
Optimizing the Decoding Process of a Post-Quantum
Cryptographic Algorithm

Antonio Guimarães1, Diego F. Aranha1, Edson Borin1

1Institute of Computing – University of Campinas (UNICAMP)
Av. Albert Einstein, 1251 - 13.083-852 - Campinas - SP - Brazil

antonio.junior@students.ic.unicamp.br, {dfaranha, edson}@ic.unicamp.br

Abstract. QcBits is a state-of-the-art constant-time implementation of a code-
based encryption scheme for post-quantum public key cryptography. This paper
presents an optimized version of its decoding process, which is used for message
decryption. Our implementation leverages SSE and AVX instructions extensions
and performs 3.6 to 4.8 times faster than the original version, while preserving
the 80-bit security level and constant time execution. We also provide experi-
mental data that indicates a further 1.4-factor speedup supposing the existence
of instructions for vectorial conditional moves and 256-bit register shifts. Fi-
nally, we implemented countermeasures for side-channel security and showed
that they do not affect the overall performance.

1. Introduction
Recent developments on quantum computers and cryptanalysis create the need for new
efficient and secure algorithms for public key cryptography to replace current stan-
dards. Conventional algorithms, mostly represented by elliptic curves [Koblitz 1987] and
RSA [Rivest et al. 1978], depend on the hardness of integer factorization and computing
discrete logarithms, which can be efficiently solvable in a quantum computer by Shor’s
algorithm [Shor 1999].

Public-key algorithms that do not rely on these problems are known since the late
70s and are today called post-quantum cryptographic techniques. Among them, code-
based encryption is becoming one of the most promising. First proposed by McEliece
using Goppa codes [McEliece 1978], it was never considered a reasonable alternative
until the quantum computing rise, since it was clearly outperformed by other algorithms.
Besides the difference in execution time, the very large public keys were also one of the
main issues preventing it from becoming competitive.

Aiming to reduce the key size and improve performance while maintaining the
security level, many different choices of codes and decoding algorithms were proposed
in the past few years. Misoczki et al. [Misoczki et al. 2013] proposed the McEliece
cryptosystem instantiation with quasi-cyclic structure with moderate density parity check
codes (QC-MDPC). Although recent implementations show that the decoding process is
slower than the originally proposed Goppa Codes, it allows a key size reduction from
20,480 bits to 4,801 bits, while keeping the 80-bit classical security level.

Side-channel attacks are also an important factor to consider, and secure imple-
mentations should not leak information correlated with critical data (keys and plaintext).
More recently, Chou presented QcBits [Chou 2016], a constant-time implementation of a

WSCAD 2017 - XVIII Simpósio em Sistemas Computacionais de Alto Desempenho

160

QC-MDPC code-based encryption scheme. Using polynomial representation and a tech-
nique called bitslicing, the implementation is fully protected against timing attacks and
two times faster than the previous speed record. This last accomplishment is specially im-
portant since the decoding process is probabilistic and executing it in constant-time may
be very inefficient and lead to high decoding error rates.

The QcBits implementation was provided in two versions: ref, which uses
only C code, and clmul, which performs arithmetic using the 128-bit carry-less
multiplication instruction. Although the original implementations are fully constant-
time, they are vulnerable against other side-channel attacks based on power consump-
tion [Rossi et al. 2017].

In this paper, we present the following contributions:

• We optimized the decoding process for both the QcBits versions, achieving a
speedup of 3.6 times over the clmul version and 4.8 times over ref.

• We estimated that gains could be as high as 5.06 times on clmul version if new
instructions for conditional vectorial moves and 256-bit register shifts were added
on the architecture.

• We mitigate all currently known power vulnerabilities found in the original imple-
mentation with an almost negligible (< 1%) impact to the overall performance.

Our performance improvement comes from vectorization using AVX instructions,
loop unrolling on hot spots and pre-calculation of vector rotations. All the performance
measurements were executed on Haswell and Skylake architectures. We focus on the
80-bit security level for comparisons against related work, but higher security levels can
be achieved with minimal changes to the implementation and all optimization techniques
presented in the paper are still applicable. To the best of our knowledge, our paper is the
first to present a fully vectorized software optimization of QcBits.

