
Performance Evaluation of Compiler Optimizations in FPGA
Accelerators

Gustavo Leite1, Alexandro Baldassin1, Guido Araújo2, José Nelson Amaral3

1Departamento de Estatística, Matemática Aplicada e Computação
Universidade Estadual Paulista (UNESP)

Rio Claro – SP – Brazil

2Instituto de Computação
Universidade Estadual de Campinas (UNICAMP)

Campinas – SP – Brazil

3Computing Science Department
University of Alberta

Edmonton – AB – Canada

{gustavo.leite,alexandro.baldassin}@unesp.br,

guido@ic.unicamp.br, jamaral@ualberta.ca

Abstract. With the increasing power wall in microprocessor design, engineers
shifted their attention to heterogeneous architectures, wherein several classes of
devices are used for computation. Among them are FPGAs which offer compa-
rable performance to CPUs while consuming only a fraction of energy. Despite
the increasing interest in these devices, programmability and performance en-
gineering in FPGAs remain hard. This work presents an evaluation of the most
prominent code transformations targeting FPGAs. More specifically, it studies
the performance effect of unrolling loops, replicating compute units and trans-
ferring data using DMA in a matrix multiplication OpenCL kernel through an
Intel® FPGA. The results indicate that these optimizations can achieve speedups
up to 3.78× for a matrix multiplication application, and 412.5× speedup in data
transfer.

1. Introduction

With Moore’s Law [Moore 1965] and Dennard Scaling [Dennard et al. 1974] approach-
ing their end, the high-performance market shifted its focus towards heterogeneous com-
puting systems, where each device is specialized to accelerate domain-specific applica-
tions [Hennessy and Patterson 2019a]. Among the many classes of devices, the most
noteworthy are graphical processing units (GPUs), tensor processing units (TPUs), and
field-programmable gate arrays (FPGAs) [Hennessy and Patterson 2019b]. In particular,
FPGAs have existed since the mid-1980s and have been used to create logic circuits for
embedded systems. More recently, FPGAs also have been commercialized as acceler-
ators, integrating multicore ARM-processors, DRAM, digital signal processors (DSPs),
storage onto a single board usually referred to as “System on Chip” (SoC). Due to their
reconfigurable nature, FPGAs offer comparable performance compared to CPUs and usu-
ally higher performance per watt compared to GPUs.



Despite the clear benefits, FPGA devices are still not as widespread as GPUs, for
instance. This is due to three main reasons: (i) the long time to perform hardware syn-
thesis; (ii) the lack of a high-level programming model; and (iii) lack of portability. The
process of translating a circuit written in hardware description language into a bitstream—
a hardware configuration file—is called hardware synthesis. Synthesizing hardware can
last from minutes to a few days [Bacon et al. 2013]. This characteristic limits the abil-
ity to write incremental code and fast prototyping. Although the programmability of
these devices has improved since their first appearance, current software development
kits adopted OpenCL [Khronos Group 2019]. For novices and non-experts, even that can
be fairly low-level. Before that, reconfigurable hardware was mainly programmed using
hardware description languages (VHDL, Verilog), which was even worse since these lan-
guages work in the register transfer level (RTL), a paradigm most software developers are
unfamiliar with. Lastly, porting a design from one device to another requires a consid-
erable amount of work to be redone. The challenge is aggravated when porting across
devices from different vendors. Performance tuning is not trivial and usually requires
several iterations. With other classes of devices, it is straightforward to experiment with
different implementations. With FPGAs, however, the long synthesis time severely delays
the design cycle. With this scenario in mind, it is important that we better understand how
to tune applications and evaluate trade-offs.

This work makes the following contributions: (i) it compiles and explains a subset
of code transformations found in the literature and the state of research about FPGAs
for high-performance computing; and (ii) it presents a performance evaluation of these
transformations on a matrix multiplication application. This paper is organized as follows:
Section 2 provides background on FPGAs; Section 3 introduces code transformations that
can be applied to OpenCL kernels; Section 4 presents our experimental evaluation of the
transformations; and finally Section 5 concludes the work.

