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Abstract—The escalating complexity of electrical energy sys-
tems demands innovative approaches to power management
and predictive analysis. This groundbreaking study introduces a
novel machine learning methodology for power factor prediction
within a university campus setting, leveraging a sophisticated
data normalization technique to address asymmetries in data
collection. By systematically comparing multiple machine learn-
ing algorithms—including Logistic Regression, Random Forests,
Support Vector Machines (SVM), k-Nearest Neighbors, and
Multi-Layer Perceptron Neural Networks—the research provides
insights into predictive performance. Notably, the research also
developed an innovative data standardization mechanism using
arithmetic functions, which effectively mitigates data asymmetry
challenges. These results not only advance our understanding of
power factor dynamics but also offer a robust framework for
energy management in complex electrical systems, particularly
in regions with adversarial operational characteristics.

Index Terms—Power Factor, comparative, machine learning,
decision tree

I. INTRODUÇÃO

O fator de potência (FP) é uma medida comum em am-
bientes com equipamentos que consomem eletricidade, como
indústrias, fábricas, empresas comerciais e grandes instalações
residenciais que utilizam motores, transformadores e outros
aparelhos de alta potência. Ele é a razão entre a potência ativa
(útil) e a potência aparente (total) de um sistema elétrico,
indicando a eficiência no uso da energia. Valores ideais de
FP variam entre 0,92 e 1, representando menor desperdı́cio de
energia reativa [14].

Enfrentamos um problema na central energética da univer-
sidade relacionado a penalidades por variação excessiva do FP.
O FP precisa manter-se estável e dentro do intervalo especı́fico.
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Quando ele se desvia desse intervalo, especialmente ao ficar
abaixo de 0,92, ocorrem perdas de eficiência energética. Isso
não apenas compromete a estabilidade do sistema elétrico,
como também gera sanções financeiras pela concessionária.
Este estudo tem como objetivo prever o FP em um bloco
universitário, utilizando técnicas de aprendizado de máquina.

Alguns estudos utilizam diferentes modelos de apren-
dizado de máquina, com os mesmos demostrando eficácia
para a tarefa de analise preditiva para esse contexto em
sistemas elétricos. Esses estudos vão desde previsões de
carga, otimização de sistemas fotovoltaicos (PV) e predição
de propriedades de materiais. Além disso, o método SHAP
[13], é empregado para analisar as contribuições das variáveis
preditoras.

Este estudo preenche lacunas importantes no campo de
pesquisa sobre previsão do FP em sistemas elétricos. Um
diferencial deste trabalho em relação a outros trabalhos an-
teriores relacionados, é o fato de em nossa pesquisa se utilizar
dados obtidos no hemisfério sul, oferecendo uma perspectiva
única e pouco explorada na literatura. Além disso, realizamos
uma validação abrangente de diferentes modelos de apren-
dizado de máquina, contribuindo para uma compreensão mais
profunda da eficácia de várias técnicas neste contexto. Um
aspecto inovador do nosso trabalho é a implementação de
um mecanismo de resumo baseado em funções aritméticas
com agrupamentos, que permite uma análise mais refinada
dos padrões de consumo energético. Estas contribuições visam
expandir o conhecimento no campo e fornecer bases sólidas
para futuras pesquisas na área de previsão e gestão de sistemas
elétricos complexos.

Com isso, é proposto uma abordagem para reduzir na
medida que se padroniza as dimensões com o uso de funções



aritméticas básicas. Além disso foi feito um estudo sobre
diferentes modelos de ML com o uso de validação cruzada,
visando determinar qual dos modelos possui maior capacidade
para criar aderência de predição ao fenômeno analisado com
o uso desses dados. Em conjunto a isso foi realizado um corte
temporal e aplicado numa arvore de decisão, para propiciar
entendimento sobre o processo de tomada de decisão na
predição feita.

O objetivo deste estudo é fazer uma analise comparativa
de diferentes algoritmos de ML com dados de entrada repre-
sentadas por meio de um mecanismo proposto que reduz ao
mesmo que padroniza as dimensões para evitar problemas de
assimetria na quantidade de dados coletados. A abordagem
metodológica inclui a obtenção dos dados para esses exper-
imentos, coletados dentre os dias 1 à 7 de agosto de 2024,
com intervalos de 15 minutos e o treinamento do modelo
foi estruturado com uma separação temporal dos dados, onde
2
3 dos dados iniciais foram utilizados para treinar o modelo,
e o 1

3 restante foi reservado para testar sua capacidade de
estimar a classe para os próximos momentos. Todos os dados
são medições reais de um prédio em um campus universitário
localizado dentro do espaço correspondente ao fuso GMT-
3. Os testes feitos para validar o uso dos modelos foi feito
com métricas, além de um modelo de arvore de decisão
treinado para emular explicabilidade para entender o processo
de estimação com uso de poucos atributos preditores.

