
Mixed precision applied on common mathematical
procedures over GPU

Marcelo A. Sudo1, Álvaro L. Fazenda1, Roberto P. Souto2

1Instituto de Ciência e Tecnologia – Universidade Federal de São Paulo (Unifesp)
São José dos Campos – SP – Brazil

2Laboratório Nacional de Computação Cientı́fica (LNCC)
Petrópolis – RJ – Brazil

{marcelo.sudo,alvaro.fazenda}@unifesp.br, rpsouto@lncc.br

Abstract. Approximate Computing is a paradigm used by researchers as alter-
native to the diminishing of the evolution of hardware performance in the ongo-
ing race for computational throughput in HPC. Precision reduction and mixed
precision are the most studied among the existing techniques. In addition, some
NVIDIA GPUs have Tensor Core architecture to speed up some classes of al-
gorithms, such as matrix multiplication. This study aims to apply Approximate
Computing techniques, like mixed precision, in matrix multiplication and stencil
algorithms using OpenACC directives and cuTensor library to analyze perfor-
mance gains versus accuracy losses. Results showed that it was possible to
obtain a speedup of 16.60× with an optimized matrix multiplication algorithm
present in the matmul intrinsic function using 16-bit floating-point data with
Tensor Core, compared to a naive version using 64-bit floating-point. For this
same case, accuracy loss went from 10−26 up to 10−1, approximately. For the
stencil algorithm, it was possible to obtain a gain of 1.60× by only reducing
variables precision from 64-bit to 16-bit floating-point, with accuracy loss from
0 to 10−9, for 300 iterations.

1. Introduction
Approximate Computing (AC) is emerging as a promising paradigm to increase peak per-
formance, once HPC programmers live an incessant search for computing techniques to
increase computational throughput, and hardware isn’t evolving at the same pace as in the
past. Its principles preach that although performing the most possible exact computations
at scale requires a high amount of computational resources, allowing certain approxima-
tions or occasional violations of numerical consistency can provide significant gains in
efficiency. [Parasyris et al. 2020] states that Approximate Computing exploits the gap be-
tween the level of accuracy required by the applications and that provided by the system
and has the potential to benefit a wide range of applications, such as scientific computing
and machine learning. [Mittal 2015] stands that AC is based on the intuitive observation
that while performing the most possible exact computation or maintaining peak-level ser-
vice requires a high amount of resources, allowing selective approximation or occasional
violation of the specification can provide gains in efficiency.

Among all AC methods, one of the most explored is floating-point precision re-
duction, or in a broader view, mixed precision. Modern computer architectures sup-



port multiple levels of precision for floating-point computations to provide trade-offs be-
tween accuracy and performance. Several recent studies, such as [Fogerty et al. 2017]
and [Parasyris et al. 2020], have demonstrated the use of mixed precision, which means
using multiple levels of precision, to increase significantly the performance of scientific
applications. With accelerators supporting several levels of floating-point precision, such
as half, single, and double precision in NVIDIA GPUs, and with higher peak performance
in lower precision in these accelerators, this technique has become a promising approach
to boost performance, especially using Tensor Cores [Parasyris et al. 2020].

Considering the strategies for approximation, variables and operations can be ap-
proximated using a variety of them, such as reducing their precision, skipping tasks, mem-
ory accesses or some iterations of a loop, operating on inexact hardware, etc. And one of
the most exploited techniques is precision scaling, which is known for changing the pre-
cision (bit-width) of input or intermediate operands to reduce storage/computing require-
ments [Mittal 2015]. Another variant of this technique, defined by [Agrawal et al. 2016],
is reduced precision which is a technique that represents variables and data structures in
a program with fewer bits (compared with regular integer and floating point numbers).
This allows users to utilize less expensive and more energy-efficient hardware to perform
the reduced precision computation using the arithmetic logic unit. A Systematic Review
analyzed by the authors [Sudo and Fazenda 2020] pointed out that “precision scaling” or
“mixed precision” is mentioned by almost half of the papers selected when filtered by
software techniques from AC.

To complement AC, but in the hardware area, the technology seems to be in evo-
lution, such as the NVIDIA GPUs which were launched with Tensor Cores some years
ago.

