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Resumo. A memdria virtual oferece aos processos mais memoria que aquela
fisicamente disponivel, usando um disco como extensdo de memoria. Quando
ndo hda memoria RAM para atender os processos, o sistema se torna lento, pois
gasta seu tempo fazendo troca de pdginas, caracterizando o thrashing. Este
trabalho traz uma avaliagdo de alguns sistemas operacionais de mercado sob
thrashing. Uma ferramenta de benchmark foi definida para conduzir cada sis-
tema a um thrashing controlado e entdo de volta a operacdo normal. Além disso,
foram identificadas as informacoes de desempenho disponiveis em cada sistema
e os mecanismos usados para coletd-las.

Abstract. Virtual memory allows offering to processes more memory than that
physically available in the system, using a disc as a memory extension. When
there is not enough RAM memory to satisfy the processes, the system becomes
slow, because it spends the time doing paging, characterizing memory thrashing.
This paper presents an evaluation of some commodity operating systems under
thrashing. A portable benchmark tool was developed to bring each system to
a thrashing and then back to normality. We also identify the performance data
available in each system and the mechanisms available to collect them.

1. Introducao

Em um sistema operacional de propdsito geral, os mecanismos de memdria virtual per-
mitem oferecer aos processos mais memoria que aquela disponivel fisicamente, usando
um disco externo como extensao da memoria. Quando a demanda por memoria aumenta,
o sistema seleciona pdginas e as move para o disco, para liberar memoria. Quando essas
paginas forem solicitadas por seus donos, o gerenciador as move de volta para a RAM.
O movimento de pédginas entre memdria e disco € denominado paginacdo. Quando a
memoria RAM € insuficiente para atender as demandas dos processos, a quantidade de
paginagdes aumenta muito e o desempenho do sistema se degrada, pois o sistema gasta
seu tempo fazendo trocas de paginas. Caso a demanda por memoria seja muito intensa
(muita paginacdo), o sistema entra em thrashing, se tornando praticamente inoperante.

Este trabalho traz uma avaliacdo quantitativa de alguns sistemas operacionais de
mercado sob thrashing. Foram selecionados sistemas de amplo uso e foi definido um
benchmark préprio, que induz uma situacdo de thrashing controlada e seu retorno a nor-
malidade. Este texto estd assim organizado: a sec¢do 2 discute o conceito de thrashing; a
secdo 3 apresenta algumas ferramentas de benchmark de memoria; a se¢cdo 4 descreve o
estudo realizado; a se¢do 5 discute os resultados obtidos e a se¢do 6 conclui o artigo.
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2. Thrashing

O termo thrashing [Denning 1968] designa uma situa¢do de consumo excessivo de me-
moria em um computador, quando o elevado nimero de paginacdes paralisa 0s processos
e torna o sistema inutilizdvel. A dindmica do thrashing é simples: se um processo nao
dispuser de todas as paginas necessarias para processar, ele ird gerar faltas de paginas. O
gerenciador de memdria ird entdo carregar suas padginas na memoria, mas para isso terd
de descarregar paginas de outros processos. Enquanto aquele processo aguarda a carga de
suas paginas, outros processos podem ocupar a CPU, gerando mais faltas de paginas, e as-
sim sucessivamente. Como nenhum processos tem pdginas que necessita para processar,
a taxa de uso da CPU cai drasticamente e o sistema avanca muito lentamente.

O fenomeno de thrashing € influenciado por varios fatores, como a quantidade de
memoria RAM do sistema, o niimero de processos ativos, a localidade de referéncias de
cada processo, o algoritmo de selecdo de pédginas e a velocidade dos discos. A solugdo
mais ébvia para o problema ¢ aumentar a quantidade de meméria RAM do sistema, o
que nem sempre € possivel. Outras solu¢des envolvem mudangas nos algoritmos de troca
de péaginas e/ou no escalonador de processos. Na seqiiéncia sao descritos os métodos de
tratamento de thrashing presentes nas versdes mais recentes dos sistemas operacionais
sob estudo neste texto.

