
Optimization of Halide Image Processing Schedules
with Reinforcement Learning

Marcelo Pecenin1, André Murbach Maidl2, Daniel Weingaertner1

1 Informatics Department – Universidade Federal do Paraná (UFPR)
Curitiba, PR – Brazil

2Elastic, Curitiba, PR – Brazil

{mpecenin,danielw}@inf.ufpr.br, andremm@elastic.co

Abstract. Writing efficient image processing code is a very demanding task and
much programming effort is put into porting existing code to new generations of
hardware. Besides, the definition of what is an efficient code varies according to
the desired optimization target, such as runtime, energy consumption or memory
usage. We present a semi-automatic schedule generation system for the Halide
DSL that uses a Reinforcement Learning agent to choose a set of scheduling
options that optimizes the runtime of the resulting application. We compare our
results to the state of the art implementations of three Halide pipelines and show
that our agent is able to surpass hand-tuned code and Halide’s auto-scheduler
on most scenarios for CPU and GPU architectures.

1. Introduction
Image processing libraries devote great amount of their development effort in optimizing
algorithms and code in order to achieve good performance. This optimization, for each
algorithm (and sometimes even for each image size), has to be custom tailored to specific
hardware architectures, if the code is to run close to the theoretical optimum. Besides,
“good performance” can be defined in different ways (compute time, energy consumption,
memory usage), and thus require specific optimization strategies.

Optimized code development is a very challenging task, with few available skilled
programmers. Once the code is optimized, it is usually very intricate and specific. Small
modifications in an image processing pipeline or data structure can render all optimization
inefficient or even useless, demanding a re-implementation.

Given the great profusion of imaging hardware architectures, specially consider-
ing mobile and embedded systems, it is almost impossible to develop and maintain opti-
mized versions of image processing tools that can be kept updated considering the above
mentioned variables. Therefore, Halide [Ragan-Kelley et al. 2012] was created as a Do-
main Specific Language (DSL) aiming to decouple algorithms from schedules, allowing
for an easier optimization of image processing pipelines.

We propose an approach based on the Proximal Policy Optimization
[Schulman et al. 2017] reinforcement learning agent to semi-automatically generate/op-
timize schedules for Halide algorithms. We developed an interface between the Halide
compiler and the agent so that it can “learn” to choose the scheduling directives guided
by a feedback based on the runtime of the generated code. Experiments with tree algo-
rithms were performed on CPU and GPU architectures, and were compared to versions
generated by Halide’s auto scheduler and hand optimized.

2. Background

2.1. Halide Language

Halide DSL is designed to facilitate the portability of high performance code for image
processing in modern heterogeneous architectures, generating code capable of exploiting
memory locality, vectorization (SIMD instructions) and parallelism in multicore CPUs
and GPGPUs [Ragan-Kelley and Adams 2012]. Halide is implemented as a C++ embed-
ded DSL and distributed as a library. It can be compiled for a broad set of platforms such
as: X86, ARM, CUDA, OpenCL and OpenGL on OS X, Linux, Android and Windows.

The innovation of Halide is the decoupling between the definitions of the algo-
rithm (logic) and the organization of how it should be computed (execution schedule), i.e.,
in Halide the heuristic of the image processing algorithm is separated from the nesting of
processing loops, parallelism statements, vectorization, etc. [Ragan-Kelley et al. 2012].
Changing the schedule does not affect the definition nor the results of the algorithms
logic, making it easier for programmers to experiment with different schedules in order
to achieve a better performance on specific hardware architectures.

Image processing algorithms are defined in Halide as a multistage processing
pipeline that performs operations on data consumed from previous stages and produces
the result for subsequent stages, until the end of the algorithm. A pipeline can be repre-
sented as a graph connecting different stages, coded using a functional syntax, in order to
facilitate the understanding and readability of the code.