2. Background and Related Work
Field-Programmable Gate Arrays are silicon devices that can be reconfigured to emulate
any combinational and sequential logic the user desires. Its ability to be reprogrammed
after manufacturing grants its name “field-programmable”. The FPGA chip is composed
of hundreds of thousands of logic blocks organized as a mesh—hence the name “gate
array”—and a programmable interconnect that links these elements. The basic building
blocks of FPGAs are logic elements. These elements are usually composed of LUTs
(lookup tables) for combinational logic, registers for sequential logic and adders for arith-
metic.

For many years, the use of FPGAs has been restricted to engineers with hardware
expertise. This is attributed to the lack of high-level abstractions to program such devices.
Formerly, engineers would design the circuit in a hardware description language (HDL)
and obtain the concrete representation of the circuit through a process called synthesis.
These representations are commonly referred to as bitstreams, and they inform how bits in
the logic elements and programmable switches should be set to compose the circuit. With
modern SDKs, however, programmers are able to implement the algorithm as OpenCL
kernels as one would normally do for other types of accelerators. The vendor tool chain
gets the OpenCL source and translates it to HDL via high-level synthesis. The HDL
description, in turn, goes through the process of synthesis. At the end of this process, a

2



bitstream file is produced that can be used to program the circuit onto the device.

Although functionally portable, executing code targeted for GPUs on FPGAs is
unlikely to yield any benefits both in terms of speedup and power efficiency. The code
is said to lack performance portability [Lee et al. 2016]. This is due to architectural dif-
ferences: while GPUs are massively parallel devices with thousands of computing cores
suited for data-parallel computation, FPGAs are more suitable for executing pipelined
computations. In this context, Zohouri et al. [Zohouri et al. 2016] evaluate the impact op-
timizations have on power consumption and performance when comparing FPGAs against
CPUs and GPUs. The authors apply optimizations manually on Rodinia [Che et al. 2009]
applications and execute them on an Intel® FPGA. The work shows that FPGAs present
better power efficiency in every application except for one (cfd). In terms of application
speedup, FPGAs stay behind GPUs while offering comparable performance to CPUs.

Lloyd et al. [Lloyd et al. 2017] automate the process of optimizing kernels using
compiler passes. The authors describe a method for integrating host and device compilers
by propagating information from one another thus revealing new optimization opportuni-
ties. Their method optimizes code on the intermediate representation level and are thus
restricted to Intel® FPGAs. Although lower speedups were measured when compared to
Zohouri et al., it has the advantage of being automatic. Lee et al. [Lee et al. 2016] pro-
pose the use of a directive-based approach for high performance computing with FPGAs.
The authors extended the OpenARC [Lee and Vetter 2014] compiler to produce OpenCL
kernel source from a C code annotated with OpenACC [OpenACC 2019] directives. The
kernel generated from the annotated region is already optimized. A follow-up publica-
tion [Lambert et al. 2018], by the same group, adds new optimizations to the compiler.
Unlike the work of Lloyd et al., the solution does not require host and device compiler
integration because the compiler has control of the device code that is produced.

The aim of this work is to apply some optimizations and analyze their performance
impact in FPGAs. This is of extreme importance due to the popularization of FPGA
devices and their use in the upcoming years [Amazon Web Services 2019, Barr 2017,
Fowers et al. 2018]. Unlike GPUs which are widespread and have a broad set of open-
source tools for profiling and characterization, FPGA development is still in its infancy
and the tools are mainly proprietary. There is also the difficulty of running experiments
due to the long compilation time, which poses a barrier to the thorough characterization
of performance. Therefore, this work serves as a first step towards understanding the
performance of code optimizations for FPGAs with the aim of automating them through
a compiler infrastructure.

3. Code Transformations
This section presents some prominent code transformations found in the literature: Sec-
tion 3.1 introduces data transfers using DMA; Section 3.2 shows loop unrolling; Sec-
tion 3.3 presents compute unit replication; Section 3.4 introduces the restrict key-
word. These transformations are targeted at Intel® FPGAs.