This work is organized as follows: Section 2 described code-based cryptography
and the QcBits algorithm; Section 3 discusses and presents the results of our optimization
on the decoding process of QcBits; Section 4 explains the countermeasure applied to
mitigate a power channel vulnerability found in the original implementation; Section 5
presents some related work; and Section 6 discusses the final conclusions and future work.

2. Code-based Cryptography and the QcBits algorithm
The McElice cryptosystem [McEliece 1978] was the first code-based encryption scheme
ever proposed and still remains as the most relevant one. Its security is based on the hard-
ness of decoding linear codes, which is an NP-complete problem. The original scheme
used Goppa Codes, which enabled great performance due to very efficient decoding al-
gorithms, but keys took 460Kb at the 80-bit security [Bernstein et al. 2008], making the
system not competitive in terms of viability among the alternatives.

Equation 1 shows the encryption in the McEliece Cryptosystem: m is a message
of length k; z is an error vector with Hamming Weight t; and G0 is a k ⇥ n matrix
defined on Equation 2, where S is a scrambling matrix, G is the generator matrix for the
chosen code (e.g. Goppa Code) and P is a permutation matrix. All these matrices are
randomly generated and the last 3 of them compose the cryptosystem private key, while
their product G0 is the public key. The decryption is shown on Equation 3, where Decode
is the decoding algorithm for the chosen code.

WSCAD 2017 - XVIII Simpósio em Sistemas Computacionais de Alto Desempenho

161

Using Goppa codes at the 80-bit security, the parameters k, n, and t are cho-
sen respectively as 1632, 1269 and 34 bits, resulting in the 460Kb public key size.
Many techniques were proposed in order to reduce the key size of Goppa codes.
Misoczki and Barreto [Misoczki and Barreto 2009] proposed a dyadic structure, but al-
though they successfully presented a viable small-key alternative with just 20Kb, it re-
sulted in structural vulnerabilities [Faugere et al. 2010].

c0 = mG0 + z (1)
G0 = SGP (2)

m = Decode(cP�1)S�1 (3)

As an alternative to Goppa codes, QC-MDPC codes [Misoczki et al. 2013] were
first introduced in 2013, allowing the use of very compact keys. Table 1 shows a key
length comparison between QC-MDPC codes and some of the previous alternatives.

Table 1. Key length in bits for different codes (from [Misoczki et al. 2013])
Security Level QC-MDPC QD-Goppa Goppa

80 4,801 20,480 460,647
128 9,857 32,768 1,537,536
256 32,771 65,536 7,667,855

This great reduction in key size was achieved thanks to the quasi-cyclic (QC)
structure. As discussed before, the public and private keys in the cryptosystem are all
matrices composed of circulant blocks and this quasi-cyclic structure allows them to be
represented by the first row only, as illustrated below:

0

BBBB@

1 0 0 1 0 0 0 0 1 1
0 1 0 0 1 1 0 0 0 1
1 0 1 0 0 1 1 0 0 0
0 1 0 1 0 0 1 1 0 0
0 0 1 0 1 0 0 1 1 0

1

CCCCA

Besides exploiting the quasi-cyclic structure, another advantage of QC-MDPC
codes is eliminating the need for scrambling and permutation matrices in the McEliece
cryptosystem. The generator matrix G is the public-key and a parity check matrix H is
the private key used in the decoding algorithm. Considering this, the decryption process
boils down to the plain decoding, which is shown on Algorithm 1. For these codes, the
generator matrix G is the row reduced echelon form of the parity check matrix H .

In Algorithm 1, H is the parity check matrix, c is the ciphertext and TH is an
experimentally determined variable threshold, depending on the approach. The first line
is the syndrome calculation, defined as the multiplication between the parity check matrix
and the ciphertext. If it results in a zero vector, then there is no error in the message
and therefore the decoding successfully finishes. Otherwise, the bit-flipping algorithm,
represented by the for loop on Algorithm 1, must be executed. This algorithm works
by calculating the Hamming Weight, which is the number of ones, of the and between
each parity check matrix column and the calculated syndrome. If this Hamming Weight
is greater than the threshold, the function FlipBit flips the i-th bit (corresponding to the
column) of the ciphertext c. Once the ciphertext is changed, the process restarts.