The execution schedule consists of a series of scheduling directives that will be ap-
plied to the pipeline stages. These directives are implemented as methods of C++ classes
defined by the Halide DSL and drive the Halide compiler’s code generation for the corre-
sponding pipeline. Listing 1 presents an image smoothing algorithm (3× 3 blur) written
in Halide, including the definition of a pipeline (Lines 5 and 6) and a possible execution
schedule with directives (Lines 8 and 9). Line 11 compiles the code and generates the
corresponding executable through the realize operation.

1 Image<float> in = load<float>("img.png");
2 Func blur_x, blur_y; Var x, y, xi, yi;
3

4 // Algorithm / Processing pipeline
5 blur_x(x, y)=(in(x,y) + in(x+1,y) + in(x+2,y)) / 3;
6 blur_y(x, y)=(blur_x(x,y) + blur_x(x,y+1) + blur_x(x,y+2))/3;
7 // Execution schedule
8 blur_y.tile(x, y, xi, yi, 8, 4).parallel(y).vectorize(xi, 8);
9 blur_x.compute_at(blur_y,x).vectorize(x,8);

10

11 Image<float> out = blur_y.realize(in.width()-2, in.height()-2);

Listing 1. Halide program for blurring an image using a 3×3 mean kernel.

2.2. Reinforcement Learning

A Reinforcement Learning agent interacts with an environment through actions, and re-
ceives a reward as a return for each action taken. From its interactions with the en-
vironment, the agent learns to choose future actions that maximize the received re-
ward [Ottoni et al. 2015]. The agent represents a control and optimization heuristic

while the environment represents a problem modeled by a Markov Decision Process
[Sutton and Barto 1998]. For each interaction, the agent observes the current state of the
environment and then chooses an action. This action leads the environment to a new state,
returning reward value as a measure of the quality of this state change [Júnior 2012]. This
process is illustrated in Figure 1.

The agent maps the states of the environment into actions using the agent policy
function, which can be guided by different heuristics. The task of the agent is to find a
sequence of actions that produces an optimized policy, i.e., that maximizes the total sum of
the received rewards [Silva 2016]. Unlike supervised learning methods in which there are
“input/output” pairs to be used in training, the agent needs to gain experience (knowledge)
from possible states, actions and rewards without a priori knowledge [Júnior 2012].

State-of-the-art reinforcement learning method Proximal Policy Optimization
(PPO) [Schulman et al. 2017] supports the application of reinforcement learning in high-
dimensional actions scenarios, with actions in the continuous space or with a large amount
of discrete actions. The PPO is based on an Actor-Critic architecture, as shown in Figure
1. For each reinforcement learning interaction, the PPO agent uses the value estimated
by the critic network to determine a Temporal-Difference (TD) error [Silver et al. 2014].
This information is later used to update the weights of both neural networks, through an
Adam optimizer (gradient descent).

EnvironmentActor
(Policy)

Critic
(Value Function)

TD error
Reward

State

Action

Agent

Figure 1. Actor-Critic reinforcement learning architecture. The agent uses two
neural networks: the critic network that defines a value function for the en-
vironment state, and the actor network that represents the policy to choose
actions based on the environment’s state. Adapted from [Huang 2018].

3. Related Work

Since the conception of the Halide language, with the decoupling between the definition of
the pipeline and the scheduling, efforts have been made to try to automate the generation
of optimized schedules. Halide authors show that analyzing and generating individual
schedules for each pipeline stage is simple, but complexity raises exponentially when
composing these stages. Thus, finding an optimized schedule through exhaustive search
for all possible scheduling alternatives is impracticable due to the huge search space. For
example, the pipeline of an algorithm with approximately 100 stages has an estimated
lower limit of 10720 possible schedules [Ragan-Kelley 2014, Ragan-Kelley et al. 2013].