3.1. DMA Alignment

When transferring data between host and device memory, it is possible to increase effi-
ciency using direct memory access (DMA). However, in order to Intel® FPGAs make

3



use of DMA hardware, the data is required to be 64 bytes aligned, as depicted in
Figure 1. If this condition is not met, the CPU will stay busy transferring the data
byte-to-byte. This way, it is recommended that the user allocates aligned memory by
calling _aligned_malloc (C99, Windows), posix_memalign (C99, Linux) or
std::aligned_alloc (C++17) instead of malloc.

(a) Data is aligned to 64 bytes in main
memory

(b) Data is offset from the 64 bytes
aligned position in main memory.

Figure 1. Aligned versus non-aligned memory.

3.2. Loop Unrolling

Loops inside the kernel can be optimized using the loop unrolling transformation [Aho
et al. 2006]. Intel® FPGA SDK for OpenCL provides the #pragma unroll X direc-
tive, where X is the unroll factor, as the example shown in Listing 1. The compiler will
try to unroll loops even if the user did not insert this pragma. However, it is possible to
force no unrolling by using a factor of 1. According to the best practices guide [Intel
Corporation 2018], the FPGA compiler arranges the operations inside a loop in a pipeline
fashion respecting the data flow semantics. Normally, one loop iteration is issued per cy-
cle; therefore, if the loop is unrolled, more iterations can be finished each cycle, increasing
its performance. Besides making the pipeline wider, the compiler will also coalesce mem-
ory accesses, further improving performance. The downside of this transformation is that
it increases area resource utilization.

1 #pragma unroll 2
2 for ( i n t k = 0; k < n; k++) {
3 acc += A[i * n + k] * B[k * n + j];
4 }

Listing 1. Example of loop unrolling in OpenCL.

3.3. Compute Unit Replication

It is possible to increase throughput by replicating the pipeline or creating SIMD
(Single Instruction Multiple Data) units [Intel Corporation 2018]. The user can con-
trol these parameters by inserting attributes in the source code. Placing the attribute
num_compute_units(N) before the function definition instructs the compiler to
replicate the pipeline N times, so that multiple work-items can be computed in parallel.
This process is demonstrated in Listing 2. This attribute works best when the computation
is embarrassingly parallel, i.e., no synchronization is needed. Replicating the pipeline can
occupy more area because load/store units are also replicated besides the pipeline. Hav-
ing excessively many pipelines can harm performance by putting too much pressure in
the memory subsystem.

4



1 __attribute__((num_compute_units(4)))
2 __kernel void kernel_replication() { /* ... */ }

Listing 2. Example of replication and SIMD.

3.4. Restrict Parameters
The Intel® optimization guide [Intel Corporation 2018] encourages users to mark pointers
as restrict in kernel parameters. This keyword tells the compiler that the pointer does
not alias with other pointers in the program. Without this information, the compiler must
be conservative and create data dependencies to ensure correctness. These dependencies
are potentially useless and will prevent the compiler to issue loads and stores in parallel,
degrading throughput. Of course, the user herself must guarantee that the pointers do not
alias otherwise undefined behavior can be expected.

4. Performance Characterization
This experimental analysis was performed on a system powered by an Intel® Core™ i7-
4770 @ 3.40GHz with 32GB of RAM running on Ubuntu 16.04.5 LTS Codename Xe-
nial. This machine has also a Terasic DE5-Net board that holds an Intel® Stratix® V
FPGA (5SGXA7) and 4GB 1600MHz DDR3 RAM connected to the CPU through a x16
PCIe 2.0 bus capable of transferring 8000MB per second. The FPGA has 234720 ALMs,
938880 registers, 2560 memory blocks, and 256 DSP blocks [Intel Corporation 2015].
The host C and C++ compilers used were the ones available in the GNU Compiler Col-
lection (GCC) version 7.4.0. Our benchmarks were written in C++17. For device code
compilation we used the Altera Offline Compiler bundled in the Intel® FPGA SDK for
OpenCL version 18.0.0.614.

In order to evaluate the impact of code transformations, we selected the naive
matrix multiplication algorithm as the baseline. Let A and B be matrices with sizes n×m
and m×o, respectively. The multiplication of A and B results in a matrix C of size n×o.
Element ci,j of C equals the dot product between i-th row in A and j-th column in B.
This algorithm’s pseudo-code is shown in Listing 3. It can be noted that this algorithm
has three nested loops, therefore, if n = m = o, its time complexity can be expressed as
O(n3).

