
High performance computing architectures analysis for gene
networks inference

Anderson G. Marco1 , Mario A. Gazziro2 , David C. Martins-Jr1

1Centro de Matemática Computação e Cognição - UFABC

2Centro de Engenharia e Ciências Sociais - UFABC
Av dos Estados – 5001 – 09210-580 – Santo André – SP – Brasil

anderson.marco@ufabc.edu.br, mario.gazziro@ufabc.edu.br,

david.martins@ufabc.edu.br

Abstract. Modeling and inference of biological systems are an important field
in computer science, presenting strong interdisciplinary aspects. In this context,
the inference of gene regulatory networks and the analysis of their dynamics
generated by their transition functions are important issues that demand sub-
stantial computational power. Because the algorithms that return the optimal
solution have an exponential time cost, such algorithms only work for gene net-
works with only dozens of genes. However realistic gene networks present hun-
dreds to thousands of genes, with some genes being hubs, i.e., their number of
predictor genes are usually much higher than average. Therefore there is a need
to develop ways to speed up the gene networks inference. This paper presents
a benchmark involving GPUs and FPGAs to infer gene networks, analysing
processing time, hardware cost acquisition, energy consumption and program-
ming complexity. Overall Titan XP GPU achieved the best performance, but
with a large cost regarding acquisition price when compared to R9 Nano GPU
and DE1-SOC FPGA. In its turn, R9 Nano GPU presented the best cost-benefit
regarding performance, acquisition price, energy consumption, and program-
ming complexity, although DE1-SOC FPGA presented much smaller energy
consumption.

Resumo. A modelagem e inferência de sistemas biológicos é uma importante
área de pesquisa em ciência da computação, possuindo caracterı́sticas forte-
mente interdisciplinares. Nesse contexto, a inferência de redes de regulação
gênica e a análise da dinâmica da expressão gerada pelas suas funções de
transição são problemas relevantes. Tais problemas demandam muito poder
computacional, já que algoritmos que buscam pela solução ótima possuem com-
plexidade de tempo exponencial. Esta complexidade de tempo faz com que
muitas análises sejam realizadas em redes gênicas com dezenas de genes e
com cada gene tendo poucos preditores. Porém, uma rede gênica de tamanho
real tipicamente possui milhares de genes, com alguns desses genes podendo
ser hubs por terem um grau de entrada (número de preditores) bem acima da
média. Desta forma é necessário buscar meios de acelerar o processamento da
inferência de redes gênicas. Este artigo mostra uma comparação entre GPUs
e FPGAs, duas arquiteturas computacionais de alto desempenho, na realização

da tarefa de inferência de redes gênicas, comparando o tempo para o processa-
mento, o custo energético, custo de aquisição destes hardwares e dificuldade de
programação.

1. Introduction

Genes are responsible to define the features of the life forms, together with the envi-
ronment. The expression of a given gene, which is understood as the concentration
of RNA messengers (mRNA) created for a specific condition, can impact the expres-
sion of other genes. The interaction among genes by means of their expression can
be viewed as a graph. Such graphs are known as gene regulatory networks. Gene net-
works inference is important to derive models to better understand the interaction among
genes. Bayesian networks [Friedman et al. 2000] and its variations (e.g., Boolean net-
works [Kauffman 1969], probabilistic Boolean networks [Shmulevich et al. 2002] and
probabilistic gene networks [Barrera et al. 2007] [Lopes et al. 2008]) are popular gene
network discrete models, i.e., each gene is represented by a finite number of states (e.g., 0
or 1 in Boolean Network models and their derivatives). The inference of a Bayesian net-
work requires the estimation of a conditional probability distribution table for each gene,
representing the probabilities of a gene being on each possible state given all possible
states of the best candidate gene set (predictors). Such probabilities are estimated from
a given gene expression dataset. Bayesian networks inference involves the search for the
best predictor set of a given gene guided by a criterion function (or fitness function). The
criterion function measures the quality of prediction of the estimated conditional proba-
bility tables. The inference of gene network modeled as Bayesian networks is considered
NP-complete with a factorial computational cost [Chickering 1996]. High performance
computing methods involving parallel computing have been developed to increase the
performance of this task [Borelli et al. 2013, Carastan-Santos et al. 2017].