II. TRABALHOS RELACIONADOS

É apresentado uma exploração da aplicação de máquinas
de vetores de suporte (SVM) na previsão de carga elétrica
de curto prazo, incorporando fatores meteorológicos para
melhorar a precisão das predições [1]. O estudo utilizou dados
históricos de carga e variáveis meteorológicas como temper-
atura e umidade relativa do ar para treinar o modelo SVM.
Os autores compararam o desempenho do SVM com métodos
tradicionais de regressão linear múltipla, demonstrando que
o SVM alcançou maior precisão na previsão de carga. Este
trabalho exemplifica o potencial do aprendizado de máquina
na predição de grandezas elétricas, destacando a capacidade
de lidar com relações não-lineares complexas entre múltiplas
variáveis de entrada e a grandeza elétrica a ser prevista.

A investigação sobre a otimização do posicionamento,
dimensionamento e FP operacional de PV em redes de
distribuição [2]. Utilizando ı́ndices de estabilidade de tensão,
os autores determinaram a localização ideal para a instalação
de PV e otimizaram seu tamanho para minimizar perdas do
sistema. Além disso, o estudo explorou a otimização do FP do
PV, demonstrando que ajustar o FP entre 0,85 atrasado e 1,0
(unitário) pode levar a reduções significativas nas perdas do
sistema e melhorias no perfil de tensão. Para o sistema IEEE
33 barras, por exemplo, a otimização do FP para 0,88 resultou
em uma redução adicional de 20,2% nas perdas do sistema em
comparação com a operação em FP unitário. Esses resultados
destacam a importância de considerar o FP na operação de
sistemas com alta penetração de PV.

Foi desenvolvido um modelo de aprendizado de máquina
interpretável para prever o FP de compostos termoelétricos
do tipo diamante. Utilizando uma técnica de ”stacking” para
combinar múltiplos modelos e incorporando descritores tanto
elementares quanto estruturais, eles alcançaram um coeficiente
de determinação (R²) superior a 0,95 no conjunto de teste
[3]. O estudo empregou o método SHAP (SHapley Additive
exPlanations) [13] para interpretar os resultados, revelando
correlações negativas entre o FP e a eletronegatividade dos
ânions, e positivas com o volume por átomo. Este trabalho
demonstra a viabilidade de combinar alta precisão predi-
tiva com interpretabilidade em modelos de aprendizado de
máquina para materiais termoelétricos, permitindo extrair in-
sights fı́sicos relevantes dos resultados.

No trabalho é apresentado um modelo de predição do FP em
sistemas elétricos trifásicos, utilizando técnicas de aprendizado
de máquina. [4] O estudo se concentra na aplicação da
regressão linear para prever o FP em instalações de média
tensão. A pesquisa propõe um modelo que analisa dados,
monitorados durante o perı́odo de 7 dias, com intervalos de
5 minutos, de variáveis elétricas como tensão, corrente e
potência ativa, para estimar o FP futuro. O objetivo é de-
senvolver uma abordagem que permita a compensação reativa
antecipada, sem a necessidade de monitoramento contı́nuo. Os
resultados demonstram que o modelo proposto pode prever o
FP com alta precisão, mesmo em cenários onde há a presença
de fontes de energia renovável, contribuindo para uma gestão
energética mais eficiente e econômica.

III. METODOLOGIA

Os dados foram coletados por meio de sensores distribuı́dos
estrategicamente pelo campus da universidade. Esses dados,
juntamente com a infraestrutura de coleta e armazenamento,
são gerenciados em um Sistema de Gerenciamento de Banco
de Dados (SGBD) Postgres. Devido ao volume e à com-
plexidade dos dados, foi implementada a particionamento das
tabelas, garantindo uma melhor performance e escalabilidade
no gerenciamento da informação.

A. Abordagem

Devido às assimetrias observadas na quantidade de dados
amostrados dentro de um mesmo intervalo de tempo, ou seja,
para diferentes momentos amostrados com o mesmo intervalo,
podem ocorrer variações na cardinalidade dos dados.

Na figura 1 existe um esquemático para o processo de
padronização, que utiliza formas matemáticas junto de um
processo de agrupamento, para padronizar as dimensões dos
dados.

Os dados são originalmente coletados em intervalos de
uma hora. No entanto, para atender aos requisitos especı́ficos
do projeto, foi necessário replicar os dados coletados em
uma determinada hora para intervalos de 15 minutos. Essa
abordagem permitiu a obtenção dos dados necessários com
a granularidade exigida para a realização dos experimentos,
mantendo a consistência e a integridade dos resultados.