1 for ( i n t i = 0; i < n; ++i) {
2 for ( i n t j = 0; j < o; ++j) {
3 C[i,j] = 0;
4 for ( i n t k = 0; k < m; ++k) {
5 C[i,j] += A[i,k] * B[k,j];
6 }
7 }
8 }

Listing 3. Algorithm of the naive matrix multiplication algorithm.

The naive matrix multiplication algorithm implemented as an OpenCL kernel is
shown in Listing 4. For simplicity, this implementation only multiplies square matrices
of size n×n. Upon execution, multiple work-items will be launched with different IDs to

5



perform the computation. This is the reason this code does not have the familiar structure
with three nested loops.

1 __kernel void matrix_multiply(
2 __global const i n t *A,
3 __global const i n t *B,
4 __global i n t *C,
5 const unsigned i n t n)
6 {
7 i n t i = get_global_id(0);
8 i n t j = get_global_id(1);
9 i n t acc = 0;

10
11 for ( i n t k = 0; k < n; k++) {
12 acc += A[i * n + k] * B[k * n + j];
13 }
14
15 C[i * n + j] = acc;
16 }

Listing 4. OpenCL kernel for computing matrix multiplication.

We use the code in Listing 4 as our baseline and apply optimizations incremen-
tally. The code optimizations evaluated are: (i) DMA alignment; (ii) loop unrolling; (iii)
compute unit replication. The time measurement was done through the OpenCL profil-
ing API that allows the programmer to measure how long command in the queue took
to execute. For each execution, we collect 16 samples and discard the first one. This is
important because the bitstream is programmed onto the FPGA when the kernel is actu-
ally run for the first time, incurring overhead. For subsequent runs of the same kernel, the
FPGA does not need to be reprogrammed. With the 15 remaining samples, we calculate
the arithmetic mean and standard deviation.

4.1. Memory transfer

Our first benchmark compares transfer speeds of aligned vs unaligned data. We start
by allocating unaligned memory, fill it with random data, and finally write and read a
buffer stored in the FPGA memory. This is achieved by calling the OpenCL functions
clEnqueueWriteBuffer and clEnqueueReadBuffer, respectively. The initial
buffer is 10MiB and it is increased in steps of 10MiB until 100MiB. The data is presented
graphically in Figures 2a (unaligned) and 2b (aligned).

As can be observed from Figure 2a, time to read data from the FPGA is one order
of magnitude larger compared to writing when the data is not aligned. The PCIe interface
bandwidth is symmetrical, meaning that data is transferred through the bus with the same
speed in both directions. We would need access to the concrete hardware design of the
FPGA in order to find out the causes of this anomaly. Of course, the chip design is the
intellectual property of Intel®. As shown in Figure 2b, data transfer times are indeed
reduced and both reading and writing to FPGA memory show similar magnitude in case
of aligned data transfer. The speedup for transferring data from FPGA to host (read) goes
up to 412.5x whereas when transferring data from host to the device (write) a speedup of
8.3x is achieved.

6



10 20 30 40 50 60 70 80 90 100
Size (MB)

0

500

1000

1500

2000

2500

W
rit

e 
tim

e 
(m

s)

0

20000

40000

60000

80000

100000

R
ea

d 
tim

e 
(m

s)

Write
Read

(a) Unaligned data transfer.

10 20 30 40 50 60 70 80 90 100
Size (MB)

0

50

100

150

200

250

300

350

Tr
an

sf
er

 ti
m

e 
(m

s)

Write
Read

(b) Aligned data transfer.

Figure 2. Aligned versus unaligned data transfer.

4.2. Loop Unrolling

The loop unrolling optimization was evaluated in the matrix multiplication kernel. In
order to transform the source, it suffices to add the unroll pragma shown in Section 3.2 to
the line preceding the loop. The kernel was recompiled with factors 1 (no unrolling), 2, 4
and 8 and tested with matrices containing 1024 × 1024 elements. The computation was
divided into 32 work-items per work group1. The kernel execution time measurements
can be observed in Figure 3.