According to [Vanderbauwhede and Benkrid 2013], since the beginning of the
21st century Field Programmable Gate Array (FPGA) has been used for parallel pro-
cessing in many cases. This device is not a processor but a “programmable” chip to
represent any entity of digital logics, being able to represent even processors. The logic
circuit implemented in FPGA shows the type of parallel processing to be done. There-
fore, the FPGA can do parallel processing of either shared memory or distributed memory.
Pournara et al [Pournara et al. 2005] were the first to use FPGA to infer gene networks,
however their implementation is restricted for networks with dozens of genes.

Along with FPGAs GPUs (Graphics Processing Unit) are very used in high per-
formance computing. GPUs are formed by many small processors specialized floating
point operations. GPUs are more easy to program, more popular and have a computa-
tional power equivalent to FPGAs for applications with an extensive use of floating/fixed
point operations. The main tools for GPU programming are CUDA [Cook 2018] library
(Nvidia proprietary), and the libraries that implement OpenCL [Munshi et al. 2018] API
(Application Programming Interface). Borelli et al [Borelli et al. 2013] work is one of the
first to use GPU to infer gene networks with realistic size, although the topology of the
resulting networks is restricted to a maximum of two predictors per gene.

This paper aims to analyse the performances of FPGAs and GPUs in inferring
gene networks. Differently from other works, whose networks inferred are not realis-

tic, the methods described in this paper can infer networks with realistic sizes and more
complex topologies. Performance analyses involve cost of hardware acquisition, energy
consumption and difficulty of programming, besides execution time.

2. Exhaustive search algorithm for gene networks inference
The exhaustive search for gene networks inference described here receives an input ma-
trix Um×n where columns correspond to genes and rows correspond to temporal gene
expression samples, a fixed predictor set size s, and a criterion function F . By adopt-
ing Boolean Networks as gene networks model, each expression value is binary, i,e,,
U(i, j) = {0, 1}, i = 1..m, j = 1..n, where 0 means sub-expression (inactive or below
average activity) and 1 means super-expression (active or above average activity). Nor-
mally there are thousands of genes and only dozens of samples (m << n). Gene networks
modeled as Boolean Networks can be understood as dynamical systems where the vari-
ables and time evolution are discrete, and variables correspond to genes. The algorithm is
described as follows:

1. For each gene Y ∈ X, where X = {X1, X2, ..., Xn} ∈ {0, 1}n is the set of all n
genes, perform an exhaustive search as described in step 2.

2. For each possible set of predictors Z ⊆ X with a given fixed size s, estimate a
conditional probability table for Y values given the possible values of Z based on
U and evaluate it by applying the given criterion function F .

3. Return the set of predictors Z∗ ⊆ X which performs the best prediction of Y
according to the given criterion function F .

In the sequential implementation all genes are processed at an outer loop (step 1),
while the inner loop (step 2) creates and evaluates the conditional probability tables of all
possible candidate predictor sets with a given fixed size regarding the prediction of a gene
referred at a given iteration of the outer loop.

In order to retrieve the conditional probabilities table, it requires the creation of
a matrix T with 2s rows (number of all possible values of a candidate predictor set Z)
and two columns (number of possible values of gene Y : 0 and 1), Each matrix cell stores
the number of observations of a certain value of Y = {0, 1} given a certain instance of
Z = {0, 1}s. Equations 1 and 2 define the creation of the matrix T for a given candidate
predictor set {g1, g2, ..., gs} ⊆ X and a given target gene g0 ∈ X. These equations use
auxiliary functions defined in Equations 3, 4 and 5.

