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Abstract—Geolocation methods identify objects in
images and determine their geospatial locations. Cur-
rent object geolocalization methods face challenges
such as high hardware costs, limited object class
coverage, difficulties with repeated object occurrences,
and performance issues in dynamic environments.
This paper introduces a machine learning approach
for geolocalizing objects from low frame rate video
using a single camera and image metadata, aiming to
reduce costs and complexity compared to traditional
methods. The method combines camera displacement
data and object bounding boxes obtained from an
object detection model to estimate geospatial locations.
The approach was evaluated using diverse datasets
that capture various driving environments and object
types, demonstrating its capability to handle multiple
scenarios.

Index Terms—Geolocation, Road Management, Ob-
ject Detection, Highway

I. INTRODUCTION

Object geolocalization is the task of identifying
objects within one or more images and determining
their geospatial location, which is expressed as
global positioning system (GPS) coordinates. This
process has a wide range of applications, includ-
ing land surveying, self-driving vehicles, and asset
management [1], [2], [3]. Additionally, it benefits

other fields that require automatic detection and
geolocation of objects of interest [3], [4].

Automatically detecting GPS locations of ob-
jects from street images can be a cost-effective
solution for road asset geolocalization. However,
this approach presents several challenges, including
GPS errors, the presence of multiple appearances
of the same objects in different images or frames,
and the variety of object types and sizes (e.g.,
road signs with multiple sub-classes). Objects may
appear in one, two, or several images, necessitating
an algorithm that can detect and consolidate these
occurrences into a single prediction.

Existing methods are often limited to a single ob-
ject class, rely on robust visual feature descriptions
for effectiveness, and frequently require expensive
equipment, such as drones, multiple cameras, or
satellites [5].

In this paper, a multi-class machine learning
approach for geolocalizing objects from low frame
rate video was evaluated. This approach processes
one or multiple frames and utilizes inexpensive
hardware, relying solely on a single camera and
the image’s metadata. It enables the extraction of
the camera’s displacement relative to the previous



frame, as well as the object bounding box obtained
from an object detection model.

A public dataset capturing various driving envi-
ronments was used to benchmark performance. It
features diverse sign types and metadata that allow
for organizing and sequencing images to provide
information about camera displacement. This ap-
proach applies to geolocating road features, street
markings, traffic lights, sidewalks, trees, buildings,
and other elements. It is crucial for assessing the
quality and maintenance of these objects, such as
identifying damaged infrastructure, fading mark-
ings, or malfunctioning lights.

This paper is organized as follows. In Section
II, the related work on object geolocalization is
presented. Materials and methods are presented in
section III. The results and discussions are elabo-
rated in Section IV. Finally, the paper ends with the
conclusions in Section V.

II. RELATED WORK

Krylov et al. [6] proposed a triangulation-based
method that uses a two-stage framework for object
segmentation followed by geolocalization. This ap-
proach was further enhanced in [7] with drone point
cloud footage to improve accuracy. However, these
methods have limitations due to noisy segmented
objects and assumptions of object sparsity, treating
all objects within a distance threshold as a single
entity.

Re-identification methods were introduced by
Nassar et al. [8], where the model detects and geolo-
calizes objects in two images. They later proposed
a graph-based method to handle multiple frames,
which requires objects to appear in at least two
frames and assumes proximity to the camera for
easier detection [2].

Chaabane et al. [1] proposed a tracking-based
method that utilizes a largely end-to-end trainable
deep neural network to geolocalize traffic signs.
Their approach required objects to appear in at
least five frames and used six cameras, which faced
hardware limitations.

Before the advent of deep learning, geolocaliza-
tion commonly employed epipolar constraints [9]
to reconstruct 3D points, such as for traffic lights

[10] and traffic signs [11]. A related method [12]
used a pipeline for telecom assets, leveraging HOG
features and linear SVM [13]. However, these meth-
ods were limited by their reliance on handcrafted
features.

Deep neural networks (DNNs) now dominate
geolocalization by effectively capturing complex re-
lationships, merging object detections from multiple
images, and estimating depth in images obtained
from omnidirectional cameras [14]. Various single-
object tracking deep learning frameworks have been
developed [15], [16], [17], including visual cue
tracking [18], [19], filter-based methods [20], [21],
siamese network-based methods [22], [23], and
transformer-based methods [24], [25].

A recent study integrated bounding box regres-
sion data and motion constraints for filter-based
single-object tracking in satellite videos [26]. The
motion model could adaptively learn and predict
the target’s future trajectory based on its historical
movement patterns using a long short-term memory
(LSTM) network.

Despite these advancements, existing methods
are often limited to a single object class, rely on
robust visual feature descriptions for effectiveness,
and frequently require expensive equipment, such as
drones, multiple cameras, or satellites [5]. Wilson et
al. [27] developed a two-stage technique that detects
and geolocalizes dense multi-class objects, such as
traffic signs (with nearly 200 sub-classes), using low
frame rate videos recorded by a single camera.