The objective of this study is to apply mixed precision as AC technique in basic al-
gorithms such as matrix multiplication and stencil in FORTRAN code by using OpenACC
directives and cuTensor library, analyzing possible performance gains versus its accuracy
losses, and looking for opportunities to explore the power of Tensor Core technology.

The contribution to scientific community will be to show that it is possible to have
some performance gains, against insignificant losses in accuracy when reducing the preci-
sion of floating point variables, in different mathematical numeric models. The motivation
of the study is the fact that in the future we will carry out this same analysis in a Weather
Forecasting System called BRAMS, developed in this same programming language, in a
way that impacts the original code as little as possible, hence the use of OpenACC.

This paper follows with Related Work in subsection 1.1, and then the Method-
ology in Chapter 2, with a brief explanation of Tensor Core in subsection 2.1 and in
sequence the Experimental Setup in subsection 2.2, following by the Results in Chapter 3
and finally the Conclusion in Chapter 4.

1.1. Related Work
Considering the state-of-the-art in this field of study, although we could find many
papers mentioning Approximate Computing, our focus was the software techniques,
specifically the ones focused on precision scaling and its variations, and in this scope,
the ones that analyzed performance also, as most of them studied only the energy re-
duction. [Fogerty et al. 2017] analyzed approximate computing in some relevant mini-



applications. They intended to see the effects that reducing precision has on the power
consumption and cost of the computation as well as the validity and correctness of the
computational solution. The models were CLAMR, which is a mini-app that simulates
fluid motion using the Shallow Water equations, and the Spectral Element Libraries in
Fortran (SELF) which is a set of Fortran modules that define data structures and proce-
dures that facilitate rapid implementation of Spectral Element Methods. The mini-apps
were tested on both Intel processors and NVIDIA GPUs (NVIDIA GPU Tesla K40m,
NVIDIA Quadro K6000, NVIDIA Tesla P100 SXM2-16GB, and GeForce GTX TITAN
X). In the results, considering only GPUs, they presented a speedup gain from half-
precision (16 bits) compared to double precision (64 bits) as for CLAMR 261% in Tesla
K40m, 252% in Quadro K6000, and 453% in GTX TITAN X, and for SELF a gain of 34%
in Tesla K40m, 31% in Quadro K6000, 28% in Tesla P100 and 309% in GTX TITAN X.

[Matoussi et al. 2019] proposed an analytical approach to study the impact of
floating point precision variation on the square root operation, in terms of computational
accuracy and performance gain. They estimated the round-off error resulting from re-
duced precision and also inspected the Newton-Raphson algorithm used to approximate
the square root to bound the error caused by algorithmic deviation. Their case study was
the K-means algorithm to reduce its energy footprint. The experimental results showed
that energy savings could be achieved without penalizing the quality of the output (e.g., up
to 41.87% of energy gain for output quality, measured using structural similarity, within
a range of [0.95,1]).

[Koliogeorgi et al. 2019] proposed a highly optimized approximate SVM FPGA
accelerator, utilizing arrhythmia detection in ECG signals as a case study. In methodol-
ogy, they applied two algorithmic approximation techniques, i.e., precision scaling and
loop perforation. They used fixed point representation for each data type and examined
varying precision for the decimal part that ranges from 12 up to 22 bits. In the results,
considering only the precision scaling point of view, it delivers a configuration with 4×
speedup and 97.32% accuracy.

[Parravicini et al. 2021] proposed an implementation of Coordinate Format
(COO) sparse matrix-vector multiplication, and studied its effectiveness when applied to
the Personalized PageRank algorithm. Their implementation in FPGA achieved speedups
up to 6.8×, when reducing to 20 bits, over a reference multi-threaded CPU implemen-
tation on 8 different data-sets, while preserving the numerical fidelity of the results, and
reaching up to 42.0× higher energy efficiency.

Our study, compared to all these, intended to modify the minimum possible the
original code, and only via software techniques, so the reduction precision was performed
only in the variable types and in the algorithm core, i.e. comparing double, float, and half
precision in floating point numbers, sometimes also using lightly different instructions
codes, and our purpose was to verify the speedup gain with these variations versus the
precision loss.