Tj,1 =
m∑
i=1

v(i, j, g1, g2, ..., gs, g0) (1)

Tj,2 =
m∑
i=1

w(i, j, g1, g2, ..., gs, g0) (2)

v(i, j, g1, g2, ..., gs, g0) =

1 , q(i, g1, g2, ..., gs) = j

and U(i mod m)+1,g0 = 1
0 , otherwise

(3)

w(i, j, g1, g2, ..., gs, g0) =

1 , q(i, g1, g2, ..., gs) = j

and U(i mod m)+1,g0 = 0
0 , otherwise

(4)

q(i, g1, g2, ..., gs) = (2s−1Ui,g1 + 2s−2Ui,g2 + ...+ Ui,gs) + 1 (5)

Each row of matrix T refers to a certain state that the gene set {g1, g2, ..., gs}
could have and the two columns refer to the values (0 or 1) that the target gene (g0) could
have. The function in Equation 5 shows the state of genes from the considered candidate
predictor set at time t, with 2s possible states indexed from 1 to 2s. The expression value
U(i mod m)+1,g0 , present in Equations 3 and 4 represents the state of the target gene g0 at the
next timepoint (t+ 1), for t = 1..m− 1. In this way T represents a counting table for all
possible states of the candidate predictors and the target, which can be easily converted to
a conditional probability distribution table.

The counting table T can be evaluated by many criterion functions. A popularly
adopted criterion function is the conditional entropy [Barrera et al. 2007, Lopes et al. 2008],
in which the best predictor sets present the smallest mean conditional entropy values.
Conditional entropy presents a high computational cost, since it requires the conversion
of the counting table to a conditional probability table and mathematical operations with
real numbers (floating point). Due to this issue, in this paper we adopted a less complex
criterion function based on Bayesian classification error. The coefficient of determina-
tion (CoD) [Martins-Jr et al. 2008, Dougherty et al. 2009], also popularly used for gene
networks inference, relies on Bayesian error. The Bayesian error is defined by function
E(T) in Equation 6.

E(T) =
m∑
i=1

α(T, i) (6)

α(T, i) =

{
Ti,1 , Ti,1 < Ti,2
Ti,2 , Ti,1 ≥ Ti,2

(7)

Once T is obtained, the Boolean function b that minimizes the classification error
based on T is defined as a vector where each value corresponds to the target gene value
with the smallest error for a given row of T , i.e., bi = 0 if Ti,1 < Ti,2 or bi = 1 otherwise,
for i = 1..2s.

2.1. High performance computing implementations
In this paper we propose three implementations for the gene network inference algorithm
described in the previous section, one version uses FPGA and the other two use GPUs.
One GPU implementation uses CUDA library, while the other uses OpenCL API. CUDA
only works with Nvidia GPUs while OpenCL has implementations for AMD GPUs,
Nvidia GPUs, x86 CPUs and other accelerator hardwares. To analyse the performances
of both OpenCL and CUDA for Nvidia GPUs, we developed two GPU implementation
versions. Both GPU implementations require parallel programming to present good per-
formance.

2.1.1. Parallelism using GPU

The parallelism in GPU can be summarized as the parallelization of the outer and the inner
loop, These loops are described in Section 2. GPU code presents high performance only

if it has thousands of processes/threads running at the same time, CUDA and OpenCL or-
ganize threads by blocks. The CUDA Guide [Cook 2018] states that a good performance
is obtained when the number of blocks is greater or equal than 100 and the number of
threads is divisible by 64. Therefore if only the external loop is parallelized, the gene
network needs to have 6400 genes in order to achieve good performance. If the two loops
are parallelized, it is possible to achieve total use of GPU in a network with at least 100
genes.

Nvidia provides a spreadsheet 1 which informs how much a code for its GPUs is
optimized (occupancy). The occupancy depends on the number of threads per block of
the GPU model adopted and on the number of registers used by the code. The number
of registers is known when the code is compiled with –ptxas-options=-v parameter. This
parameter works only in nvcc (an Nvidia CUDA compiler). Our developed code to infer
gene networks presents 75% of occupancy, which is considered an excellent result.

2.1.2. Parallelism using FPGA

The FPGA parallel implementation version can be summarized as the parallelization of
the outer loop, the counting table T construction, and the Boolean function creation based
on T and the respective Bayesian classification errors. These operations were parallelized
for FPGA but not for GPU, because they require much communication, and the commu-
nication cost among processes/threads is smaller in FPGAs than in GPUs.