1 2 4 8
Unroll factor

0

2000

4000

6000

8000

10000

12000

K
er

ne
l e

xe
cu

tio
n 

tim
e 

(m
s)

No Restrict
Restrict

Figure 3. Matrix multiplication kernel execution time with loop unrolling.

Without unrolling the loop the execution time measured is 11.23 seconds on av-
erage. Unrolling the loop two times reduces the execution time by half, resulting in 5.63
seconds on average (1.99x speedup). With loop unrolling factor 4, the average execu-
tion time is further reduced to 2.97 seconds (3.78x speedup). Unrolling 8 times show

1The OpenCL work group size was determined empirically.

7



Table 1. Area usage of matrix multiplication kernels with loop unrolling.

Kernel ALUTs FFs RAMs DSPs

Unroll 1 9229 (2%) 12877 (1%) 102 (4%) 8 (3%)
Unroll 2 13153 (3%) 16877 (2%) 145 (6%) 14 (5%)
Unroll 4 20593 (4%) 26494 (3%) 231 (9%) 26 (10%)
Unroll 8 35846 (8%) 45740 (5%) 403 (16%) 50 (20%)

a speedup of 2.25x, however, apart from yielding a lower speedup when compared to
unrolling 4 times, the measurements indicate the high deviation from the mean.

Table 1 contains the area information for the loop unrolling kernel with parame-
ters marked as restrict. This table presents how many components were necessary
to assemble the circuit. The components are: arithmetic and logic units (ALUTs); Flip-
Flops (FFs); RAM blocks (RAMs); and DSPs. It is possible to observe that unrolling the
matrix multiplication kernel does not impose a great penalty in area utilization. The crit-
ical component in this circuit is DSPs. These blocks are capable of doing multiplication
and, since there is a multiplication inside the loop, these blocks tend to grow very fast.
Unrolling the loop eight times uses 20% of the DSPs in the board. The second most used
component is the memory blocks that reach 16% in the worst case.

4.3. Compute Unit Replication

As introduced in Section 3.3, compute unit replication make an identical copy of the
pipeline so that more computation can be done in parallel. The matrix multiplication
kernel was replicated with 1, 2, 4, 8 and 16 compute units and executed on matrices of
size 1024 × 1024 elements with 16 work-items per workgroup. The data is shown in
Figure 4.

1 2 4 8 16
# compute units

0

2000

4000

6000

8000

10000

12000

14000

K
er

ne
l e

xe
cu

tio
n 

tim
e 

(m
s)

No restrict
Restrict

Figure 4. Matrix multiplication kernel execution time with compute unit replica-
tion.

8



Using a single compute unit, the matrix multiplication is computed in 14.1 seconds
on average. With 2 compute units, however, kernel execution time is halved to 6.73
seconds (2.09x speedup). With 4 compute units, execution time drops to 4.44 seconds
(3.17x). Above 4 compute units, returns start to diminish—4.5 seconds (3.13x) with 8
compute units and 4.02 seconds (3.51x) with 16 units. Again, no significant difference in
execution time was noticed when using restrict keyword.

The area utilization data is presented in Table 2. Memory (RAM) blocks are criti-
cal when replicating compute units. The reason is that not only the pipeline is replicated
but also the memory subsystem. Apart from using more area, having multiple load and
store units can put too much pressure on the board memory. This is made evident when
comparing the best execution time with loop unrolling (2.97s) against the best execution
time when replicating compute units (4.02s). Also, observe that replicating the pipeline 4
times uses more DSPs (64) than unrolling the loop 4 times (50).

Table 2. Area usage of matrix multiplication kernels with compute unit replica-
tion.

Kernel ALUTs FFs RAMs DSPs

1 units 9245 (2%) 12909 (1%) 102 (4%) 8 (3%)
2 units 17629 (4%) 24670 (3%) 204 (8%) 16 (6%)
4 units 34333 (7%) 48064 (5%) 408 (16%) 32 (13%)
8 units 67805 (14%) 94980 (10%) 816 (32%) 64 (25%)
16 units 135005 (29%) 189324 (20%) 1632 (64%) 128 (50%)

4.4. Loop Unrolling + Compute Unit Replication

The previous two optimizations were combined: we unroll the loops two times for every
kernel and also replicate compute units 1, 2, 4 and 8 times, respectively. We test this code
with matrices of 1024 × 1024 elements and 16 work-items per work group. The data is
represented in Figure 5.