2. Methodology
The study consists of the analysis of two algorithms: matrix multiplication, used often em-
ployed for deep learning methods, and stencil computation [Sloot et al. 2003], commonly
used in scientific computing simulation. The first was intentionally chosen to analyze



the gains from using Tensor Core, since it is a specific technology for matrix multiplica-
tion, while the other was chosen because BRAMS contains many numerical processing
functions that are based on stencil. Both use OpenACC directives to run on the GPU.

Considering the Matrix Multiplication, a naive source-code, an optimized version,
and a matmul algorithm were analyzed. The naive program is the simplest version of the
algorithm, based on three nested loops. The optimized version include some OpenACC
directives aimed at improving performance, such as parallel loop and collapse, so it was
expected that there would be a certain gain over the original algorithm. And finally, the
matmul version consisted of calling the intrinsic function of the same name. In addition,
some other variations were tested, such as the Kahan Algorithm, a variable with a higher
precision accumulator, and also a program with calls to intrinsic functions float2half and
half2float to perform the operations with greater precision. The Kahan summation algo-
rithm, also known as compensated summation, significantly reduces the numerical error
in the total obtained by adding a sequence of finite-precision floating-point numbers, com-
pared to the obvious approach. This is done by keeping a separate running compensation
(a variable to accumulate small errors), in effect extending the precision of the sum by the
precision of the compensation variable [Higham 2002]. It was selected because it min-
imizes the accuracy loss when working with floating-point equations. The pseudo-code
for it is described in algorithm 1.

Algorithm 1 Kahan Summation Algorithm. Source: [Higham 2002]
1: sum← 0.0 ▷ Accumulator.
2: c← 0.0 ▷ Compensation for lost low-order bits.
3: for i = 1, 2, . . . , input.length do
4: y ← input[i]− c ▷ y gets the greatest part of the number.
5: t← sum+ y ▷ t accumulates the rounding values.
6: c← (t− sum)− y ▷ (t - sum) cancels the high-order part of y; subtracting y

recovers negative (low part of y)
7: sum← t
8: end for ▷ Next time around, the lost low part will be added to y in a fresh attempt.

Regarding the second algorithm, for stencil calculation, the measurements were
performed with 100, 300, and 500 iterations. These values were chosen because it is
necessary 248 iterations to reach a steady state with a 10−3 precision, regarding the max-
imum difference between the same element position of two consecutive matrices. In-
teractive stencil loops perform a sequence of sweeps (called timesteps) through a given
array. Generally, this is a 2- or 3-dimensional regular grid. The elements of the ar-
rays are often referred to as cells. In each timestep, all array elements are updated.
Using neighboring array elements in a fixed pattern (the stencil), each cell’s new value
is computed. In most cases, boundary values are left unchanged, but in some cases,
those need to be adjusted during the computation as well. Since the stencil is the same
for each element, the pattern of data accesses is repeated. The formula is as follow:
d(i, j) = alpha ∗ (a(i, j − 1) + a(i, j + 1) + a(i − 1, j) + a(i + 1, j)), where d is the
resultant matrix, a is the input matrix, i and j corresponds to the position of the element
in the matrix, and alpha is a constant based on the number of elements considered, in this
case 0.25 as there are 4 elements in the equation. The main point in stencil is that the



elements from the input are the neighbors of the resultant, from the 4 borders of it.

In both benchmarks, 5120 x 5120 matrices were used with the same precision
reduction tests performed, comparing FP64 with FP32 and FP16. An evaluation using
FP32 as a reference was also implemented, comparing only with FP16. Furthermore, all
of them have been compared with Kahan’s Algorithms, accumulator variables version in
higher precision and intrinsic functions version (intrinsic numerical data type conversion
functions float2half and half2float), with FP16. The optimized version was postponed
for future work. There is no intrinsic function specific to performing this operation and
Kahan Algorithm did not show any increase in accuracy.