In order to support the creation of schedules, Halide authors proposed an auto-
tuner that uses a genetic algorithm to find an efficient pipeline. However, this ap-
proach needs to define specific rules for each schedule being optimized, presents
difficulties in overcoming local minimum, and has a very slow convergence time
[Mullapudi et al. 2015]. There is also a Halide schedule optimizer based on OpenTuner

that has more generalized rules [Ansel et al. 2014]. OpenTuner was able to find effi-
cient scheduling for simple pipelines (8 stages), but failed to converge in more complex
pipelines (32, 44 and 49 stages), with generated schedules five to ten times slower when
compared to manually optimized.

Another approach [Mullapudi et al. 2016] extended the function domain boundary
analysis mechanism of Halide to split the pipeline stages into groups and find an efficient
tile for each group by estimating arithmetic cost for each stage. The cost is used to define
a tile size that minimizes the number of data loads and the processing loops are ordered to
maximize data locality and the parallelism of the outermost loops. This approach is able
to generate optimized schedules in short time, but not currently for GPU architecture,
and by inspecting the generated code the authors noticed that it could be significantly
improved.

4. Halide Schedule Optimization with Reinforcement Learning
Halide schedule optimization refers to the task of finding an execution schedule for a given
Halide image processing pipeline and hardware platform that minimizes a cost function.
The proposed solution receives as input the Halide image processing pipeline and a possi-
ble set of scheduling options for this pipeline. A reinforcement learning agent then takes
care of choosing which scheduling options in which order are best for optimizing the
pipeline, aiming to minimize the resulting program’s runtime.

Learning occurs in an iterative manner, choosing a scheduling option and testing
the resulting runtime by executing the program. Gradually, with the accumulated expe-
rience, increasingly better scheduling options are selected, and the estimates produced
by reinforcement learning help to choose scheduling options that are more likely to per-
form well. This automated exploration of different scheduling options is possible because
Halide ensures that changes in execution scheduling do not change the outcome of the
implemented pipeline. An overview of the proposed solution is presented in Figure 2.

Image Processing
Pipeline

Scheduling
Options

Reinforcement
Learning

Compilation
and Execution

Measured
Run Time

Selected
Scheduling Option

Schedule
Generation and

Estimation
Refinement

Figure 2. The image processing pipeline and the scheduling options are the in-
put for the reinforcement learning agent to generate execution schedules
by choosing and executing one scheduling option a time, refining esti-
mates for upcoming choices based on information gathered from previous
choices and reward based on runtime.

4.1. Scheduling Options Search Space

Each scheduling option available to the reinforcement learning agent corresponds to a
single Halide directive, including the stage of the pipeline the directive should be applied
to and all the parameters of that directive. Given

S: the set of pipeline stages of a Halide program (e.g. S ={blur x, blur y});
Φ(s): a function that given a stage s ∈ S returns a set Ds of possible scheduling

directives for this stage (e.g. s={blur y} → Ds ={tile, vectorize,. . . });
Π(d): a function that given a scheduling directive d ∈ Ds returns its list of parameters

Pd (e.g. d={tile} → Pd ={dimx, dimy} or d={vectorize} → Pd ={Var,
SIMD size}); and

Θ(p, d, s): a function that given a parameter p ∈ Pd, returns a possible value to this
parameter when used in directive d for stage s.

Thus, a scheduling option can be expressed as a tuple < s, d, A >, where
A = {a | ∀p ∈ Π(d) ∃a ∈ Θ(p, d, s)}. The search space for the scheduling options is
given by combinations of S, Ds and A, and can be huge [Ragan-Kelley 2014]. In order to
reduce it we propose that the programmer should elicit the elements that make up each of
the sets S, Ds, and A, as illustrated in Figure 3. To achieve that, the programmer can rely
on her/his professional experience, knowledge of the pipeline in question, as well as of
the desired target architecture to elicit only more plausible scheduling options, discarding
any options considered inefficient or invalid.

S

A

Ds Ds

A

PdPd Pd

blur_y blur_x

tilevectorize parallel

var factor

x xi 4 168

Stages

Directives

Directive Parameters

Parameter Arguments

One Scheduling Option:
blur_y.vectorize(xi, 8)

...

