (i) over-utilized, if Ui,t > Uµ,t + threshold ; (ii) above-average, if
Uµ,t + threshold ≥ Ui,t > Uµ,t; (iii) below-average, if Uµ,t ≥ Ui,t ≥ Uµ,t − threshold ; or
(iv) under-utilized, if Uµ,t − threshold > Ui,t.

Next, in the storage group pairing step, each over-utilized Gi,t (source) is paired
with one or more under-utilized Gi,t (target). For the remaining over-utilized Gi,t, can-
didates are selected from the groups classified as below-average. If there is still under-
utilized Gi,t, candidates are chosen among the above-average groups. To reduce band-
width consumption in the cluster, the pairing strategy initially seeks groups belonging to
DNs that reside in the same rack.

Then, in the block move scheduling step, the Balancer triggers a thread responsible
for selecting and moving blocks between each source-target pair. A block in a source
DN is a valid candidate to be redistributed if, after the move, its placement continues in
accordance with the RPP. Once the block to be relocated has been defined, the DN closest
to the target (or less loaded than the source) and that stores a replica of the block to be
moved is used as a proxy. This strategy allows reducing the inter-rack network traffic
necessary for transferring the data between nodes residing in different racks.

Finally, in the block move execution step, the proxy to copy the block to the target
DN together with a hint that the block should be deleted from the source DN. If, after
the conclusion of all block movements, the cluster is not yet balanced – depending on
the defined threshold –, a new iteration will start. This strategy ensures, at least, that
the utilization of all DNs in the cluster is within the lower (Uµ,t − threshold) and upper
(Uµ,t + threshold) limits.

5. Related Work
As presented in the previous sections, data replication and the placement of the replicas
across the nodes are critical subjects related to fault tolerance, reliability, and data avail-
ability in distributed file systems. Many researchers have investigated how replication op-
timizes data locality in data-intensive systems [Liu et al. 2020] and several studies were
carried out to evaluate and improve the data replication mechanism [Rajput et al. 2022]
and replica balancing [Shwe and Aritsugi 2019] in HDFS.



In [Yin and Deng 2022], the authors investigated methods for placing replicas in
edge-cloud environments. Based on the analyses, a strategy was proposed in which the
replicas are placed on edge nodes based in their load and on the cost-effective value.
A study to determine if increasing the replication factor for in-demand data can have a
positive impact on HDFS performance is presented in [Cao et al. 2022]. With the help of
an adaptive replication system, which increases the RF of the most accessed data, it was
possible to optimize the overall availability of data and reduce job execution times.

In previous work [Fazul et al. 2019], we proposed a customized balancing policy
for the HDFS Balancer, which focuses on improving data availability and performance
through replica balancing. To this end, a balancing priority, called “data availability”,
has been incorporated into the block move scheduling step executed in each balancing
iteration to prioritize block movements that increase the availability of the data stored in
the HDFS, that is, place the replicas in as many racks as possible. Besides fault tolerance
– as placing block replicas in different racks reduces the chances of data loss due to
rack failures – the additional availability can be used to take better advantage of cluster
bandwidth for performance improvements.

6. Experiments and Discussion

In order to investigate the behavior and evaluate the effectiveness of the main policies for
balancing the replicas in HDFS, we carried out experiments on the GRID’50001 platform
in an environment composed of 10 nodes belonging to cluster gros of the site Nancy. Each
node (Dell PowerEdge R640) had the following configurations: 1 CPU Intel Xeon Gold
5220 (Cascade Lake-SP, 2.20GHz, 18 cores/CPU), 96GB of RAM, 447GB of storage ca-
pacity (SSD SATA Micron), and 2 Ethernet connections with a configured rate of 25Gbps
each. All the nodes were running a Debian GNU/Linux 10 (buster) distribution.