This paper proposes a machine learning approach
designed to reduce equipment costs, building on
the work of Wilson et al. [27]. The method uti-
lizes data from a single camera, GPS location, and
image metadata. Additionally, it combines camera
motion data with the pixel coordinates of bounding
boxes for tracked objects. This combination makes
the method suitable for simple supervised learning
models to estimate the locations of various objects,
such as traffic signs, license plates, road barriers,
and trees.



III. MATERIALS AND METHODS

A. System Overview

Figure 1 shows the flowchart of the proposed
methodology for geolocation. The process begins
with a set of images for which we compute the
camera displacement. We need at least two images
to calculate the camera displacement. As illustrated
in the flowchart, the first component of our approach
is to detect the object bounding box using the
Yolov8 algorithm [28]. We train a custom Yolov8
object detector with object location and asset class
manual annotations.

With the bounding box and camera dis-
placement coordinates in hand, the geolocation
model predicts the object location displacement
(∆latobj ,∆lonobj). The final object coordinate is
computed by equation 1, as follows:

latobj = latcam + 10−4∆latobj

lonobj = loncam + 10−4∆lonobj ,
(1)

where (latobj , lonobj) and (latcam, loncam) are the
final object and input camera GPS coordiantes.

Figure 2 depicts the predicted coordinates super-
imposed on the input image.

B. Data

The public datasets used in this study, detailed
in Table I, cover a range of scenarios with different
numbers of images, classes, and annotations.

Compared to other traffic recognition and ge-
olocation datasets, ARTS is the largest in terms
of the number of images and annotations. The
public ARTS datasets contains high-quality images
with a resolution of 1920 × 1080, available in
various formats including video logs and individual
annotations in a format similar to PASCAL VOC.

TABLE I: Description of the public datasets

Dataset N. Images N. Annotations
ARTS easy [29] 6.141 16.540

ARTS challenging [29] 19.908 35.970
ARTS V2 [27] 25.544 47.589

20% of the samples were used as test data.
The dataset used in this study incorporates both
computer vision features and geospatial features, as

shown in Figure 1. The computer vision features
were extracted by YOLOV8n. When evaluated on
the ARTs Challenging dataset, using 20% of the
dataset as test data, the more recent YOLOv8
model achieves an accuracy of 89%, surpassing the
performance reported by [27]. The labels of the
images contain their latitude and longitude. The
object and camera geospatial features are obtained
by combining two sequential frames.

Table II shows examples of samples with features
used by the machine learning model in this study.
This dataset is utilized to train a neural network
model for estimating the geolocation of objects.
Each row in the table represents a unique data
sample, consisting of the following columns:

• ∆Latcam: The change in latitude of the cam-
era, indicating how much the camera’s latitude
has changed relative to the previous frame.
To perform better, this tiny value should be
normalized by arbitrary value (we used the
factor 10000).

• ∆Loncam: The change in longitude of the
camera, showing how much the camera’s lon-
gitude has changed relative to the previous
frame. To perform better, this tiny value should
be normalized by arbitrary value (we used the
factor 10000).

• bbox obj(x1, y1, x2, y2): The bounding box of
the object in the image, defined by the pixel
coordinates of its top-left corner (x1, y1) and
bottom-right corner (x2, y2) normalized by the
image shape.

• ∆Latobj : the difference between the object
and camera latitude. To perform better, this
tiny value should be scaled by some factor (we
used the factor 10000).

• ∆Lonobj : the difference between the object
and camera longitude. To perform better, this
tiny value should be scaled by some factor (we
used the factor 10000).

The camera displacement and the relative pixel
coordinates of the bounding boxes’ bottom-right
and top-left corners provide the necessary input
features for the model. The object coordinates dis-
tance (relative to the camera coordinates) serve as
the output labels, enabling the model to learn the



Fig. 1: Proposed system flowchart

Fig. 2: Predicted object geolocation relative to the
camera.

relationship between these variables.

TABLE II: Features used to train the geolocalization
model

∆Latcam ∆Loncam bbox obj norm(x1, y1, x2, y2) ∆Latobj ∆Lonobj

0.6704 -0.2722 (0.7417, 0.4370, 0.7526, 0.4926) -1.4987 -0.5925
0.6704 -0.2722 (0.6750, 0.3417, 0.7167, 0.4157) -2.4578 -0.4316
0.7123 -0.2926 (0.9422, 0.4546, 0.9630, 0.5574) -0.7864 -0.8851
0.7123 -0.2926 (0.7578, 0.3093, 0.8188, 0.4148) -1.7455 -0.7242
0.6817 -0.2917 (0.4385, 0.4093, 0.4448, 0.4231) -6.8924 4.2631

C. Model for object geolocation

The geolocation model was built using PyTorch
and trained on a computer with an Intel Xeon W7-
2495X processor, an NVIDIA GeForce RTX A5500
GPU, and 128GB of RAM. Table III outlines the
architecture of the neural network used for object
geolocation. This network consists of a series of
linear layers designed to progressively transform
the input data through various dimensions. It starts
with a small number of input features and undergoes
several transformations to capture complex patterns.