Fig. 1. Representação do processo de padronização dos dados

B. Experimentos

Os experimentos decorreram no ambiente Google Colab,
utilizando a linguagem Python na sua versão 3.10, com o
uso das bibliotecas Meteostat, Sklearn, Numpy, Pandas, e
Matplotlib.

É realizada uma análise comparativa entre diferentes algo-
ritmos de Machine Learning, com a finalidade de entender
se algum, e qual entre eles. Possui a maior capacidade de
aderência aos dados do fenômeno que está sendo mapeado.
No caso, a média para o Fator de Potência na próxima janela
de tempo. Para isso, foram utilizados alguns métodos que
diferem entre si, na forma como geram suas estimativas.
Todos eles foram aplicados sem nenhum ajuste de parâmetro,
sendo aplicados com seus parâmetros padrões dispostos na
biblioteca. Os métodos foram:

• Regressão Logı́stica: A regressão logı́stica é um método
estatı́stico usado para modelar a probabilidade de
ocorrência de um evento binário, em função de uma ou
mais variáveis independentes [6],

• Floresta Aleatória: A Floresta Aleatória é um al-
goritmo de aprendizado de máquina que combina
múltiplas árvores de decisão para melhorar a precisão da
classificação ou regressão. Isso funciona ao criar várias
árvores com diferentes subconjuntos dos dados e então
combinar suas previsões [7].

• Máquina de Vetores de Suporte: SVM são algoritmos
de aprendizado de máquina usados para classificação e
regressão, que funcionam encontrando o hiperplano que
melhor separa as classes no espaço de caracterı́sticas,
maximizando a margem entre as classes [8].

• K-ésimo Vizinho mais Próximo: É um método de
classificação que atribui uma classe a um ponto de dados
com base nas classes dos K pontos mais próximos
no espaço de caracterı́sticas, utilizando uma métrica de
distância, geralmente a Euclidiana [9].

• Rede Neural Multi Camadas Perceptron: É uma ar-
quitetura de rede neural composta por camadas de nós
(neurônios) organizadas em uma entrada, uma ou mais
camadas ocultas e uma camada de saı́da. É amplamente
utilizada em tarefas de classificação e regressão, apren-
dendo representações complexas por meio do algoritmo
de retropropagação com o uso do algoritmo de gradiente
descendente [10].

O experimento envolveu a aplicação de validação cruzada
para treinar e avaliar diferentes modelos de machine learning.
Para cada fold, os dados foram divididos em conjuntos de
treino e teste, seguidos de um processo de normalização. Em
seguida, os modelos foram treinados e suas previsões avali-
adas, permitindo o cálculo de métricas de desempenho como
acurácia, precisão, revocação e kappa, além dos tempos de
execução tanto para o treinamento quanto para a predição. As
médias e os desvios padrão dessas métricas foram calculados
para comparar a eficácia dos modelos. A validação cruzada
foi realizada em dez divisões aleatórias não estratificadas,
garantindo uma análise robusta das métricas de desempenho
e tempos de execução para cada modelo avaliado.

A figura 4 ilustra o uso de uma única árvore de decisão, ao
invés de uma floresta de árvores, para facilitar a construção
de um mapa de decisão claro e interpretável. Essa abordagem
permite visualizar diretamente as regras de classificação, pro-
porcionando uma interpretação simples e direta das decisões
tomadas pelo modelo.

C. Resultados

O FP representa a relação entre a potência ativa e a potência
aparente em um circuito elétrico, sendo predominantemente in-
fluenciado pela reatância do sistema. Na imagem 2 observado,
que simplesmente nenhum fator meteorológico teve correlação
forte o suficiente para suportar relação de causalidade, assim
nenhum teve um impacto tão significativo. [11].

Com exceção da irradiância em suas três formas, que
apresenta um coeficiente positivo considerável em relação às
medidas do fator de potência, especialmente em relação ao
valor máximo.

Fig. 2. Correlação de Pearson para Grandezas Meteorológicas em relação
com medidas do Fator de Potência

Na imagem 3 é apresentado o Coeficiente de Variação para
o FP. Como em alguns instantes alguns valores estavam tendo
valores com módulo enormes, foi aplicada uma atenuação
em 10.000%, independentemente do sinal. Observa-se que,
embora geralmente próximo de zero, o coeficiente exibe picos
extremos, tanto positivos quanto negativos. No entanto os
valores negativos são mais proeminentes, indicando que o FP
se torna mais instável em condições negativas.