We set up the Apache Hadoop framework (version 2.9.2) in a fully-distributed
operation with 2 NNs (federated cluster with two namespaces) and 10 DNs (one DN per
node) grouped by four racks (R1 to R4). Racks R1 and R2 maintained 3 DNs each. Racks
R3 and R4, in turn, grouped 2 DNs each. The test scenarios we built considered four
different policies to distribute the data blocks across the cluster, as follows:

• initial RPP, in which the replicas are placed immediately after writing the files
based on the standard Replica Placement Policy of the HDFS (i.e., without reactive
balancing), as presented in Section 2.1;

• datanode, in which the redistribution of the blocks is done by the HDFS Balancer
configured with the default balancing policy (Section 4);

• blockpool, in which the rearrangement of the replicas is performed by HDFS Bal-
ancer configured with the blockpool policy (Section 4); and

• custom, in which the replica balancing process in the file system is conducted by
the HDFS Balancer customized with the “data availability” priority presented in
[Fazul et al. 2019], as pointed out in Section 5.

In the experiments presented later in this section, the initial RPP is used as a
baseline for comparison as it generates the default replica distributions of every file written
on HDFS. As for the three balancing policies (datanode, blockpool, and custom), the

1https://www.grid5000.fr
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HDFS Balancer – configured with the default threshold of 10% – is executed right after
the blocks are replicated and stored in the file system. Next, Sections 6.1 and 6.2 present
and discuss the evaluation results obtained in two test scenarios with variation in the
volume of data stored on the file system.

6.1. First Scenario
In this first scenario, 20 files of 20GB each and with a standard RF of three replicas per
block were written. Since the cluster is federated, the load was equally divided into the
two namespaces (NS1 and NS2), that is, 10 files of 20GB each under the responsibility of
each of the NNs. The data load was performed by TestDFSIO (version 1.8) [White 2015]:
a benchmark that tests HDFS performance by executing parallel and intensive I/O tasks.
After the writing operations were complete, the total volume of data in the file system
was approximately 1.17TB, which is equivalent to 3,200 blocks of 128MB each (9,600
replicas). The average utilization of the cluster (Uµ,SSD) was 32.41%.

The standard deviations (σ) of the occupation of the DNs with the initial RPP,
datanode, blockpool, and custom policies were, respectively, 57.06GB (σ of 14.47% con-
sidering the utilization of the nodes), 22.77GB (5.78%), 19GB (4.82%), and 30.08GB
(7.63%). Thereby, with the replicas being distributed based on the initial RPP, there is a
high discrepancy in the volume of data maintained in the storage devices of the DNs. It
is also interesting to note the uttermost differences of the data volume kept in the nodes,
which attest that the RPP does not consider the utilization of the nodes when selecting the
DNs and, thus, does not guarantee a balanced data distribution across the cluster.

In relation to the balancing policies, we can see how the rearrangement of the
replicas contributes to cluster balancing. The result of the balancing operation is attested
by the reduction of the standard deviations of the occupation and utilization of the DNs.
Besides that, the HDFS Balancer strove to maintain the utilization of each DN in an
interval controlled by the lower and upper balancing limits. As the blockpool policy
is more rigorous, it was able to ensure the highest level of balance when compared to
the others, closely followed by the datanode policy. Since the custom policy prioritizes
specific block movements during the balancing operation, it achieved a reduced balance
level as shown by the slightly higher standard deviation when compared with the two
balancing policies, but it still followed the defined threshold.

To facilitate the visualization of the volume of data spread across the file system’s
racks, Table 1 displays the accumulated occupation in GB (ORi,SSD) and utilization per-
centage (URi,SSD) at the rack level. It is important to note that racks R3 and R4 (2 DNs
per rack) had less total storage space than racks R1 and R2 (3 DNs per rack). Thus, it
is expected proportional differences in the average occupation among the racks. The uti-
lization of the racks, on the other hand, provides values relative to the storage capacity of
each rack. The discrepancy in the data volume stored in each rack with the initial RPP,
among other reasons, is explained by its default choosing strategy of placing one-third
of the block replicas in one rack and two-thirds in a second rack, which can promote
inter-rack imbalance in the cluster. Also, based on the standard deviations, we can see
that the replica rearrangement performed by the HDFS Balancer with the datanode and
custom policies help to achieve a better balance at the rack level. The blockpool policy,
in turn, focuses on balancing at the block pool level, which does not always contribute to
inter-rack balancing in the HDFS cluster.



Table 1. Data stored in each rack with the four policies in the first scenario.