......

...

Figure 3. Illustration of the space elicitation of scheduling options for the Blur
pipeline. The blue line indicates one possible scheduling option.

Listing 2 exemplifies scheduling options deemed important for the schedule gen-
eration of the Blur pipeline presented in Listing 1, with their respective set of possible
parameters and arguments. These options and a Halide algorithm must be provided by
the programmer as input to the PPO agent, as depicted in Figure 2.

4.2. Reinforcement Learning Environment Design

The two main components of reinforcement learning are Agent and Environment, as il-
lustrated in Figure 1. In this work, an implementation of the PPO provided by the OpenAI
Baselines library [Dhariwal et al. 2017], in Python, was used as agent, while the environ-
ment was developed with the ability to interact with the Halide language and its image
processing pipelines. The communication between Python and Halide is done using gR-
PC/Protobuf synchronous messages.

The state of the reinforcement learning environment is represented by the set of
directives already used in the scheduling definition. In this representation, each used

1 void options(HalideScheduleMapper &sm){
2 vector<Expr> split_factor = {8, 16, 32, 64, 128, 256, 512};
3 vector<Expr> vecto_factor = {4, 8, 16};
4 vector<Expr> unroll_factor = {2, 3, 4};
5 sm.map(blur_y)
6 .bound({y}, {0}, {input.height()})
7 .bound({x}, {0}, {input.width()})
8 .compute_root()
9 .tile({x}, {y}, {xi}, {yi}, split_factor, split_factor)

10 .split({y}, {yi}, split_factor)
11 .parallel({y})
12 .unroll({xi, x}, unroll_factor)
13 .vectorize({xi, x}, vecto_factor);
14 sm.map(blur_x)
15 .store_at({blur_y}, {y})
16 .compute_at({blur_y}, {x, yi})
17 .unroll({x}, unroll_factor)
18 .vectorize({x}, vecto_factor);
19 }

Listing 2. Scheduling options definition code example for Blur pipeline.

element s ∈ S, d ∈ Ds and a ∈ A receives a unique numerical identifier so that a Halide
execution schedule with several directives is transformed into a vector of numerical data
that represents the state of the environment. Every time the same stage s, directive d or
parameter argument a is referenced two or more times within the execution schedule, the
same identifier code is used, but preserving in the vector the order and position where
each element appears in the schedule.

The actions of reinforcement learning are represented by the scheduling directives
available for a given input pipeline, elicited by the programmer as described in Section
4.1, with each scheduling option < s, d, A > corresponding to a single action. In this
way, performing an action in the environment means applying a scheduling directive to
the input pipeline. In addition, it was also added the possibility to perform a special action,
called no-operation, which is a command to finalize the current schedule.

The reward is represented by a scalar value returned by the reinforcement learning
environment after performing an action, i.e., apply a scheduling option < s, d, A > to the
current execution schedule. Positive values mean that the action generated a reduction in
the runtime and negative values indicate that it caused some error in the compilation or
execution of the pipeline. As shown in Equation 1, the reward r gives more importance
to big reductions in time, however, when the execution time increases, the reward is set to
zero so it does not penalize actions that may be important to obtain future gains.

r =

(rtprev − rtcurr)× rs if rtcurr < rtprev

0 if rtcurr >= rtprev

−1 if error
(1)

where rs = 100/rtinit is the normalized scaling factor using the initial execution time
rtinit of the input pipeline. In this way, the reward will have a similar amplitude for dif-
ferent input pipelines, proportional to the obtained gain, even if they have quite different
size and execution times.

5. Experimental Results
The proposed PPO reinforcement learning agent1 was tested on three image processing
pipelines, using different image sizes and CPU and GPU computing architectures.