The inner loop was not parallelized in FPGA due to the memory communication
high cost. The FPGA memories speed is limited to hundreds of megahertz, slower than
GPU memories which have between 1.2 and 2.6 gigahertz. Therefore the FPGAs memo-
ries are a barrier for the high performance parallelism. Another reason for the absence of
parallelism of the inner loop refers to the fact that FPGA does not support the execution of
a large number of threads/process. The number of threads/processes supported by FPGA
can support is limited by code complexity from threads/processes. FPGAs do not support
many thread/process instances with a lot of variables and complex operations, such as
logarithm operations.

The FPGA implementation required the creation of a communication protocol be-
tween FPGA and an ARM CPU, both in the same die. This protocol has three layers with
different abstract levels, as illustrated in the diagram of Figure 1. The layer in the low
level is implemented over PIOs, a bus communication more popular for Altera FPGAs.
The middle layer is composed by instructions to read and write data in a RAM imple-
mented over HDL (Hardware Description Language). The top layer is composed by data
from RAM which was described in the middle layer. An HDL code is responsible to infer
gene networks from data received and sent by the top layer.

3. Analyses
As described in the previous section, three parallel implementations for inference of gene
networks were considered:

1. CUDA (only for NVIDIA GPUs)
1http://developer.download.nvidia.com/compute/cuda/CUDA Occupancy calculator.xls

http://developer.download.nvidia.com/compute/cuda/CUDA_Occupancy_calculator.xls

Application

Transport

Link

Ab
st

ra
ct

io
n

Le
ve

l

Figure 1. Diagram showing the layers of the protocol created for communication
between FPGA and ARM processor, which resides in the same FPGA encapsula-
tion.

2. OpenCL (for GPUs, CPUs x86 and other hardware accelerators)
3. HDL Verilog/System Verilog: this implementation instances a circuit on FPGAs,

whose code presents some small parts written in C++.

We conducted the analyses taking into account an artificial gene network with 512
genes (n = 512). Artificial gene expression data containing 50 temporal samples was
generated considering the transition functions of the artificial gene network. The number
of predictors per target was fixed as 3 (s = 3) for the exhaustive search.

The hardwares used for the analysis are described as follows:

1. PC Intel Core i7-7700K CPU, 16 GB RAM, Nvidia GPU Titan XP, Linux Kernel
3.10.0-862.3.2.el7.x86 64, Nvidia driver 390.67 and CUDA 9.1.85.

2. PC AMD A10-7850K, 8 GB RAM, GPU AMD R9 Nano, Windows 10 version
1803, GPU driver 17.7 and AMD-APP-SDK version 3.0.130.135-GA.

3. Terasic DE1-SOC Board with Cyclone V SoC 5CSEMA5F31C6 FPGA, in the
same die with an ARM Cortex A9 processor, 1 GB RAM for ARM and Linux
Kernel version 4.5.0-00183-g4647b69-dirty running at ARM. This board works
without PC, as an Arduino board.

The CUDA implementation was analyzed on hardware 1 only. OpenCL imple-
mentation was analyzed on hardwares 1 and 2, For hardware 2 two analyses were con-
ducted, one for GPU implementation and another for the CPU implementation. FPGA
implementation was analyzed on hardware 3 only.

3.1. Implementations code complexity
Lines counting was adopted as measure of implementation complexity. Lines of code for
layers linking and transport in the communication protocol showed in Section 2.1.2 were
ignored from counting, since those lines might be reusable by other projects.

The line counts for the implementations were 379, 416 and 2150 for CUDA,
OpenCL Verilog/System Verilog, respectively. Therefore FPGA implementation is the
most complex implementation. Moreover, the communication protocol between FPGA
and ARM processor has 1446 lines, which illustrates the high complexity in implement-
ing communication protocols between FPGA and external devices.

3.2. Execution time
The time were measured from five configuration setups, every configuration setup is com-
posed of three component: hardware, implementation and the hardware section where the
implementation was running (GPU, CPU or FPGA). The hardwares and the implemen-
tations were enumerated at the beginning of this section. There are five configurations
setups:

• PC with Titan XP GPU (hardware 1) and CUDA implementation running at GPU.
• PC with R9 Nano GPU (hardware 2) and OpenCL implementation running at

GPU.
• PC with Titan XP GPU (hardware 1) and OpenCL implementation running at

GPU.
• PC with R9 Nano GPU (hardware 2) and OpenCL implementation running at

AMD A10-7850K CPU.
• Terasic DE1-SOC Board (hardware 3) and HDL implementation running at FPGA.