TABLE III: Architecture of the adopted Neural
Network for object geolocation

Layer Type Input Size Output Size Activation
1 Linear 6 32 ReLU
2 Linear 32 64 ReLU
3 Linear 64 128 ReLU
4 Dropout - - -
5 Linear 128 512 ReLU
6 Linear 512 1024 ReLU
7 Dropout - - -
8 Linear 1024 1024 ReLU
9 Linear 1024 512 ReLU

10 Dropout - - -
11 Linear 512 128 ReLU
12 Linear 128 64 ReLU
13 Linear 64 32 ReLU
14 Linear 32 2 None

Dropout layers were incorporated to enhance
generalization and prevent overfitting, with dropout
probabilities ranging from 0.1 to 0.3. The final layer
produces a two-dimensional output, which aligns
with the requirements for object geolocation tasks.
The adopted loss function was the Mean Squared
Error (MSE), defined as:

MSE =
1

N

N∑
i=1

(yi − ŷi)
2 (2)

where yi are the target values and ŷi are the pre-
dicted values. The Adam optimizer was initialized
with a learning rate of 0.001, and a scheduler with
gamma factor of 0.5 and step size of 10 epochs.

IV. RESULTS

Table IV presents summary statistics, including
the mean, the mean confidence interval, and the me-
dian of distance errors for the considered datasets.
For the ARTS Easy category, the model achieved



TABLE IV: Distance error summary statistics

Dataset Mean (CI) Median
Easy 6.32 [6.09, 6.57] 4.53
Challenging 12.26 [11.97, 12.57] 8.44
Arts V2 13.12 [12.80, 13.46] 8.73

a mean error of 6.32 meters, a median of 4.53
meters. This suggests a relatively high accuracy in
this simpler subset. In contrast, the results for bigger
datasets indicated greater difficulty in accurately
predicting object positions. In the ARTS Challeng-
ing the model presented a mean error of 12.26
meters and a median of 8.44 meters. Similarly, the
ARTS V2 subset presented a mean error of 13.12
meters and a median of 8.73 meters.

The results illustrated in Figure 3 highlight the
distribution of distance errors across various test
subsets. Overall, the model’s performance degrades
as the datasets become more challenging, as ev-
idenced by the increasing skewness and kurtosis,
which point to a greater frequency and magnitude of
large errors. The increasing mean and median dis-
tance errors from ARTS Easy to ARTS Challenging
and ARTS V2 suggests that the model may struggle
with more challenging environments where factors
such as varied lighting conditions, occlusions, or di-
verse object types complicate accurate geolocation.

Although there is less precision in more complex
datasets compared to the model proposed by Wilson
[27], the former approach used a geolocation model
with approximately 25M parameters, while ours
contains 2M parameters. This significant reduction
in the number of parameters results in a more effi-
cient model with faster inference times and reduced
computational requirements. Despite the trade-off in
precision, our model remains competitive and offers
practical advantages in scenarios where resources
are limited or rapid processing is essential.

V. CONCLUSION

In this study, the challenge of object geolocaliza-
tion, which involves identifying objects in images
and determining their geospatial locations as GPS
coordinates, was addressed. By providing geolo-
cation predictions using accessible hardware, the
approach offers a practical solution for evaluating

(a) ARTS Easy

(b) ARTS Challenging

(c) ARTS V2

Fig. 3: Distance error distributions in the test sub-
sets.

and maintaining road infrastructure, enhancing the
ability to identify issues such as damaged or missing
road signs, faded markings, and malfunctioning
traffic signals.

The results showed the model’s effectiveness
across varying levels of difficulty in the datasets.
The ARTS Easy category shows the lowest error
rates, indicating higher accuracy, while the ARTS
Challenging and ARTS V2 categories demonstrate
greater variability and error, likely due to more
complex scenarios.

The observed increase in error across more chal-
lenging datasets suggests potential areas for im-
provement in the model. For instance, enhancing the
model’s ability to handle complex environmental
factors, such as different terrain types or atmo-



spheric conditions, could reduce errors. Moreover,
refining the model’s algorithms to better general-
ize across diverse conditions might lead to more
consistent performance. Future work could focus
on extending this system to handle real-time data,
integrating additional low-cost sensors to further
improve accuracy and on optimizing the balance
between precision and efficiency to further enhance
the model’s performance.
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