5.1. Experimental Setup
Experiments were executed on a cluster node from the C3SL Research Group with the
configuration listed below. Each process was pinned to a single socket, being able to use
only the cores and local memory of that socket. The number of threads that could be used
by Halide was limited to the number of cores per socket:

• CPU Intel Xeon E5-4627v2 3.30GHz, 4 Sockets, 8 Cores/Socket, 128GB RAM;
• GPU NVIDIA Tesla K40m, 745MHz, 3.5 CUDA CC, 12GB GDDR;
• Linux x86 64, GCC 5.4.0, Halide 2018/02/15, OpenAI Baselines 0.1.5.

Three Halide image processing pipelines proposed by [Mullapudi et al. 2016] and
available in the Halide language repository were used for schedule generation:

Blur: image smoothing filter with a 2-stage pipeline, which receives grayscale images as
input and produces output in the same format;

Harris: corner detection filter with a 13-stage pipeline, receiving color images as input
and producing grayscale output;

Interpolation: pixel interpolation using pyramids, working with different resolution
scales and data dependencies, with a 52-stage pipeline and 10 pyramid levels.

Training of the PPO agent for each pipeline was performed for only one image
size, using image3 with 3848 × 2568 pixels. Two additional images: image1 with
962 × 642 pixels and image2 with 1924 × 1284 pixels were also used to evaluate the
performance of the generated schedules and for comparison with other approaches.

For the composition of the scheduling options set < s, d, A >, provided as input
to the reinforcement learning, the following directives and parameters were considered:

tile, split: {8, 16, 32, 64, 128, 256, 512} sizes for each dimension of processing
windows (e.g. number of threads and blocks for gpu tile);

vectorize: {4, 8, 16} sizes for vectorization instructions;
unroll: {2, 3, 4} loop unroll factor;
compute root, compute at, store at: alternative positions for processing inter-

mediate stages and storing partial results, configured according to the dependency
of data between the stages of each pipeline.

parallel: use multiple threads;
bound: setting known limits of dimensions in the domain variables.

Configuration parameters for the PPO agent were based on
[Schulman et al. 2017], empirically optimized, and are presented in Table 1.

The proposed PPO agent was used to generate schedules for the three previously
mentioned Halide pipelines. For each pipeline and computing architecture, four trials
with different random seeds were executed and the best performing schedule was chosen
to be compared in terms of performance (runtime), to execution schedules produced using
two other generation methods described in [Mullapudi et al. 2016]:

1Available at: https://github.com/mpecenin/wscad-2019

Table 1. Parameters for the PPO Reinforcement Learning Agent.

Hyperparameter Value Hyperparameter Value
Trajectory segment length 256 Entropy coefficient 0.03
Optimization epochs 4 Annealing type linear
Minibatch size 64 Iteration limit (episodes) 10000
Adam optimizer stepsize 2.5× 10−3 Number of parallel actors 1
Future reward discount (γ) 0.99 Neural network type MLP/tanh
GAE estimator parameter (λ) 0.95 Hidden layer size 64
Policy ratio clipping (ε) 0.2 Number of hidden layers 2

Hand-tuned: schedules were manually optimized by experienced Halide programmers
and are available in the Halide language repository.

Auto-schedule: is the automatic schedule generator provided by the Halide language
compiler, initially proposed by [Mullapudi et al. 2016]. In the current version of
Halide, this mechanism only produces schedules for CPU architecture. Its gener-
ation parameters were defined according to the hardware specification.

PPO-schedule: uses the proposed PPO agent. The reinforcement learning was applied
separately for each pipeline and hardware architecture. The best schedule found
in each case was used in the comparison with the other methods.

A validation test was performed comparing pixels of the output images from all
pipelines, and no difference was encountered. The execution time rt used to compare the
generation methods was computed according to Equation (2)

rt = min
1..10

(
10∑
1

runtime(pipeline)× 0.1) (2)

where pipeline ∈ {Blur ,Harris , Interpolation} and runtime() is the execution time, pre-
sented in milliseconds, without considering the time spent compiling the Halide program.