Rack initial RPP datanode blockpool custom

ORi,SSD URi,SSD Oi,SSD URi,SSD ORi,SSD URi,SSD ORi,SSD URi,SSD

R1 350.80 29.66 356.15 30.12 321.51 27.19 354.97 30.02
R2 343.30 29.03 372.65 31.51 377.69 31.94 359.29 30.38
R3 263.55 33.43 247.05 31.34 258.13 32.74 236.97 30.06
R4 252.20 31.99 234.57 29.75 258.01 32.73 261.53 33.17

Standard deviation (σ) 51.78GB 2.05% 71.85GB 0.88% 57.61GB 2.67% 63.11GB 1.52%

To further analyze the placement of the replicas considering an availability per-
spective, we used the HDFS utility fsck (filesystem check) [White 2015] to retrieve the
locations of the block stored in each rack. With the initial RPP, as expected, all the blocks
were placed in exactly two racks. In contrast, after redistributing the replicas with the
balancing policies, we noticed that 11.34% of the block movements carried out with data-
node policy made the blocks reach maximum availability considering the RF (i.e., block
with replicas placed in three unique racks). With the blockpool policy that value was
7.78%. With the custom policy, on the other hand, 85.65% of the movements increased
data availability. This is justified by the behavior of the “data availability” priority im-
plemented by the custom policy that prioritizes transfers that place the replicas in a larger
number of racks. This is especially useful in scenarios with two or more racks going down
at the same time, as placing replicas on only two racks will cause data loss.

Regarding the balancing operation, the datanode policy resulted in 90.38GB of
data being moved in three balancing iterations that required 4083.25 seconds to be per-
formed. With the blockpool, 137.13GB were moved in five iterations that took 8641.5
seconds. The custom policy moved 81.78 GB in six iterations, causing the balancing op-
eration to complete in 8165.56 seconds. Naturally, the placement of the replicas in the
scenario with the initial RPP does not require data redistribution as it places the replicas
during the write operation and the initial replication. Nevertheless, the custom policy,
with a higher number of inter-rack transfers to place the replicas in three different racks,
demanded a greater effort in terms of balancing time and bandwidth consumption for
data transfers. The blockpool policy, in turn, needed to move a larger volume of data to
perform the replica balancing at the block pool level. Therefore, the default policy (data-
node) caused a lower overhead compared to the other two policies even though the block
movements performed by all the balancing policies also follow the standard RPP.

To investigate possible performance improvements and optimizations in data lo-
cality promoted by the distribution of the replicas with the policies, we considered 20
different executions of TestDFSIO to read all the data files stored in each namespace
of the HDFS. Table 2 presents key metrics of the I/O operations, separated by the two
namespaces (NS1 and NS2), considering the arithmetic means of the benchmark in the 20
executions regarding the read time (i.e., the total execution time of the benchmark), read
throughput, and read average I/O rate. The read throughput is given by the ratio of the
total data volume processed (in MB) to the sum of times (in seconds) spent by each task
(due to parallelism, this value may be greater than the execution time of the job). The
read average I/O rate is the ratio between the transfer speed obtained by each map task to
the total number of mappers. By default, the number of mappers that will be executed is



equivalent to the number of files read by the benchmark.

Table 2. HDFS performance in reading the data in the first scenario.

Metric initial RPP datanode blockpool custom

NS1 NS2 NS1 NS2 NS1 NS2 NS1 NS2

Read time 102.34 106.02 77.86 91.95 88.89 77.33 68.04 85.95
Percentage change (%) - - -23.92 -13.27 -13.14 -27.06 -33.52 -18.93

Read throughput 389.18 387.69 463.26 438.68 445.08 485.09 558.18 473.37
Percentage change (%) - - 19.03 13.15 14.36 25.12 43.42 22.10

Read avg. I/O rate 468.76 445.50 550.27 499.61 596.05 590.11 646.73 573.24
Percentage change (%) - - 17.39 12.15 27.15 32.46 37.97 28.67

For each of the metrics, we present the percentage change given by ((Tb − Ta) /
Ta × 100). The terms Ta and Tb represent, respectively, the arithmetic mean of the metric
under analysis in the 20 runs of the benchmark with the initial RPP (baseline) and with
the evaluated balancing policy. The average reading time (in seconds) considering both
namespaces with the data distribution based on the initial RPP was 104.18s. With the
datanode, blockpool, and custom policies, the values were, respectively, 84.91s, 83.11s,
and 77s. Thus, the average percentage change was −18.5% with the datanode policy,
−20.22% with the blockpool policy, and −26.09% with the custom policy. The negative
variations represent the reduction obtained in the reading times after running the HDFS
Balancer in relation to the initial RPP.