WSCAD 2017 - XVIII Simpósio em Sistemas Computacionais de Alto Desempenho

162

Algorithm 1: QC-MDPC Bit-flipping decoding.
Input : H , c and TH
Output: c

s H ⇥ c
while s 6= 0 do

foreach column hi in H do
hd HammingWeight(hi ^ s)
if hd > TH then

FlipBit(c, i)
end
s H ⇥ c

end

2.1. QcBits
QcBits [Chou 2016] is a state-of-the-art implementation of an encryption scheme based
on QC-MDPC codes. It established new speed records and is the first fully constant-time
implementation for this type of code. The speed improvement was achieved by represent-
ing the cryptosystem matrices, represented by its first row, as binary polynomials over
(xr
� 1), where r is a code size parameter. This was possible thanks to the quasi-cyclic

structure. This way, all the syndrome calculations were done as polynomial multiplica-
tions instead of the less efficient general matrix multiplications. The polynomial view also
helps with key generation, where the generator matrix was calculated using a polynomial
inversion of the parity check matrix.

QcBits was presented in two versions: the C-only ref version, and the clmul
version using the PCLMULQDQ instruction [Gueron and Kounavis 2010] to accelerate
polynomial arithmetic. On both version, the bit-flipping in Algorithm 1 was implemented
using constant-time vector rotations and bitslicing. Since it was the main target of our
optimization, it will be further explained in the following subsection.

Aside from raw performance, constant-time execution was also an important im-
plementation feature. It enabled the code to be resistant against timing side channel at-
tacks, which was a problem for the previous implementation [Strenzke et al. 2008]. The
decoding algorithm was the most challenging part of the implementation to protect. As
shown in Algorithm 1, the original form of the algorithm is inherently variable time be-
cause the decoding only stops when all errors are corrected. To work around this problem,
QcBits determined a maximum number of iterations for the decoding (6 at the 80-bit se-
curity level), and failure otherwise. There’s no proof or strict estimate indicating that 6
iterations are enough for a practical secure use of the implementation, but empirical tests
showed an acceptably low failure rate.

2.1.1. Bit-flipping algorithm

Algorithm 2 shows the implementation of decoding in QcBits. TH is the iteration thresh-
old, s is the syndrome, c is the ciphertext and H 0 the sparse representation of the parity
check matrix, which is an array of non-zero indices. The BitSliceAdder function con-
sists in adding each bit individually by positioning and storing each bit of the result in an
array position (Algorithm 3), similarly to a half adder circuit. The BitSliceSubtractor
is implemented in the same way, but with a full adder or subtractor instead.

WSCAD 2017 - XVIII Simpósio em Sistemas Computacionais de Alto Desempenho

163

Algorithm 2: QcBits Bit-flipping implementation logic
Input : H 0, c, s and TH
Output: c

1 N 1 + dlog2(|H 0
|)e

2 sum[N] 00s
3 foreach index i in H 0 do
4 w s n i
5 sum BitSliceAdder(sum,w)
6 end
7 sum BitSliceSubtractor(sum, TH)
8 c ¬sum[N � 1]� c

Algorithm 3: BitSlice Adder Implementation Logic
Input : N , sum and w
Output: sum

1 for i = 0 to N do
2 cout sum[i] ^ w
3 sum[i] sum[i]� w
4 w cout
5 end

Line 1 in Algorithm 2 calculates the number of bits necessary to represent the
number of elements belonging to H 0, which is the maximum result that can be stored on
the sum array by the BitSliceAdder. Line 2 initializes sum with zeros. The loop on
line 3 iterates over the private key indices: for each index, the syndrome is rotated left on
the index value (line 4) and the result is added to the sum array using the BitSliceAdder
function. This process is equivalent to calculating the Hamming Weight of the bitwise
AND between each matrix column and the syndrome. However, for 80-bit security, instead
of iterating over the 4801 rows of the parity check matrix, this method just needs to
iterate over the 90 indices of the sparse matrix representation. At the end of the loop, the
threshold is subtracted from the sum of each bit. If the most significant result bit is one
on line 8, it indicates that the threshold is greater than the sum and the corresponding bit
must not be flipped. Otherwise, the bit is flipped.