5.2. Results and Discussion
Evolution of the schedules created by the PPO Agent for the Interpolation pipeline is
depicted in Figure 4. It shows four independent execution trials where, at the beginning
of the training, the reward is negative (Figure 4a), indicating that the first schedules do not
produce a valid program (1). As the iterations proceed however, reward gets positive and
the average runtime of the produced program (Figure 4b) decreases. Similar behaviour is
observed for the Blur and Harris pipelines.

A complete trial of schedule generation with the PPO agent averaged 20h for the
Blur, 25h for the Harris and 130h for the Interpolation pipeline. Most of this time, how-
ever, was not spent on the execution of the generated program itself, nor the time spent in
the updates of the agent’s neural networks, but the most time-consuming task is the com-
pilation of the Halide code after each action executed in the environment. Compilation
time increases with the size of the pipeline, and it is plausible to consider that the larger
the pipeline size, the longer it will take to run a trial of the reinforcement learning agent.

Listings 3 and 4 show the auto-tuned schedules generated for the Blur pipeline
allowing a comparison of schedules evolved by the PPO agent, both for CPU and GPU.

0 100 200 300 400 500 600 700
PPO Iterations

-200

-150

-100

-50

0

50

100
A
ve
ra
ge
 R
ew
ar
d

Trial 1
Trial 2
Trial 3
Trial 4

(a) Reward

0 100 200 300 400 500 600 700
PPO Iterations

50

100

150

200

250

300

A
ve
ra
ge
 R
un
ti
m
e
(m
s) Trial 1

Trial 2
Trial 3
Trial 4

(b) Runtime

Figure 4. Evolution of the Reward (a) and Runtime (b) of schedules generated
by the PPO agent for the Interpolation pipeline during four independent
executions (trials). Negative rewards indicate invalid schedules.

1 // Hand-tuned:
2 blur_y.split(y, y, yi, 8).parallel(y).vectorize(x, 8);
3 blur_x.store_at(blur_y, y).compute_at(blur_y, yi).vectorize(x, 8);
4 // PPO:
5 blur_y.unroll(x, 4).parallel(y).bound(x, 0, input.width());

Listing 3. Comparison of Blur schedules for CPU (Hand tuned x PPO)

1 // Hand-tuned:
2 blur_y.gpu_tile(x, y, xi, yi, 16, 16);
3 blur_x.compute_at(blur_y, x).gpu_threads(x, y);
4 // PPO:
5 blur_y.gpu_tile(x, y, xi, yi, 128, 8).unroll(yi, 4).unroll(xi, 2);

Listing 4. Comparison of Blur schedules for GPU (Hand tuned x PPO)

Comparison between the runtime of Halide programs generated by experienced
programmers (Hand-tuned), by Halide’s Auto-scheduler, and our proposed PPO-schedule
for CPU and GPU architectures is shown in Figure 5 in the form of relative performance
bars. Each row indicates one pipeline and each column one image size. The relative
performance is based on the ratio between the execution times of the compared schedules
with the best program (smallest runtime) valued at 1.0 and the others having their runtime
scaled accordingly, allowing for an easy comparison.

The general outcome shows that the PPO-schedule is capable of generating com-
peting schedules in all scenarios. It has the best results on GPU for all but one image size
on the Interpolation pipeline, with up to ≈ 50% faster execution time than hand tuned
code (Halide’s auto-scheduler is not currently capable of generating GPU schedules). On
CPU PPO-schedule has the best results with the large images, and performs very close to
the best on all but one image size on the Interpolation pipeline.

Table 2 lists the absolute values of the execution time in each evaluated scenario,
as well as the slowdown2 of each case, related to the best result within the same hardware
architecture, pipeline and input image. In the table, the scenarios that obtained the best

2Slowdown: how many times slower was one result compared to another.