O sistema FreeBSD detecta thrashing observando o uso da memoria
[McKusick and Neville-Neil 2004]. Quando o sistema possuir pouca memoria livre e uma
taxa elevada de requisi¢des de memoria, ele se considera em thrashing. O sistema reduz
o thrashing fazendo com que o ultimo processo que executou ndo volte ao processador
durante algum tempo. Isto permite que o sistema mova as pédginas desse processo ao
disco, liberando memdria para os demais. Se o thrashing continuar, outros processos sao
bloqueados, até que exista memoria suficiente para os demais. Os processos bloqueados
podem voltar a executar depois de 20 segundos, o que pode provocar novo thrashing,
levando a novos processos bloqueados, e assim sucessivamente.

O ndcleo do Linux incorpora uma técnica de token swap [Jiang and Zhang 2005]
para tratar o thrashing: um token Unico € atribuido a um processo no sistema; esse pro-
cesso ndo perderd paginas enquanto detiver o token, permitindo a ele prosseguir sua exe-
cucdo. A atribuicdo do foken a um processo segue algumas regras: a) o token nao mudou
de detentor nos ultimos 2 segundos; b) o atual detentor do foken ndao gerou faltas de pa-
gina desde que o recebeu; e ¢) o processo solicitante ndo recebeu o foken recentemente.
O Linux também implementa niveis de prioridade em seu algoritmo de selecdo de pédgi-
nas: em casos extremos de trashing, o token ndo € mais considerado e o gerenciador de
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memoria escolhe processos “vitimas” para eliminar, até que o problema se amenize.

O gerenciador de memoria do sistema OpenSolaris trabalha em trés estados: nor-
mal, soft swap e hard swap. No estado normal, € usado um mecanismo de paginacao
classico (two-handed clock). Se a quantidade de memdria livre cair abaixo de um pata-
mar chamado desfree durante mais de 30 segundos, o sistema comuta para 0 modo soft
swap, no qual processos inteiros sao enviados para o disco. Se ainda assim a atividade
de paginagdo continuar elevada, o sistema entra no estado hard swap, no qual o nicleo
descarrega todos os seus moédulos e memoria cache sem uso, além de mover para o disco
seqiiencialmente os processos que estejam dormindo hd mais tempo, até que a atividade
de pagina¢do diminua [Mauro and McDougall 2001].
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O Windows XP usa um arquivo de tamanho varidvel como drea de swapping, que
pode ser aumentado em situacdes criticas. Seu algoritmo de troca de pédginas € baseado
em Working sets com agrupamento de piginas [Russinovich and Solomon 2004]. Uma
thread de nucleo periodicamente revisa os tamanhos dos conjuntos de trabalho, remo-
vendo paginas caso haja pouca memoria disponivel. Outra thread de nicleo migra gra-
dativamente processos ha muito tempo suspensos para a drea de swap. Na documentagao
analisada ndo foi encontrada mencao a uma politica explicita para thrashing.

3. Benchmark de sistemas de memoria

Em sua maioria, os programas de benchmarking de memoria permitem avaliar a veloci-
dade das operagdes envolvendo a memoéria RAM e seus caches. Duas medidas freqiientes
sdo0 a largura de banda e a laténcia de acesso a memoria. Nesta secdo sdo apresentadas
algumas ferramentas para benchmarking de memdria, inicialmente aquelas que execu-
tam em mais de um sistema operacional e que possuem codigo fonte aberto (condi¢dao
importante para compreender como a ferramenta realiza suas medidas).