3. QcBits Optimization
We began our optimization by extending the vectorization to the whole code using SSE4
instructions for 128-bit registers, available since Intel Nehalem, and using AVX2 instruc-
tions for 256-bit registers, available since Haswell. Our initial expectation was obtaining
a 2-factor speedup in the first case and 4 in the latter since these values correspond to
the number of SIMD lanes found on these standards. Most of the code was composed of
bitwise operations, such as XOR and AND of the bit slice adder, and were easily vector-
izable, resulting in an immediate gain of 2.6 times when using the AVX2 instruction set.
However, the absence of some instructions on the SIMD instruction sets prevented those
expectations from materializing.

The main obstacle for vectorization was the implementation of 128-bit and 256-bit
register shifts. These operations are necessary to perform the vector rotations shown on
line 4 of Algorithm 2. For the 80-bit security level, the rotation target has 4801 bits and it

WSCAD 2017 - XVIII Simpósio em Sistemas Computacionais de Alto Desempenho

164

is implemented in two steps using C language: first, the words that compose the vector are
permuted following the rotation logic; next, the rotation is done inside each word, shifting
its bits and inserting next word bits in the shifted area. For registers with size lesser or
equal to 64 bits there’s a single instruction to shift all the register bits, which facilitates the
implementation. For larger registers we had to perform a custom multi-instruction logic,
making the implementation slower and more complex.

Listing 1 shows our implementation of a shift right with carry on AVX2 registers,
used in the vector rotation shown on line 4 of Algorithm 2. The code is composed by
10 intrinsics for vector instructions. It works by permuting 64-bit sets to reduce the shift
amount to less than 64, then the Carry In is inserted using the BLENDV instruction and the
shift is finished using instructions that shifts inside the 64-bit lanes. Some of the used in-
structions are very expensive, like the PERMUTEVAR instruction on line 12 and 19, which
has 3-cycle latency in Skylake, according to Agner Fog’s instruction tables [Fog 2011].

1 unit bitShiftRight256xmmCarry (unit data, int count, unit * carryOut, unit carryIn){
2 unit innerCarry, out, countVet;
3 unit idx = _mm256_set_epi32(0x7, 0x6, 0x5, 0x4, 0x3, 0x2, 0x1, 0x0);
4 const unit zeroMask = _mm256_set_epi64x(-1, -1, -1, 0);
5 unit zeroMask2 = _mm256_set_epi8(0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80,
6 0x82, 0x82, 0x82, 0x82, 0x82, 0x82, 0x82, 0x82,
7 0x84, 0x84, 0x84, 0x84, 0x84, 0x84, 0x84, 0x84,
8 0x86, 0x86, 0x86, 0x86, 0x86, 0x86, 0x86, 0x86);
9

10 countVet = _mm256_set1_epi8((count >> 5) & 0xE);
11 idx = _mm256_add_epi8(idx, countVet);
12 data = _mm256_permutevar8x32_epi32(data, idx); // rotate
13 *carryOut = data;
14 zeroMask2 = _mm256_sub_epi8(zeroMask2, countVet);
15 data = _mm256_blendv_epi8 (carryIn, data, zeroMask2);
16 // shift less than 64
17 count = (count & 0x3F);
18 innerCarry = _mm256_blendv_epi8(carryIn, data, zeroMask);
19 innerCarry = _mm256_permute4x64_epi64(innerCarry, 0x39); // >> 64
20 innerCarry = _mm256_slli_epi64 (innerCarry, 64 - count);
21 out = _mm256_srli_epi64 (data, count);
22 out = _mm256_or_si256 (out, innerCarry);
23 return out;
24 }

Listing 1: 256-bit register shift implementation

For the clmul version vectorized with AVX2 instruction, the syndrome calcula-
tion was also a problem. Executed at the beginning of the decoding process, it was origi-
nally implemented using the carry-less multiplication instruction which is only available
for 128-bit size registers. Therefore, this code snippet, which takes approximately 20%
of the code execution time, is stuck at the 128-bit implementation.