Performance and accuracy analyses were performed for both algorithms. For ma-
trix multiplication, the performance measurements consider the time spent to execute a
sequence of ten times the same operation for each instance, resulting in a final matrix
consisting of the sum of all executions. For the stencil benchmark, the performance and
accuracy measures consider three different moments in interactive advance in time, for
100, 300, and 500 interactions. The total elapsed time measured for both benchmarks
comprehends the data transfers between the host/device and the kernel execution. The
data transfer phase between host and device and vice-versa was executed once for both
algorithms, by a specific OpenACC directive before the main loop began. The specific
data transfer elapsed time for matrix multiplication varies from 11%, related to total time,
for matmul intrinsic function to 0.5% for Naive or Optimized version, considering all pre-
cision variations (FP64, FP32, and FP16). In the Stencil tests, data transfers vary from
19.6% for only 100 interactions to 4% for 500 interactions, related to the total elapsed
time. The time spent for ten matrix multiplications in sequence and hundreds of execu-
tions in the Stencil algorithm dominates the total execution time. All tests execute six
executions discarding the first one, since the execution time was generally significantly
greater, probably due to GPU spin-up. The resulting time considers the average of the
remaining five instances.

The initial data to fulfill the arrays in matrix multiplication uses a constant seed in
a pseudo-random number generator, guaranteeing identical initial data for all instances.
This procedure was done on the CPU, which transfers data to the GPU before the first
kernel execution. The initial array in the Stencil benchmark is a matrix full of zeros and a
left border initialized with the value. The values in the array’s boundaries remain constant
during all executions.

The performance metrics consist of elapsed time, percentage of gain, and speedup,
using FP64 or FP32 as a reference state. The accuracy metrics use Mean Square Error
(MSE) and the maximum difference between the precision target and a reference state
considering all grid points.

2.1. Tensor Core Technology
In 2017 NVIDIA launched its GPU with Tensor Core technology performing small-size
matrix multiplication in a single processor clock. The procedure uses FP16 or FP32
matrices with temporary reduction variable in greater precision, as seen in Figure 1, which
means the multiplication is under FP16 and the accumulator may be on FP16 or FP32,
which determines the resultant matrix [Appleyard and Yokim 2022].

The NVIDIA Fortran compiler supports Tensor Cores with NVIDIA’s Volta V100



Figure 1. Tensor Core 4x4x4 matrix multiply. Source:
[Appleyard and Yokim 2022]

and more recent GPUs (Turing, Ampere, and so on). Enabling scientific programmers
using Fortran to take advantage of FP16 matrix operations accelerated by Tensor Cores
[Leback 2022b]. This was considered an advance in technology, since Tensor Cores of-
fer substantial performance gains over typical CUDA GPU core programming on Tesla
V100 GPUs for certain classes of matrix operations running at FP16 (half-precision)
[Leback 2022b].

The nvfortran automatically generates calls to tuned math libraries promoting
portability by mapping Fortran statements to the functions available in the NVIDIA
cuTENSOR library, providing tensor contraction, reduction, and element-wise operations
[Leback 2022a].

2.2. Experimental Setup

The hardware used for the experiment is an NVIDIA V100 graphics card hosted by the
National Scientific Computing Laboratory (LNCC) which is a Brazilian scientific research
and technological development institution of the Ministry of Science, Technology and
Innovation and Communications (MCTIC) specialized in scientific computing, located in
Petropolis, Rio de Janeiro. The compiler used was NVIDIA Fortran Compiler v.20.11-
0 with directives: nvfortran − acc − cuda − cudalib[file].f90. The source-code is
available at: https://github.com/marcelosudo/matmul.

Although LNCC is shared with many researchers from all over the country, the
executions in the operational environment force an exclusive running experiment, avoid-
ing interferences in the measurements. All six running instances were defined in the same
job file, so they were executed in sequence, with no interval between them. As mentioned
before, the first execution was discarded due to probable GPU spin-up.