Each configuration setups was executed ten times. Figure 2 shows the average
execution time achieved for the 5 configuration setups.

Implementation

CUDA code
running on

Titan XP

OpenCL
 code

running on
R9 Nano

OpenCL
 code

running on
Titan XP

OpenCL
 code

running on
x86 cores

of AMD A10

Verilog code
running on
DE1-SOC
(FPGA)

A
v
e
ra

g
e
 t

im
e

(s
)

Figure 2. Average time for each considered hardware to infer gene networks (log
scale). The averages were obtained from ten executions. The standard deviations
were negligible (maximum of 1.5 seconds).

3.3. Energy consumption
We used a clamp meter for measuring the energy consumption from each hardware, in-
cluding the auxiliary hardware necessary to work. Auxiliary hardware can be a power
supply or a CPU. Therefore the energy consumption from each hardware was measured,
except for the hardware 1 (Titan XP GPU) because we did not have physical access to
this hardware.

There are some details about the energy consumption from each hardware:

• The energy drained from DE1-SOC board does not change in case the board is
processing a gene network or the board is on standby.
• There are variations for the amount of energy drained from R9 Nano when this

hardware is running the program to infer a gene network.
• The energy drained from AMD A10 changes if the hardware changes from standby

to processing a gene network or if the hardware changes from processing a gene
network to standby; However while the hardware is running the program to infer
a gene network the energy drained does not change.

The energy consumption from DE1-SOC is close to 22 watts (Figure 3-a). The
energy consumption from OpenCL parallel code running on AMD A10 x86 cores is close
to 118 watts (Figure 3-b). Due to changes for the amount of energy drained from R9
Nano along time (Figure 3-c), it was not possible to infer an average with small standard
deviation for the energy consumption.

R9 Nano has an irregular amount of energy drained along time due to threads
synchronization inside a block. The threads are divided inside blocks and each block is
responsible to find the better predictor genes set for a gene. This happens for OpenCL and
CUDA implementations, Next, the threads finish the processing, and the results obtained
from them are shared to know which result is the best. The step which returns the best
result is a sequential process. Therefore it happens for only one thread per block, while
the other threads are in standby mode. In this way, R9 is not fully loaded during the final
step of the algorithm, which leads to smaller energy consumption.

4. Cost of hardware acquisition

Both R9 Nano and Titan XP are hardwares that needs to be embedded in a personal
computer (PC) to work, so we performed price searches for PCs able to support both
GPUs. For the cost quotation of the PC parts and the cost of a GPU equivalent to R9 Nano,
we based the search on https://www.outletpc.com/, since the R9 Nano was discontinued.
Table 1 shows the price of each component required to build a PC that supports GPU R9
Nano or GPU Titan XP.

Table 1. Price in dollars of the components needed for a computer that supports
an R9 Nano GPU or an Nvidia Titan XP GPU.

Component Price
Intel Celeron processor G3900 36.79
DDR4 memory 8 GB 89.89
GIGABYTE Motherboard GA-H270M-DS3H 119.0
Corsair power supply 1000W ATX12V 80 PLUS 174.39
Thermaltake computer chassis CA-1D4-00S1NN-00 44.89
SSD SanDisk PLUS 2.5” 120GB SATA III 59.89

According to Tomshardware website the GPU Nvidia Titan XP price is 1200 dol-
lars 2. The price of a R9 Nano was 649 dollars when it was launched, however it is
currently sold out. A GPU with similar performance nowadays is RX580, based on an

2https://www.tomshardware.com/reviews/nvidia-titan-xp,5066.html

https://www.outletpc.com/
https://www.tomshardware.com/reviews/nvidia-titan-xp,5066.html

average
standard deviation

Time

(a) FPGA DE1-SOC

average
standard deviation

Time

(b) OpenCL x86 AMD A10

average
standard deviation

Time

(c) GPU R9 Nano

Figure 3. Plots with the average energy consumption along time for the three
hardwares analyzed. Ten measurements were done for each time instant.

analysis done by UserBenchmark website 3. Accoording to https://www.outletpc.com/
website the RX580 price is 300 dollars.