3.1. Basic Vectorization Results
We compiled the implementations using the three industry-standard compilers: GCC
6.1.3, CLANG 3.9.1 and ICC 17.0.2. For all the compilers, the compilation optimiza-
tion flags used were -O3 and -march=native. The flag -funroll-all-loops
was also used when compiling with GCC. Equivalent flags for aggressive loop unrolling
on the other compilers were tested, but they didn’t result in any performance improvement
and therefore were removed. The implementations were executed in two machines: the
first one, named Haswell, uses an Intel i7-4770 processor and the second, named Skylake,

WSCAD 2017 - XVIII Simpósio em Sistemas Computacionais de Alto Desempenho

165

uses an Intel i7-6700k processor. Both machines run a Fedora 25 operating system and,
aiming at experiment reproducibility and cycle accuracy, had the Intel Turbo Boost and
Hyper-Threading mechanisms disabled. The performance results of this first vectorization
are shown in the graph of Figure 1.

Figure 1. Initial vectorization results

As can be noted from the graph, the execution time, considering the compila-
tion with GCC, reduced from 1,292,380 Skylake cycles and 1,441,220 Haswell cycles to
respectively 803,970 and 912,498 cycles when using the SSE instruction set, which rep-
resents a speedup of 1.6 times; and to 501,473 and 669,596 cycles when using the AVX2
instruction set, which in turn represents a speedup of 2.6 times. The graph also shows
the performance improvement between the two processors generations, especially for the
vectorial versions: The Skylake processor is 10% faster than the Haswell processor on the
original 64-bit version and on the SSE version, while for AVX2 version Skylake is 21%
faster than Haswell. These conclusions are based on the average results obtained with the
three compilers.

3.2. Vector Rotation Table
Although there is a likely more efficient implementation for Listing 1, it will probably
be always inefficient without special hardware support. Instead of trying to optimize
further our implementation, we focused on reducing the number of its executions. The
word permutation of the vector rotation, which is shown on line 4 of Algorithm 2 and is
composed of conditional copies and register shifts, represented almost 40% of the code
execution time and 90 of them were calculated in the decoding implementation, one for
each parity check matrix index. However, the permutation is done based on the first bits
of each index and, using 256-bit registers and considering the 80-bit for the security level,
there are only 32 possible permutations of words following the rotation logic.

Considering that, we construct a table of all possible word rotations in the begin-
ning of the decoding process and just query that table instead of calculating the permu-
tations every time. The graph in Figure 2 shows the correlation between the number of
word rotations that were calculated and the number of possible rotations for each word
size. As can be seen, the pre-calculated table of rotations would not be worth for the
original 64-bit, but it is faster for all our optimized versions.

This approach, however, has some obstacles to be used in a constant time im-
plementation. The table access pattern cannot depend on the private key because it
would be leak cache-timing information that could be exploited on a side-channel at-
tack [Strenzke et al. 2008]. Thus, every time the implementation needs to access the table

WSCAD 2017 - XVIII Simpósio em Sistemas Computacionais de Alto Desempenho

166

Figure 2. Number of word rotations computed and possible for each implemen-
tation

it must iterate over all the table elements conditionally copying each one of them. These
extra memory accesses add a great performance penalty and the table of rotation alone
became slower than the calculations even on 256-bit registers version.

Despite that, we were able to improve the rotation table by doing a trade-off be-
tween the calculation and the table access. Basically, we construct a table with just a small
subset of the possible rotations. Then, when a rotation is needed, the implementation iter-
ates over the table, picks the nearest rotation and calculates the pending rotation amount
starting from the pre-calculated value. Since the rotation calculation is done based on each
bit of the rotation amount, its performance is proportional to the logarithm of the maxi-
mum rotation amount. This way, we achieved a 1.19-factor speedup on the AVX version,
when comparing to the basic vectorization time, using tables with 3 stored rotations. The
number of Skylake cycles, when compiling with GCC, was further reduced from 501,473
cycles to 420,397 cycles and the overall speedup increase from 2.6 times to 3.1 times.
The use of the rotation table also drastically reduced the number of iterations necessary
to calculate the rotations. This reduction allowed a manual loop unrolling which leads
to a 1.17-factor speedup over the best time, bringing the number of Skylake cycles when
compiling with GCC down to 358,499 cycles.