3. Results
Tables 1 and 2 show the computational performance for the matrix multiplication, con-
sidering a program using precision FP64 executing on a CPU as a reference state. The
metrics used for performance measurements are the elapsed time and standard deviation
(std) in seconds, the percentage of performance gain, and the Speedup. A performance
gain greater than 40% was obtained by just decreasing the floating-point precision to
FP32 and FP16, reaching 1.73× and 1.97× speedups, respectively. Using an optimized
version with the same reference state achieved a speedup of 2.04× for FP16, but the most
impressive was the call to the intrinsic matmul function, where even in FP64 a speedup
of 10.49× was achieved, and in FP16 the speedup is 16.60×, demonstrating the power
of the Tensor Core. When analyzing the performance with FP32 as a reference state, the
speedup was 8.73 for the algorithm using FP16 matmul. The other algorithms evaluated:
Kahan, Accumulator, and Intrinsic, did not obtain significant performance gains.



algorithm precision time ± std (s) gain (%) speedup

naive

FP64 13.42± 0.10 0.00% 1.00
FP32 7.75± 0.09 42.29% 1.73
FP16 6.82± 0.14 49.21% 1.97

optimized
FP64 12.10± 0.01 9.84% 1.11
FP32 7.05± 0.18 47.49% 1.90
FP16 6.56± 0.03 51.09% 2.04

matmul
FP64 1.28± 0.13 90.47% 10.49
FP32 1.01± 0.06 92.50% 13.33
FP16 0.81± 0.01 93.98% 16.60

Kahan FP16 6.63± 0.03 50.59% 2.02
accumulator FP16 6.59± 0.00 50.90% 2.04
intrinsic FP16 6.45± 0.00 51.95% 2.08

Table 1. Matrix Multiplication (5120 x 5120), reference FP64, PERFORMANCE.

algorithm precision time ± std (s) gain (%) speedup

naive FP32 7.62± 0.08 0.00% 1.00
FP16 6.75± 0.13 11.44% 1.13

optimized FP32 6.96± 0.01 8.65% 1.09
FP16 6.34± 0.01 16.71% 1.20

matmul FP32 1.00± 0.07 86.92% 7.64
FP16 0.87± 0.19 88.54% 8.73

Kahan FP16 6.47± 0.23 15.01% 1.18
accumulator FP16 6.27± 0.11 17.71% 1.22
intrinsic FP16 6.10± 0.07 19.93% 1.25

Table 2. Matrix Multiplication (5120 x 5120), reference FP32, PERFORMANCE



algorithm precision MSE max diff

naive
FP64 1.72E− 26 2.00E− 12
FP32 2.00E− 06 7.07E− 03
FP16 2.29E + 04 1.98E + 02

optimized
FP64 1.72E− 26 2.00E− 12
FP32 2.00E− 06 7.07E− 03
FP16 2.29E + 04 1.98E + 02

matmul
FP64 1.72E− 26 2.00E− 12
FP32 4.95E− 09 1.00E− 03
FP16 1.04E− 01 6.74E− 01

Kahan FP16 8.34E− 02 5.37E− 01
accumulator FP16 8.34E− 02 5.34E− 01
intrinsic FP16 8.34E− 02 5.28E− 01

Table 3. Matrix Multiplication (5120 x 5120), reference FP64, ACCURACY.

algorithm precision MSE max diff

naive FP32 4.95E− 09 1.00E− 03
FP16 2.10E + 04 1.98E + 02

optimized FP32 4.95E− 09 1.00E− 03
FP16 2.10E + 04 1.98E + 02

matmul FP32 4.95E− 09 1.00E− 03
FP16 9.71E− 02 6.76E− 01

Kahan FP16 8.07E− 02 5.33E− 01
accumulator FP16 8.07E− 02 5.36E− 01
intrinsic FP16 8.07E− 02 5.27E− 01

Table 4. Matrix Multiplication (5120 x 5120), reference FP32, ACCURACY.

The accuracy analysis is shown in Tables 3 and 4 through the MSE shows an error
in the order of 10−26 for FP64 to 104 in FP16, which would be an undesirable result, but
matmul function still kept an acceptable precision loss on the order of 10−1. Improving the
algorithm by using the Kahan method, or an accumulator as extra variables with higher
precision, or using intrinsic function to convert numerical data-types, it was possible to
reach 10−2 in MSE. Similar behavior was obtained in FP32 reference state, and better
than matmul version.

Regarding the stencil, as seen in Tables 5 and 6, we did not obtain comparable
gains related to matrix multiplication. A speedup of 1.57× was obtained by using an
FP16 code with an FP64 reference state. The same behavior was maintained in the various
analyzed iterations. With FP32 reference state, the speedup reach 1.30× to 1.34× for the
different variations of analyzed algorithms, when the precision was reduced to FP16.