The baseline kernel with 1 unit executes, on average, in 6.5 seconds. No signifi-
cant improvement is observed when executing the kernel with 2 units. Using 4 compute
units a speedup of 1.30x is measured (4.98s on average). Finally, replicating the pipeline
8 times produces a speedup of 1.27x (5.14s). One more time, the restrict parameter opti-
mization seems to be irrelevant to performance.

Table 3 compiles the area utilization for this benchmark. Memory blocks and
DSPs are even more critical with this benchmark. As expected, the kernel unrolled and
replicated 8 times uses 1160 (45%) memory blocks and 112 (44%) DSPs compared to
816 (32%) RAMs and 64 (25%) DSPs for the kernel only replicated 8 times.

4.5. Discussion

The experimental results presented in this paper indicate that, among the code transforma-
tions studied and for the benchmarks used, the most important one has aligned memory
allocation for data transfers. By allocating aligned memory, it was observed up to 412.5x
speedup for transfer from the device to the host and 8.3x from the host to the device. The

9



1 2 4 8
# compute units

0

1000

2000

3000

4000

5000

6000

7000

K
er

ne
l e

xe
cu

tio
n 

tim
e 

(m
s)

No restrict
Restrict

Figure 5. Matrix multiplication kernel execution time with compute unit replica-
tion and loop unrolling.

Table 3. Area usage of matrix multiplication kernels with compute unit replication
and loop unrolling (factor 2).

Kernel ALUTs FFs RAMs DSPs

1 units/unroll 2 13153 (3%) 16877 (2%) 145 (6%) 14 (5%)
2 units/unroll 2 25445 (5%) 32606 (3%) 290 (11%) 28 (11%)
4 units/unroll 2 50029 (11%) 64064 (7%) 580 (23%) 56 (22%)
8 units/unroll 2 99325 (21%) 127236 (14%) 1160 (45%) 112 (44%)

experimental results also indicate that it is possible to speedup a matrix multiplication
kernel by 3.78x by unrolling loops and 3.17x by replicating compute units. It should be
noted that both of these optimizations aims at increasing kernel throughput, however, by
unrolling loops a higher performance is achieved with less penalty in circuit area when
compared to compute unit replication. These results supply evidence to support a claim
that, for kernels that have loops, the loop unrolling optimization should be favored over
replication. Nonetheless, for kernels that do not have loops, replicating compute units
should provide a good enough speedup. We also observed that the performance gain
was much lower (1.30x) and the area usage was much higher when combining both op-
timizations. Thus the results also lead to a caution that over-optimizing code can cause
side effects like excessive memory access, causing performance to decrease when insert-
ing more optimizations. Finally, no improvement was observed when using the restrict
parameter optimization, contradicting the Intel® optimization guide. A more thorough
experimental analysis is needed to characterize program performance when applying this
optimization.

10



5. Conclusion

The challenge of increasing performance-per-watt in high-performance computing sys-
tems led engineers to adopt reconfigurable accelerators. However, most programmers
are unfamiliar with this class of devices, therefore the task of optimizing applications for
FPGAs is not trivial. One of the reasons for this difficulty is the lack of performance
portability in OpenCL kernels. In other words, a kernel written for GPUs may show low
performance when executed on FPGAs. In that sense, this work evaluates the performance
of code transformations for OpenCL kernels targeted at FPGAs. This work provides the
first step toward a full performance characterization for FPGAs that could later be used to
build compiler-based tools for automatic optimization.

Acknowledgements

The authors would like to thank the anonymous reviewers for their insightful comments.
This work was supported by FAPESP (Grants 2017/09065-9, 2018/08116-1, 2018/15519-
5) and PROCAD (Grant 88887.124141/2014-00).

References

Aho, A. V., Lam, M. S., Sethi, R., and Ullman, J. D. (2006). Compilers: Principles,
Techniques, and Tools. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 2 edition.