All the presented optimization techniques were also applied to QcBits ref ver-
sion, which uses only C code. Table 2 shows the results for all versions. The speedups
relatively to the Original Version execution are shown in Figure 3.

Table 2. Final optimization results (in cycles)
Machine Version Compiler Original SSE AVX2

GCC 1,292,380 574,136 358,499
CLANG 1,443,992 646,430 377,218CLMUL
ICC 1,368,697 878,976 449,620
GCC 2,097,282 844,992 492,390
CLANG 2,236,178 944,803 470,578

Skylake

REF
ICC 2,221,606 1,360,744 608,560
GCC 1,441,220 788,436 529,956
CLANG 1,610,954 829,896 528,188CLMUL
ICC 1,506,562 918,084 555,844
GCC 2,216,498 1,132,052 679,122
CLANG 2,391,762 1,205,842 651,032

Haswell

REF
ICC 2,337,726 1,306,476 716,208

WSCAD 2017 - XVIII Simpósio em Sistemas Computacionais de Alto Desempenho

167

Figure 3. Final speedups achieved with the optimization (relatively to the corre-
sponding Original version execution)

Analyzing the clmul version results in the graph, we can note that the results
using SSE instructions overcome our initial expectation with a speedup of 2.25 times
on Skylake with GCC. This was possible thanks to the rotation table use and the loop
unrolling, previously explained. For the version vectorized with AVX2 instructions, how-
ever, the speedup is still below 4 times, being 3.6 times with GCC and 3.8 times with
CLANG, both on Skylake. It happens mostly because of the absence of a 256-bit clmul
instruction, which creates the need of the use of 128-bit register instructions in the syn-
drome calculation. This hurts the performance not only because of the use of small regis-
ters but also due to the transition between the instruction set extensions, which is known
to be expensive [Lomont 2011].

The ref version uses the same constant-time rotation process showed in Algo-
rithm 2 to calculate the matrix multiplications. The only modification in the algorithm is
that the BitSliceAdder is replaced by a simple XOR. Once this method doesn’t rely on
clmul instruction, the ref version could be better optimized, achieving a speedup of
4.75 times with a time of 470,578 cycles on Skylake with CLANG.

3.3. Estimations for possible improvements

As explained in the beginning of this section, the two main hindrances for the vectoriza-
tion were the absence of vector instructions for register shifts and conditional moves. This
last procedure is currently done by the BLENDV instruction, which is much more powerful
and, hence, expensive than we need for this purpose. Although Fog [Fog 2011] reports a
throughput of 1 cycle for this instruction, it is difficult to implement the instruction usage
in a sequential way to achieve this time.

In order to estimate the possible gains if these two instructions exist, we exper-
imented with the clmul version to suppose their existence. The experiment was done
by replacing the BLENDV instruction with two addition instructions and the vector shift
algorithm by a simple 64-bit lanes shift. This version, of course, doesn’t result in the
correct output, but it serves as a fair estimation. Testing on Skylake and compiling with
GCC, we execute this version in 255.274 cycles, which represents a 1.4 times speedup
compared to our best correct version and a total speedup of 5.06 times over the clmul
version.

WSCAD 2017 - XVIII Simpósio em Sistemas Computacionais de Alto Desempenho

168

4. Power side-channel vulnerability
A simplified snippet of the original implementation code used for the word rotation is
shown on Listing 2. As previously discussed, the rotation amount depends directly on the
secret key bits and, therefore, must be executed mitigating all side channel leakages. On
line 1, a mask is constructed using the variable sk bit, which represents a secret key
bit: If the bit is one, then the mask will be all ones, otherwise, the mask will be all zeros.
Following this, on line 4, the vector is copied shifted or not depending on this mask.