In contrast to the smaller speedups, as seen in Tables 7 and 8, the accuracy loss
was also smaller, starting with 10−19 in FP32 and reaching up to 10−10 in FP16. In this
case, there was a small increase in the loss of accuracy with increasing iterations, reaching
10−8 in 500 iterations. The same behavior was observed for FP32 reference state.



iterations precision time ± std (s) gain (%) speedup

100
FP64 84.02± 0.07 0.00% 1.00
FP32 69.96± 0.01 16.73% 1.20
FP16 53.68± 0.01 36.11% 1.57

300
FP64 256.65± 6.24 0.00% 1.00
FP32 212.06± 2.61 17.38% 1.21
FP16 160.74± 1.06 37.37% 1.60

500
FP64 419.97± 4.58 0.00% 1.00
FP32 360.67± 0.60 14.12% 1.16
FP16 268.05± 1.83 36.17% 1.57

Table 5. Stencil (5120 x 5120), 100, 300 and 500 iterations, reference FP64, PER-
FORMANCE.

iterations algorithm precision time ± std (s) gain (%) speedup

100
naive FP32 71.94± 0.67 0.00% 1.00

FP16 54.67± 0.26 24.01% 1.32
Kahan FP16 53.65± 0.03 25.43% 1.34
accumulator FP16 53.86± 0.36 25.14% 1.34
intrinsic FP16 53.77± 0.26 25.26% 1.34

300
naive FP32 210.83± 1.94 0.00% 1.00

FP16 160.80± 0.98 23.73% 1.31
Kahan FP16 161.10± 0.99 23.59% 1.31
accumulator FP16 161.05± 1.49 23.61% 1.31
intrinsic FP16 161.47± 1.17 23.41% 1.31

500
naive FP32 355.20± 6.05 0.00% 1.00

FP16 272.71± 1.22 23.22% 1.30
Kahan FP16 272.45± 1.69 23.30% 1.30
accumulator FP16 268.27± 1.65 24.47% 1.32
intrinsic FP16 272.71± 0.48 23.22% 1.30

Table 6. Stencil (5120 x 5120), 100, 300 and 500 iterations, reference FP32, PER-
FORMANCE.

iterations precision MSE max diff

100
FP64 0.00E + 00 0.00E + 00
FP32 3.11E− 19 1.44E− 07
FP16 1.68E− 10 5.70E− 04

300
FP64 0.00E + 00 0.00E + 00
FP32 4.60E− 18 1.38E− 07
FP16 3.77E− 09 4.41E− 03

500
FP64 0.00E + 00 0.00E + 00
FP32 4.19E− 18 1.53E− 07
FP16 6.68E− 08 7.28E− 03

Table 7. Stencil (5120 x 5120), 100, 300 and 500 iterations, reference FP64, ACCU-
RACY.



iterations algorithm precision MSE max diff

100
naive FP32 0.00E + 00 0.00E + 00

FP16 1.68E− 10 5.70E− 04
Kahan FP16 3.10E− 10 1.23E− 03
accumulator FP16 1.68E− 10 5.70E− 04
intrinsic FP16 2.29E− 10 6.21E− 04

300
naive FP32 0.00E + 00 0.00E + 00

FP16 3.77E− 09 4.41E− 03
Kahan FP16 4.85E− 09 7.29E− 03
accumulator FP16 3.77E− 09 4.41E− 03
intrinsic FP16 3.58E− 09 2.99E− 03

500
naive FP32 0.00E + 00 0.00E + 00

FP16 6.69E− 08 7.28E− 03
Kahan FP16 1.81E− 07 1.67E− 02
accumulator FP16 6.69E− 08 7.28E− 03
intrinsic FP16 6.65E− 08 6.63E− 03

Table 8. Stencil (5120 x 5120), 100, 300 and 500 iterations, reference FP32, ACCU-
RACY.