The AMD A10 processor price is 170 dollars according to https://www.outletpc.
com/ website, Table 2 presents the cost of the components required to build a computer
that supports the AMD A10 processor.

Table 2. Price in dollars of the components needed to build a computer that
supports an AMD A10 processor.

Component Price
DDR3 memory 8 GB 75.89
MSI motherboard A68HM AMD A68 Chipset 109.88
Thermaltake power supply Smart Series 700W 58.66
Thermaltake computer chassis CA-1D4-00S1NN-00 44.89
SSD SanDisk PLUS 2.5” 120GB SATA III 59.89

3http://gpu.userbenchmark.com/Compare/AMD-R9-Nano-vs-AMD-RX-580/m58413vs3923

https://www.outletpc.com/
https://www.outletpc.com/
https://www.outletpc.com/
http://gpu.userbenchmark.com/Compare/AMD-R9-Nano-vs-AMD-RX-580/m58413vs3923

The DE1-SOC board costs 249 dollars for the commercial version according to
Terasic website. The academic version of this board, which has the same technical spec-
ifications, costs 175 dollars. DE10-Nano is a board equivalent to DE1-SOC. Its price is
110 dollars for academic version and 130 dollars for commercial version. DE10-Nano
would likely work running the FPGA code analyzed in this paper, because both FPGAs
have similar technical specifications.

5. Conclusion
In this paper we preseted a detailed comparison among different hardwares to infer gene
networks. The experiments compared the average hardware performances for inferring
gene networks with 512 genes, where 3 predictors were inferred for each gene based on
a set of 50 temporal expression samples. Three exhaustive search algorithm implemen-
tations were developed, one of them with CUDA library, another one with OpenCL API
and the third one with HDL Verilog/System Verilog. The CUDA implementation was
done to analyse the maximum performance achieved by the algorithm on GPU Nvidia
Titan XP. In its turn, the OpenCL implementation was done to measure the algorithm per-
formance running on CPUs and R9 Nano GPU. Besides we conducted a comparison of
performances between OpenCL and CUDA for Nvidia GPUs, Finally, the Verilog/System
Verilog implementation consists on a digital circuit description instantiated on FPGA of
DEI-SOC board. For the price analyses of GPUs we also considered the price of the
personal computer (PC) necessary to function.

The results presented show that, if ignored the energy consumption, the best hard-
ware in terms of cost-benefit for gene networks inference is GPU R9 Nano or the equiv-
alent RX500. R9 Nano is about 50% faster than DE-1 SOC board, while the equiva-
lent RX500 is 182% more expensive than DE-1 SOC in its commercial version and the
OpenCL code implementation complexity is about 80% less than the DE1-SOC code im-
plementation.

Nvidia Titan XP hardware achieved the best performance: 66% faster than R9
Nano. Nevertheless, Nvidia Titan XP is 109% more expensive than the GPU equivalent
to R9 Nano. It is important to highlight that Titan XP only achieved a superior per-
formance when running the CUDA implementation, since the OpenCL implementation
performance was 26% worse. In terms of code implementation complexity, both were
almost equivalent, with OpenCL implementation being only about 10% more complex
than CUDA implementation.

The x86 cores of the AMD A10 processor are inadequate to infer gene networks,
since its performance was 20 times worse than DE1-SOC, with an energy consumption
of about half of the maximum consumption of R9 Nano.

From the point of view of the energy consumption the best hardware is DE1-
SOC which consumes about 9 times less than the R9 Nano average consumption. In
terms of acquisition cost, DE1-SOC is better than R9 Nano only if it is necessary to
buy a new computer for R9 Nano/RX 580. DE1-SOC has a programming complexity
much larger than R9 Nano/RX 580. Therefore DE1-SOC is feasible only if the gene
networks inference algorithm runs for long periods of time (in the order of months). In
such a scenario the reduced energy consumption compensates the development time and
a possibly larger acquisition cost compared to R9 Nano/RX 580.

For future works, the construction of a hybrid GPU/FPGA method for gene net-
works inference can be considered, as well as the conduction of performance analyses
of the architectures discussed here for methods of generation of expression dynamics by
the inferred gene networks. The analysis and control of the gene network expression
dynamics is one of the important goals in systems biology, since it is fundamental for
understanding the genesis and development of diseases.