 Hand-tuned Auto-schedule PPO

0.0
0.2

0.4

0.6

0.8

1.0

Blur - Image 1

0.0
0.2

0.4

0.6

0.8

1.0

Blur - Image 2

0.0
0.2

0.4

0.6

0.8

1.0

Blur - Image 3

0.0
0.2

0.4

0.6

0.8

1.0

Harris - Image 1

0.0
0.2

0.4

0.6

0.8

1.0

Harris - Image 2

0.0
0.2

0.4

0.6

0.8

1.0

Harris - Image 3

0.0
0.2

0.4

0.6

0.8

1.0

Interpolation - Image 1

0.0
0.2

0.4

0.6

0.8

1.0

Interpolation - Image 2

0.0
0.2

0.4

0.6

0.8

1.0

Interpolation - Image 3

CPU GPU CPU CPU GPUGPU

R
el
at
iv
e
 P
er
fo
rm
an
ce

CPU GPU CPU GPU CPU GPU

CPU GPU CPU GPU CPU GPU

Scheduler:

Figure 5. Performance relative to the best result by architecture and scheduling
method. The bigger the better. The relative performance is based on the
ratio between the execution times of the compared schedules. The best
has value 1.0 and the others have lower values.

result, i.e., the shortest execution time, are highlighted in bold, while those with inferior
results have their slowdown relative to the best presented.

6. Conclusion

In this work we presented an approach for generation and optimization of Halide sched-
ules using a reinforcement learning technique. The approach utilizes an implementation
of a PPO agent that interacts with an environment built within this work. One of the im-
portant aspects within the definition of the environment is the calculation of the reward,
which represents the most important information that guides the learning of the agent.
Another relevant aspect in defining the environment is the composition of the space of ac-
tions that will be explored by the agent. This space is defined from the set of scheduling
options and entered as input during the initialization of the environment.

In the current implementation the scheduling options are elicited by the Halide
programmer for each pipeline to be optimized. An advantage at this point is that it allows
the programmer to use her/his professional experience and knowledge about the pipeline
to include only plausible options, thus reducing the search space to be explored by the

Table 2. Absolute Execution Time (ms) and Relative Slowdown (×) by Architec-
ture and Scheduling Method.

CPU GPU
Hand-tuned Auto-sched. PPO Hand-tuned PPO
ms × ms × ms × ms × ms ×

Blur
Img1 0.10 - 0.13 1.3 0.12 1.2 0.07 1.4 0.05 -
Img2 0.49 - 0.51 1.0 0.52 1.1 0.21 1.9 0.11 -
Img3 2.94 1.1 3.15 1.2 2.66 - 0.76 1.9 0.39 -

Harris
Img1 3.21 6.4 0.68 1.4 0.50 - 0.22 1.8 0.12 -
Img2 13.07 6.2 2.82 1.3 2.10 - 0.72 1.8 0.39 -
Img3 36.89 4.7 10.71 1.4 7.78 - 2.79 1.9 1.46 -

Interp.
Img1 4.51 1.2 4.10 1.0 3.91 - 3.27 1.1 2.94 -
Img2 17.43 1.5 11.49 - 16.88 1.5 6.22 - 6.26 1.0
Img3 77.23 1.2 85.89 1.4 63.57 - 16.23 - 18.52 1.1

PPO agent. On the other hand, as it requires a programmer’s intervention, the developed
mechanism is not fully automated, positioning itself as an intermediate model between
the manual development of the schedule and the auto-schedule mechanism available in
the Halide language. However, the proposed approach is independent of the hardware ar-
chitecture used. In the present work the approach was evaluated in two architectures, CPU
and GPU, but can also be used in other architectures supported by the Halide language.

Results show that the reinforcement learning agent was able to converge to good
Halide execution schedules in the evaluated pipelines, on both architectures, although
it did not reach the best result in some of the considered scenarios, when compared to
the Hand-tuned and Auto-schedule methods. These results also suggest that the proposed
environment, as well as the method of calculating the reward, besides the representation of
the states and actions, were effective in representing the problem in a way compatible with
the reinforcement learning technique. More test scenarios and a broader set of pipelines
need to be evaluated in order to have a comprehensive and reliable indicator.