4. Conclusion

In this study, applications of AC techniques such as reduced precision and mixed preci-
sion were analyzed to verify the trade-off between performance gains and accuracy losses.
We compared results from changing FP64, FP32, and FP16 in floating point operations in
matrix multiplication and stencil algorithm. The results showed an exceptional speedup
gain of 16.60× in matrix multiplication when comparing a naive version with a matmul
intrinsic function call with the cuTensor library, which invokes Tensor Core GPU hard-
ware. Also, a speedup of 1.60× was obtained in stencil simply by reducing the precision
from FP64 to FP16. In both cases, the losses were acceptable, being from 10−26 to 10−1

in matrix multiplication and 0 to 10−9 in the stencil benchmark.

For future works, we aim to study the energy savings in these algorithms, the
effects of different matrix dimensions in performance, and also investigate the power of
Tensor Core in other applications, such as in convolution method. There are plans to
investigate more mathematical methods to mitigate round-off errors when using reduced
precision.

Acknowledgements

The authors acknowledge the National Laboratory for Scientific Computing
(LNCC/MCTI, Brazil) for providing HPC resources of the SDumont supercom-
puter, which have contributed to the research results reported within this paper. URL:
http://sdumont.lncc.br.

This work was also partially financed by grant #2019/26702-8, São Paulo Re-
search Foundation (FAPESP).



References
Agrawal, A., Choi, J., Gopalakrishnan, K., Gupta, S., Nair, R., Oh, J., Prener, D. A.,

Shukla, S., Srinivasan, V., and Sura, Z. (2016). Approximate computing: Challenges
and opportunities.

Appleyard, J. and Yokim, S. ((accessed July 07, 2022)). Programming
tensor cores in cuda 9. https://developer.nvidia.com/blog/
programming-tensor-cores-cuda-9/.

Fogerty, S., Bishnu, S., Zamora, Y., Monroe, L., Poole, S., Lam, M., Schoonover, J., and
Robey, R. (2017). Thoughtful precision in mini-apps. In 2017 IEEE International
Conference on Cluster Computing (CLUSTER), pages 858–865.

Higham, N. (2002). Accuracy and stability of numerical algorithms (2 ed). In SIAM,
editor, Accuracy and Stability of Numerical Algorithms (2 ed), page 110–123. Society
for Industrial and Applied Mathematics Philadelphia.

Koliogeorgi, K., Zervakis, G., Anagnostos, D., Zompakis, N., and Siozios, K. (2019).
Optimizing svm classifier through approximate and high level synthesis techniques.
In 2019 8th International Conference on Modern Circuits and Systems Technologies
(MOCAST), pages 1–4.

Leback, B. (2019 (accessed June 26, 2022)b). Tensor core programming
using cuda fortran. https://developer.nvidia.com/blog/
tensor-core-programming-using-cuda-fortran/.

Leback, B. (2020 (accessed June 26, 2022)a). Bringing tensor cores
to standard fortran. https://developer.nvidia.com/blog/
bringing-tensor-cores-to-standard-fortran/.

Matoussi, O., Durand, Y., Sentieys, O., and Molnos, A. (2019). Error analysis of the
square root operation for the purpose of precision tuning: A case study on k-means. In
2019 IEEE 30th International Conference on Application-specific Systems, Architec-
tures and Processors (ASAP), volume 2160-052X, pages 75–82.

Mittal, S. (2015). A survey of techniques for approximate computing. DOI:
10.1145/2893356.

Parasyris, K., Laguna, I., Menon, H., Schordan, M., Osei-Kuffuor, D., Georgakoudis, G.,
Lam, M. O., and Vanderbruggen, T. (2020). Hpc-mixpbench: An hpc benchmark suite
for mixed-precision analysis. DOI: 10.1109/IISWC50251.2020.00012.

Parravicini, A., Sgherzi, F., and Santambrogio, M. D. (2021). A reduced-precision stream-
ing spmv architecture for personalized pagerank on fpga. In 2021 26th Asia and South
Pacific Design Automation Conference (ASP-DAC), pages 378–383.

Sloot, P. M. A., Tan, C. J. K., Dongarra, J. J., and Hoekstra, A. G., editors (2003). Com-
putational science - ICCS 2002. Lecture Notes in Computer Science. Springer Berlin,
Berlin, Germany, 2002 edition.

Sudo, M. and Fazenda, (2020). A review on approximate computing applied to meteoro-
logical forecast models using software-based techniques.