6. Supplementary material

The implementations and information related to this manuscript will be available at https:
//hpcgenenetworksinference.wordpress.com/ in September 2019.

Acknowledgements

This study was financed in part by CAPES (Finance Code 001), CNPq and FAPESP (proc.
#2015/01587-0).

References

[Barrera et al. 2007] Barrera, J., Cesar-Jr, R. M., Martins-Jr, D. C., Vencio, R. Z. N., Merino,
E. F., Yamamoto, M. M., Leonardi, F. G., Pereira, C. A. B., and del Portillo, H. A.
(2007). Constructing probabilistic genetic networks of Plasmodium falciparum from
dynamical expression signals of the intraerythrocytic development cycle. In Methods
of Microarray Data Analysis V, chapter 2, pages 11–26. Springer.

[Borelli et al. 2013] Borelli, F. F., de Camargo, R. Y., Martins-Jr, D. C., and Rozante, L.
C. S. (2013). Gene regulatory networks inference using a multi-gpu exhaustive search
algorithm. BMC Bioinformatics, 14(S5).

[Carastan-Santos et al. 2017] Carastan-Santos, D., Camargo, R. Y., Martins-Jr, D. C., Song,
S. W., and Rozante, L. C. S. (2017). Finding exact hitting set solutions for systems
biology applications using heterogeneous gpu clusters. Future Generation Computer
Systems, 67:418–429.

[Chickering 1996] Chickering, D. M. (1996). Learning Bayesian Networks is NP-Complete,
pages 121–130. Springer New York, New York, NY.

[Cook 2018] Cook, S. (2018). CUDA Programming.

[Dougherty et al. 2009] Dougherty, E. R., Brun, M., Trent, J., and Bittner, M. L. (2009).
A conditioning-based model of contextual regulation. IEEE/ACM Transactions on
Computational Biology and Bioinformatics, 6(2):310–320.

[Friedman et al. 2000] Friedman, N., Linial, M., Nachman, I., and Pe’er, D. (2000). Using
Bayesian Network to Analyze Expression Data. Journal of Computational Biology,
7:601–620.

[Kauffman 1969] Kauffman, S. A. (1969). Metabolic stability and epigenesis in randomly
constructed genetic nets. Journal of Theoretical Biology, 22(3):437–467.

[Lopes et al. 2008] Lopes, F. M., Martins-Jr, D. C., and Cesar-Jr, R. M. (2008). Feature
selection environment for genomic applications. BMC Bioinformatics, 9(1):451.

https://hpcgenenetworksinference.wordpress.com/
https://hpcgenenetworksinference.wordpress.com/

[Martins-Jr et al. 2008] Martins-Jr, D. C., Braga-Neto, U., Hashimoto, R. F., Dougherty,
E. R., and Bittner, M. L. (2008). Intrinsically multivariate predictive genes. IEEE
Journal of Selected Topics in Signal Processing, 2(3):424–439.

[Munshi et al. 2018] Munshi, A., Gaster, B., Mattson, T. G., Fung, J., and Ginsburg, D.
(2018). OpenCL Programming Guide.

[Pournara et al. 2005] Pournara, I., s. Bouganis, C., and Constantinides, G. A. (2005). Fpga-
accelerated bayesian learning for reconstruction of gene regulatory networks. In Inter-
national Conference on Field Programmable Logic and Applications, 2005., pages
323–328.

[Shmulevich et al. 2002] Shmulevich, I., Dougherty, E. R., Kim, S., and Zhang, W. (2002).
Probabilistic boolean networks: a rule-based uncertainty model for gene regulatory
networks. Bioinformatics, 18(2):261–274.

[Vanderbauwhede and Benkrid 2013] Vanderbauwhede, W. and Benkrid, K. (2013). High-
Performance Computing Using FPGAs. Springer Publishing Company, Incorporated.

	Introduction
	Exhaustive search algorithm for gene networks inference
	High performance computing implementations
	Parallelism using GPU
	Parallelism using FPGA

	Analyses
	Implementations code complexity
	Execution time
	Energy consumption

	Cost of hardware acquisition
	Conclusion
	Supplementary material