The average read throughput considering both namespaces with the initial RPP
was 388.43MB/s. With the datanode, blockpool, and custom policies, there was an
increase to 450.97MB/s (percentage change of 16.1%), 465.08MB/s (19.73%), and
515.77MB/s (32.78%). Similarly, the average read I/O rate with the initial RPP was
457.13MB/s and, with the balancing, it goes to 524.94MB/s (14.83%), 593.08MB/s
(29.74%), and 609.99MB/s (33.44%). Thereby, when compared with the initial RPP,
there were performance gains using the HDFS Balancer, regardless of the policy adopted
in the balancing process.

6.2. Second Scenario

For the second scenario, we consider a higher volume of data stored in the file system.
In this sense, we used the TestDFSIO to write 30 files of 30GB each with the standard
RF. The load was equally divided into the two namespaces (NS1 and NS2). The total data
volume was approximately 2.64TB, which is equivalent to 7.200 blocks of 128MB each
and 21.600 replicas in total. The average utilization of the cluster (Uµ,SSD) was 72.96%.

The standard deviations of the occupation of the DNs with the initial RPP, data-
node, blockpool, and custom policies were, respectively, 60.06GB (σ of 15.24% consider-
ing the utilization), 25.10GB (6.37%), 24.92GB (6.32%), and 34.19GB (8.67%). Similar
to the results obtained in Section 6.1, the replica distribution based on the initial RPP
caused a high level of cluster imbalance. As for the balancing policies, the datanode and
blockpool policies provided a very similar variance in terms of data volume stored in the
DNs (as shown by the proximity of the standard deviations), followed by the custom pol-
icy, which apart from the balancing, also operates to improve the overall data availability.



The amount of data kept in each rack, considering the accumulated occupation in
GB (ORi,SSD) and the final percentage of utilization (URi,SSD) of the racks in the cluster,
can be seen in Table 3. The standard deviations of the occupation and utilization of the
racks with the balancing policies are reduced when compared to the initial RPP. In this
context, all the balancing policies contributed to rack-level balancing. In fact, the HDFS
Balancer operates to take the utilization of the nodes to the interval defined by the lower
limit (Uµ,SSD − threshold) and the upper limit (Uµ,SSD + threshold), which, in general –
but not always, as shown by the blockpool policy in Table 1 of Section 6.2 – will provide
a better level of inter-rack balancing than the initial RPP.

Table 3. Data stored in each rack with the four policies in the second scenario.

Rack initial RPP datanode blockpool custom

ORi,SSD URi,SSD Oi,SSD URi,SSD ORi,SSD URi,SSD ORi,SSD URi,SSD

R1 851.00 71.96 799.10 67.57 785.36 66.41 796.82 67.38
R2 729.76 61.71 822.95 69.59 792.35 67.00 782.72 66.19
R3 551.83 70.00 582.03 73.83 592.49 75.15 602.69 76.45
R4 590.12 74.85 519.04 65.84 553.56 70.21 538.94 68.36

Standard deviation (σ) 136.90GB 5.64% 152.89GB 3.44% 125.65GB 4.00% 129.19GB 4.66%

Concerning the balancing process performed with the three balancing policies,
the percentage of blocks movements that place the replicas in unique racks was 8.21%
with the datanode, 6.9% with the blockpool, and 86.27% with the custom policy. This
demonstrates that the requirement of placing blocks in exactly two racks is relaxed during
the HDFS Balancer operation though the custom policy is the only one that uses the
rearrangement of the replicas as a strategy to increase data availability in HDFS.