Amazon Web Services (2019). Amazon EC2 F1 Instances. [Online]. Available: https:
//aws.amazon.com/ec2/instance-types/f1/. (Acessed Feb. 11, 2019).

Bacon, D., Rabbah, R., and Shukla, S. (2013). FPGA programming for the masses.
Queue, 11(2):40:40–40:52.

Barr, J. (2017). EC2 F1 Instances with FPGAs – Now Generally Avail-
able. [Online]. Available: https://aws.amazon.com/blogs/aws/
ec2-f1-instances-with-fpgas-now-generally-available/.
(Acessed Feb. 11, 2019).

Che, S., Boyer, M., Meng, J., Tarjan, D., Sheaffer, J. W., Lee, S., and Skadron, K. (2009).
Rodinia: A benchmark suite for heterogeneous computing. In 2009 IEEE International
Symposium on Workload Characterization (IISWC), pages 44–54.

Dennard, R. H., Gaensslen, F. H., Rideout, V. L., Bassous, E., and LeBlanc, A. R. (1974).
Design of ion-implanted mosfet’s with very small physical dimensions. IEEE Journal
of Solid-State Circuits, 9(5):256–268.

Fowers, J., Ovtcharov, K., Papamichael, M., Massengill, T., Liu, M., Lo, D., Alkalay,
S., Haselman, M., Adams, L., Ghandi, M., Heil, S., Patel, P., Sapek, A., Weisz, G.,
Woods, L., Lanka, S., Reinhardt, S. K., Caulfield, A. M., Chung, E. S., and Burger, D.
(2018). A configurable cloud-scale dnn processor for real-time ai. In Proceedings of
the 45th Annual International Symposium on Computer Architecture, ISCA ’18, pages
1–14, Piscataway, NJ, USA. IEEE Press.

Hennessy, J. and Patterson, D. (2019a). Computer architecture: A Quantitative Approach.
Morgan Kaufmann Publishers, Cambridge, MA.

11



Hennessy, J. L. and Patterson, D. A. (2019b). A new golden age for computer architecture.
Commun. ACM, 62(2):48–60.

Intel Corporation (2015). Intel(R) Stratix(R) V Device Overview.

Intel Corporation (2018). Intel(R) FPGA SDK for OpenCL(TM) Pro Edition: Best Prac-
tices Guide.

Khronos Group (2019). Open Computing Language (OpenCL). [Online]. Available:
https://www.khronos.org/opencl/. (Acessed Feb. 15, 2019).

Lambert, J., Lee, S., Kim, J., Vetter, J. S., and Malony, A. D. (2018). Directive-based,
high-level programming and optimizations for high-performance computing with FP-
GAs. In Proceedings of the 2018 International Conference on Supercomputing, ICS
’18, pages 160–171, New York, NY, USA. ACM.

Lee, S., Kim, J., and Vetter, J. S. (2016). OpenACC to FPGA: A framework for directive-
based high-performance reconfigurable computing. In 2016 IEEE International Par-
allel and Distributed Processing Symposium (IPDPS), pages 544–554.

Lee, S. and Vetter, J. S. (2014). Openarc: Open accelerator research compiler for
directive-based, efficient heterogeneous computing. In Proceedings of the 23rd In-
ternational Symposium on High-performance Parallel and Distributed Computing,
HPDC ’14, pages 115–120, New York, NY, USA. ACM.

Lloyd, T., Chikin, A., Ochoa, E., Ali, K., and Amaral, J. N. (2017). A case for better
integration of host and target compilation when using OpenCL for FPGAs. In FSP
2017; Fourth International Workshop on FPGAs for Software Programmers, pages
1–9.

Moore, G. E. (1965). Cramming more components onto integrated circuits. Electronics,
38(8):56–59.

OpenACC (2019). OpenACC: Directives for Accelerators. [Online]. Available: https:
//www.openacc.org/. (Acessed Feb. 15, 2019).

Zohouri, H. R., Maruyama, N., Smith, A., Matsuda, M., and Matsuoka, S. (2016). Eval-
uating and optimizing OpenCL kernels for high performance computing with FPGAs.
In SC ’16: Proceedings of the International Conference for High Performance Com-
puting, Networking, Storage and Analysis, pages 409–420.

12