1 mask = 0 - sk_bit;
2 us = 1 << i; // shift amount
3 for (j = 0; j < LEN; j++)
4 w[j] = (x[j + us] & mask) ˆ (x[j] & ˜mask);

Listing 2: Vulnerable implementation of conditional copy for vector rotation

The problem lies on the fact that the power consumption of setting all bits in a
register is perceptibly higher than keeping the register with all its bits zero. An attacker
can exploit that fact and discover the secret key through a power measurement of the
algorithm execution [Nascimento et al. 2016]. We are able to mitigate this vulnerability
by using the instruction BLENDV, as shown in Listing 3. This vulnerability used to occur
not only in the word rotation, but in all conditional copies implemented in the original
version. We fix all of them in the same way and verified that this modification had very
little impact on the overall performance (< 1%). The performance results presented in
Section 3 already include this modification.

1 mask = _mm_set1_epi8(sk_bit << 7);
2 us = 1 << i; // shift amount
3 for (j = 0; j < LEN; j++)
4 w[j] = _mm_blendv_epi8(x[j], x[j + us], mask);

Listing 3: Secure implementation of conditional copy for vector rotation

5. Related Work
Most of the work related to the QcBits implementation is research on side-channel at-
tacks. Rossi et al. [Rossi et al. 2017] presented a side-channel power-based attack against
the syndrome calculation of QcBits. The attack exploited a power-leakage at the store of
the rotated code-word (line 4 of Algorithm 2). They also provided a simple countermea-
sure in order to prevent the attack. We did not apply this countermeasure in this paper
since the use of registers greater than 128 bits makes the attack complexity much higher
than the target security level. Guo et al. [Guo et al. 2016] presented an attack exploiting
a relation between the parity check matrix bits and the decoding failure rate of the algo-
rithm. The attack was named Reaction Attack and is capable of recovering the private
key of QcBits in minutes. No effective countermeasure was proposed for this attack yet.
Considering implementation work, Hu and Cheung [Hu and Cheung 2017] presented a
hardware implementation of QC-MDPC codes partially based on QcBits implementation.
Using a Xilinx Virtex-6 FPGA, they achieved a 53% area-time product gain comparing to
the previous designs for QC-MDPC codes.

WSCAD 2017 - XVIII Simpósio em Sistemas Computacionais de Alto Desempenho

169

To the best of our knowledge, our paper is the first to present a fully vectorized
software optimization of QcBits. The use of vector instructions for cryptographic algo-
rithm optimization, however, is quite common. Chang et al. [Chang et al. 2015] presented
an optimized implementation of the RSA algorithm which achieved speedups of 4.3 to
5.9 times using the AVX-512 instruction set, and Hamburg [Hamburg 2012] presented an
implementation of Elliptic-Curve Cryptography using SSE and AVX instructions. Con-
sidering the code-based cryptography field, specifically, there are also some optimization
work using vector instructions. Maurich et al. [Maurich et al. 2015] presented an imple-
mentation of QC-MDPC codes using the SSE instruction set which was considered the
speed record for these codes before the QcBits publication.

6. Conclusion
In this paper, we presented an optimized implementation of decoding process in QcBits.
We vectorized the entire algorithm, inserted a table of pre-computed vector rotations and
unrolled the rotation calculation loop for the versions ref and clmul. In the ref ver-
sion, using the SSE and AVX2 instruction sets, we achieved a maximum speedup of 2.48
and 4.75 times, respectively, while in the clmul version we achieved a speedup of 2.23
and 3.6 times when using SSE and AVX2 instructions and compiling with GCC. We also
implemented countermeasures for some known side channel vulnerabilities without any
significant performance penalty.

Our results clearly demonstrate the algorithm’s aptitude for vectorization. The
ref version, which does not rely on the clmul instruction, presented higher gains than
the register size increment, showing the great impact of the rotation pre-computation tech-
nique. The same occurred with clmul version vectorized with SSE instructions. The use
of the table could also be much more efficiently implemented if the hardware provided
constant-time memory accesses. Besides that, we also demonstrated that some hardware
improvements, such as shifting and conditional move instructions for 128-bit and 256-bit
registers, can be very useful for the algorithm performance, as shown by our 1.4-factor
speedup estimation considering these instructions. A 256-bit version of the clmul in-
struction would also provide significant performance gains.

Considering the current post-quantum cryptography scenario, the code-based
cryptography field is just beginning its rise and, considering the latest performance im-
provements, it is shaping up as one of the most promising candidates for that end. As
future work, we intend to implement an AVX-512 version of the decoding process and
to optimize the key-pair generation and the encryption process of QcBits. Also, some
countermeasure must be developed to mitigate the Reaction Attack.