TABELA I
MÉTRICAS DE DESEMPENHO DENTRO DO CONTEXTO DE VALIDAÇÃO CRUZADA

Métricas Random Forest Logistic Regression SVM k-NN MLP
Acurácia (%) 94.04 ± 3.20 93.74 ± 3.18 94.78 ± 2.77 93.89 ± 2.25 94.34 ± 3.19
Precisão (%) 93.59 ± 3.89 93.32 ± 3.63 94.50 ± 3.24 93.86 ± 2.14 94.25 ± 3.24

Revocação (%) 92.64 ± 4.25 92.44 ± 3.98 93.46 ± 3.52 92.34 ± 2.83 93.10 ± 3.39
Kappa (%) 86.10 ± 8.06 85.62 ± 7.51 87.80 ± 6.43 85.89 ± 4.67 87.15 ± 6.32

Perda Logarı́tmica 2.15 ± 1.10 2.26 ± 1.15 1.88 ± 1.00 2.20 ± 0.81 1.93 ± 1.10
Tempo de Treinamento (ms) 1015.01 ± 300.65 71.63 ± 11.25 26.45 ± 10.63 1.43 ± 1.53 759.89 ± 568.73

Tempo de Predição (ms) 17.51 ± 9.38 0.36 ± 0.04 4.67 ± 2.87 2.17 ± 0.88 0.69 ± 0.37

Fig. 3. Coeficiente de Variação para o Fator de Potência

As métricas de desempenho, como acurácia, revocação,
precisão, coeficiente kappa de Cohen, e perda logarı́tmica
foram calculadas para os conjuntos empregados no treina-
mento e teste. Na tabela I, pode ser vista uma relação para
esses valores. Como pode ser observado os melhores valores
são atingidos pela modelo de SVM [8], o que de certa
forma é esperado devido ao fato de se lidar com uma alta
dimensionalidade e uma cardinalidade relativamente baixa,
cenários onde o SVM performa bem [12].

Ao analisar os tempos de treinamento, salta aos olhos
a discrepância do modelo K-NN frente aos outros, isso na
verdade é esperado e esconde uma armadilha, pois esse mod-
elo não tem parâmetros aprendı́veis ele apenas armazena as
instancias dadas em treinamento para então realizar os cálculos
de proximidade na etapa de inferência. Portanto o melhor
tempo de tempo é na verdade o da Regressão Logı́stica, já
que a mesma apenas aplica uma multiplicação de coeficientes
e aplicação sobre a função sigmóide.

Realizou-se o desenvolvimento e avaliação de um modelo
de árvore de decisão para classificar dados em duas classes:
”Negativo” e ”Adequado”. Para o treinamento deste modelo
foi utilizado uma estrutura com uma separação temporal dos
dados, onde 2

3 dos dados iniciais foram utilizados para treinar o
modelo, e o 1

3 restante foi reservado para testar sua capacidade
de estimar a classe para os próximos momentos. Com isso na
figura 5 é apresentada a matriz de confusão para as predições
deste modelo.

A estrutura da árvore de decisão gerada é visualizada na
imagem, onde cada nó representa uma decisão baseada em
um valor especı́fico de uma caracterı́stica do conjunto de
dados. A coloração da árvore indica as classes predominantes
em cada nó, com tons de laranja representando a classe
”Negativo” e tons de azul a classe ”Adequado”. A métrica
gini, presente em cada nó, indica a pureza da divisão entre as

classes, com valores mais próximos de zero sugerindo maior
homogeneidade dentro do nó.

IV. CONCLUSÃO

Este estudo demonstrou a eficácia das técnicas de apren-
dizado de máquina na previsão do FP. A SVM se desta-
cou como o método mais preciso, alcançando uma acurácia
média de 94,78% com um menor tempo de treinamento.
Sendo uma descoberta significativa para a otimização da
gestão energética, permitindo ajustes antecipados nos sistemas
elétricos. A análise de árvore de decisão também forneceu uma
percepção valiosa sobre as variáveis preditivas mais relevantes.

Apesar dos resultados inicialmente promissores, ainda exis-
tem trabalhos a serem feitos para sanar potenciais problemas
na abordagem como a replicação dos experimentos com dados
advindos de outras épocas do ano, com um conjunto maior.
Para trabalhos futuros, o aprimoramento dessas tarefas, e
a incorporação de variáveis adicionais que são endógenas
ao problema, como a informação da quantidade de pessoas
utilizando a rede.

Em conclusão, este estudo representa um avanço signi-
ficativo na aplicação de técnicas de aprendizado de máquina
para a previsão do FP. Os resultados obtidos demonstram a
viabilidade e o caminho para futuras pesquisas que podem
refinar e expandir essas técnicas. A capacidade de prever o
FP tem implicações importantes para a eficiência energética,
a estabilidade da rede e a integração de fontes de energia
renovável, contribuindo para o desenvolvimento de redes
elétricas mais inteligentes, eficientes e sustentáveis.
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