A point that requires attention is related to the considerable duration of the ex-
periments, which may eventually render the developed solution impracticable for large
pipelines. Since most time is spent on compiling each proposed schedule, the use of
an agent already trained with one pipeline to optimize the schedule of another pipeline
through the use of Transfer Learning techniques [Pan et al. 2010] should be considered.
Another enhancement would be to automate the elicitation of scheduling options. A pos-
sible implementation could adapt the Halide’s available auto-schedule mechanism to use
information extracted from the pipeline through the language compiler and generate the
set of scheduling options that would then be explored by the reinforcement learning agent.

References

Ansel, J., Kamil, S., Veeramachaneni, K., Ragan-Kelley, J., Bosboom, J., O’Reilly, U.-
M., and Amarasinghe, S. (2014). Opentuner: An extensible framework for program
autotuning. http://opentuner.org. Accessed 2018-01.

Dhariwal, P., Hesse, C., Klimov, O., et al. (2017). Openai baselines. https://
github.com/openai/baselines. Accessed 2018-09.

Huang, S. (2018). Introduction to various reinforcement learning algorithms, part
i: Q-learning, sarsa, dqn, ddpg. https://towardsdatascience.com/
72a5e0cb6287. Accessed 2018-09.

Júnior, E. P. F. D. (2012). Aprendizado por reforço sobre o problema de revisitação de
páginas web. Master’s thesis, Pós-Graduação em Informática - Pontifı́cia Universidade
Católica do Rio de Janeiro, Rio de Janeiro - RJ.

Mullapudi, R. T., Adams, A., Sharlet, D., Ragan-Kelley, J., and Fatahalian, K. (2016).
Automatically scheduling halide image processing pipelines. ACM Trans. Graph.,
35(4):83:1–83:11.

Mullapudi, R. T., Vasista, V., and Bondhugula, U. (2015). Polymage: Automatic opti-
mization for image processing pipelines. ACM SIGPLAN Notices, 50(4):429–443.

Ottoni, A. L. C., Oliveira, M. S., Nepomuceno, E. G., and Lamperti, R. D. (2015). Análise
do aprendizado por reforço via modelos de regressão logı́stica: Um estudo de caso
no futebol de robôs. Revista Junior de Iniciação Cientı́fica em Ciências Exatas e
Engenharia, 1(10):44–49.

Pan, S. J., Yang, Q., et al. (2010). A survey on transfer learning. IEEE Trans. on Knowl-
edge and Data Engineering, 22(10):1345–1359.

Ragan-Kelley, J. and Adams, A. (2012). Halide: A language for image processing.
http://halide-lang.org. Accessed 2018-08.

Ragan-Kelley, J., Adams, A., Paris, S., Levoy, M., Amarasinghe, S., and Durand, F.
(2012). Decoupling algorithms from schedules for easy optimization of image pro-
cessing pipelines. ACM Trans. Graph., 31(4):32:1–32:12.

Ragan-Kelley, J., Barnes, C., Adams, A., Paris, S., Durand, F., and Amarasinghe, S.
(2013). Halide: A language and compiler for optimizing parallelism, locality, and
recomputation in image processing pipelines. ACM SIGPLAN Notices, 48(6):519–530.

Ragan-Kelley, J. M. (2014). Decoupling algorithms from the organization of computation
for high performance image processing. PhD thesis, MIT.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov, O. (2017). Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347.

Silva, L. M. D. D. (2016). Proposta de arquitetura em hardware para fpga da técnica q-
learning de aprendizagem por reforço. Master’s thesis, Pós-Graduação em Engenharia
Elétrica e de Computação - Universidade Federal do Rio Grande do Norte, Natal - RN.

Silver, D., Lever, G., Heess, N., Degris, T., et al. (2014). Deterministic policy gradient
algorithms. In International Conference on Machine Learning.

Sutton, R. S. and Barto, A. G. (1998). Reinforcement learning: An introduction. MIT
press Cambridge.