As for the balancing operation, with the datanode policy, the HDFS Balancer
moved 109.13GB of data in four iterations, which took 7716.96 seconds to complete. With
blockpool policy, in turn, 186.25GB of data were moved in ten iterations and 10762.12
seconds. With the custom policy, a data volume of 115.63GB was redistributed in twelve
iterations, demanding 11140.54 seconds to be performed. The high number of balanc-
ing iterations required by the custom policy is due to its prioritization strategy, which
results in a more limited number of possible block movements that allow acting in favor
of balancing the cluster and increasing data availability.

To evaluate the performance in subsequent reading operations, we executed
TestDFSIO 20 more times in read mode. Table 4 shows the metrics collected by the
benchmark separated by the namespace. The increase in the overall read times in relation
to the values obtained in the first stage presented in Section 6.1 is due to the greater volume
of data stored in the cluster. The average of the reading times considering both names-
paces was 344.4s with the initial RPP, 297.04s with the datanode policy, 292.28s with
the blockpool policy, and 278.41s with the custom policy. The percentage change in the
times obtained using the balancing policies in relation to the initial RPP were −13.75%,
−15.13%, and −19.16%, respectively.

In relation to the read throughput, the initial RPP achieved 125.49MB/s. With the
datanode, blockpool, and custom policies the read throughput was raised to, respectively,
143.6MB/s (percentage change of 14.43%), 149.62MB/s (19.23%), and 157.28MB/s
(25.33%). The average I/O rate was 133.26MB/s with the initial RPP. With the balancing



Table 4. HDFS performance in reading the data in the second scenario.

Metric initial RPP datanode blockpool custom

NS1 NS2 NS1 NS2 NS1 NS2 NS1 NS2

Read time 344.37 344.43 307.26 286.82 294.20 290.36 275.70 281.11
Percentage change (%) - - -10.78 -16.73 -14.57 -15.70 -19.94 -18.38

Read throughput 124.80 126.18 135.64 151.56 141.59 157.64 151.78 162.79
Percentage change (%) - - 8.69 20.11 13.45 24.93 21.62 29.01

Read avg. I/O rate 133.34 133.18 140.63 169.99 158.07 191.30 160.64 205.77
Percentage change (%) - - 5.47 27.64 18.55 43.64 20.47 54.51

policies, the average values increased to 155.31MB/s (16.55%), 174.68MB/s (31.08%),
and 183.21MB/s (37.48%). These results reinforce that replica balancing provides signif-
icant performance gains regardless of the balancing policy used with the HDFS Balancer.

7. Conclusions and Future Work

Data replication is critical to the proper functioning of the Hadoop Distributed File System
(HDFS) and optimizing the distribution of replicas across the cluster is one of the most
important features of the file system. In this work, we delve deeper into the behavior of
the two native balancing policies of the HDFS Balancer called datanode and blockpool.
In our analysis, we used the standard strategy for placing replicas on HDFS as a baseline
and, for a broader view, we compare the policies with a solution of the literature that we
developed in previous work, which consists of a customized replica balancing policy that
implements a priority to improve data availability in the file system.

Through practical experimentation, we evidenced the inherent imbalance of data
replication on HDFS. All balancing policies showed similar results in terms of reducing
the discrepancy in the volume of data maintained in the nodes. Considering performance
gains in operations over the stored data, the customized policy presented the best results.
This demonstrates that its focus on improving the data availability in HDFS allows taking
better advantage of data locality. However, the balancing operation with the customized
policy had the highest overhead in terms of balancing time and bandwidth consumption.
The datanode and blockpool policies provided reduced (and similar) optimizations in per-
formance after the balancing but with a lower cost. In particular, the blockpool achieved a
slightly higher level of balance (trade-off with balancing performance) than the datanode
and higher performance in serving the I/O applications executed in the experiments. In
highlighting the advantages and drawbacks of the evaluated balancing policies we hope
to support cluster administrators in decisions regarding replica balancing in HDFS.

For future work, we intend to evaluate the behavior and performance of the bal-
ancing policies considering faulty scenarios, different classes of applications running in
the cluster, and HDFS instances deployed on heterogeneous environments. In addition,
supported by the results presented in this work, we plan to automate the policy selection
during the execution of the HDFS Balancer. To that end, the decision will be delegated
to an event-driven architecture capable of making dynamic adaptations to the balancer
settings based on the context of the computational environment and its applications.
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