Acknowledgements
The authors would like to thank Intel Labs and the São Paulo Research Foundation
(FAPESP) for supporting this research under grant 14/50704-7.

References
Bernstein, D. J., Lange, T., and Peters, C. (2008). Attacking and defending the mceliece

cryptosystem. Cryptology ePrint Archive, Report 2008/318. http://eprint.
iacr.org/2008/318.

Chang, C., Yao, S., and Yu, D. (2015). Vectorized big integer operations for cryptosystems
on the intel mic architecture. In High Performance Computing (HiPC), 2015 IEEE
22nd International Conference on, pages 194–203. IEEE.

WSCAD 2017 - XVIII Simpósio em Sistemas Computacionais de Alto Desempenho

170

Chou, T. (2016). Qcbits: constant-time small-key code-based cryptography. In Interna-
tional Conference on Cryptographic Hardware and Embedded Systems, pages 280–
300. Springer.

Faugere, J.-C., Otmani, A., Perret, L., and Tillich, J.-P. (2010). Algebraic cryptanalysis
of mceliece variants with compact keys. In Eurocrypt, pages 279–298. Springer.

Fog, A. (2011). Instruction tables: Lists of instruction latencies, throughputs and micro-
operation breakdowns for intel, amd and via cpus. Copenhagen University College of
Engineering.

Gueron, S. and Kounavis, M. E. (2010). Intel® carry-less multiplication instruction and
its usage for computing the gcm mode. White Paper.

Guo, Q., Johansson, T., and Stankovski, P. (2016). A key recovery attack on mdpc with
cca security using decoding errors. In Advances in Cryptology–ASIACRYPT 2016,
pages 789–815. Springer.

Hamburg, M. (2012). Fast and compact elliptic-curve cryptography. IACR Cryptology
ePrint Archive.

Hu, J. and Cheung, R. C. (2017). Area-time efficient computation of niederreiter encryp-
tion on qc-mdpc codes for embedded hardware. IEEE Transactions on Computers.

Koblitz, N. (1987). Elliptic curve cryptosystems. Mathematics of computation.

Lomont, C. (2011). Introduction to intel advanced vector extensions. Intel White Paper.

Maurich, I. V., Oder, T., and Güneysu, T. (2015). Implementing qc-mdpc mceliece en-
cryption. ACM Transactions on Embedded Computing Systems (TECS).

McEliece, R. J. (1978). A public-key cryptosystem based on algebraic. Coding Thv.

Misoczki, R. and Barreto, P. S. (2009). Compact mceliece keys from goppa codes. In
Selected Areas in Cryptography, pages 376–392. Springer.

Misoczki, R., Tillich, J.-P., Sendrier, N., and Barreto, P. S. (2013). Mdpc-mceliece: New
mceliece variants from moderate density parity-check codes. In Information Theory
Proceedings (ISIT), 2013 IEEE International Symposium on, pages 2069–2073. IEEE.

Nascimento, E., Chmielewski, L., Oswald, D., and Schwabe, P. (2016). Attacking em-
bedded ecc implementations through cmov side channels. IACR Cryptology ePrint
Archive.

Rivest, R. L., Shamir, A., and Adleman, L. (1978). A method for obtaining digital signa-
tures and public-key cryptosystems. Communications of the ACM.

Rossi, M., Hamburg, M., Hutter, M., and Marson, M. E. (2017). A side-channel as-
sisted cryptanalytic attack against qcbits. Cryptology ePrint Archive, Report 2017/596.
http://eprint.iacr.org/2017/596.

Shor, P. W. (1999). Polynomial-time algorithms for prime factorization and discrete log-
arithms on a quantum computer. SIAM review.

Strenzke, F., Tews, E., Molter, H. G., Overbeck, R., and Shoufan, A. (2008). Side channels
in the mceliece pkc. In International Workshop on Post-Quantum Cryptography, pages
216–229. Springer.

WSCAD 2017 - XVIII Simpósio em Sistemas Computacionais de Alto Desempenho

171