O programa Bandwidth [bandwidth 2008] mede velocidades de leitura/escrita do
cache L2, da memoéria RAM, da memdria de video e a velocidade de execucao de fun-
cdes como memset, memcpy € bzero. O programa CacheBench [Mucci et al. 1998]
avalia o desempenho dos caches, medindo suas larguras de banda. O sistema LMbench
[McVoy and Staelin 1996] mede apenas a transferéncia de dados entre CPU, cache, me-
moria, rede e disco, em sistemas UNIX. Ja o sistema nBench [nbench 2008] avalia o
desempenho de CPU e largura de banda de memoria, simulando operagdes usadas por
aplicacoes populares. STREAM [Stream 2008] ¢ uma ferramenta portavel para medir o
tempo necessdrio para copiar regides de memoria e medir sua largura de banda.

A Standard Performance Evaluation Corporation (SPEC) mantém um conjunto
de benchmarks para computadores modernos [Henning 2006]. A ferramenta SPEC CPU
funciona em sistemas Unix e Windows e permite medir o desempenho do processador,
desempenho do compilador e largura de banda de memoria. Além dessas ferramentas,
existem diversas outras, abertas e comerciais, mas nenhuma das ferramentas pesquisadas
oferece funcionalidade para avaliar a resposta de um sistema ao thrashing.

4. O estudo realizado

O objetivo deste trabalho € avaliar o comportamento de alguns sistemas operacionais de
mercado em condi¢des de thrashing. Foram selecionados para este estudo os sistemas
operacionais FreeBSD, Linux, OpenSolaris € Windows XP, por serem o0s principais sis-
temas operacionais desktop do mercado executando sobre a plataforma Intel x86 padrao
(o que excluiu o Apple Mac OS X). Essa plataforma foi escolhida por ser de fécil acesso
e ser bem suportada pelos sistemas escolhidos. Estes sistemas podem operar em modo
desktop ou como ambientes multi-usudrios com terminais graficos remotos. Nesse con-
texto, o thrashing pode ser particularmente problemadtico, pois a acdo de um usudrio pode
afetar diretamente a disponibilidade do sistema para os demais.

Como nio identificamos ferramentas para avaliar o comportamento de um sistema
sob thrashing, foi definido um benchmark préprio, que conduz o sistema de um estado
normal de operagdo ao thrashing e depois de volta a uma situagdo normal. Assim, pode-se
avaliar como cada sistema gerencia a memoria durante o thrashing e quao rapido consegue
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se recuperar dele, quando a demanda por memoria se normalizar. O comportamento de
cada sistema foi observado através do uso de processador em modo usudrio e em modo
sistema (%) e da taxa de paginas lidas/escritas em disco (page-in/page-out). Cada sistema
oferece essas informagdes através de uma API propria, exigindo um programa de coleta
de dados especifico para cada um.

4.1. A ferramenta de benchmark

A ferramenta desenvolvida possui trés componentes: um conjunto de N Processos con-
sumidores, responsdveis por provocar o thrashing, um processo de medicdo, que coleta
dados de desempenho, e um processo pai, que lanca os demais processos. Cada consu-
midor aloca uma grande drea de memoria, onde executa ciclos de escrita, alternados com
periodos de espera (Algoritmo 1). As escritas sdo feitas em posicdes aleatérias da me-
moria, para for¢ar uma baixa localidade de referéncia e nao favorecer nenhum sistema.
Os parametros cuja influéncia foi observada sdo: o nimero de operagdes de escrita em
cada ciclo (W), a duracdo da espera entre dois ciclos de escrita (Z,,) e a defasagem entre
processos consumidores (t.), ou seja, o tempo decorrido entre o inicio da atividade de
dois processos consumidores sucessivos (pc; € pc;11). Estes pardmetros foram escolhidos
de forma empirica, por serem os mais influentes nos diversos experimentos realizados.

Algoritmo 1 Processo consumidor pc; (N, i, W, t., t,)
Entrada: N (numero total de consumidores), 1 < ¢ < N (indice do processo corrente), ¢ (relégio
do sistema)
sleep (10 + 7 x t.) // cada processo se ativa em um momento proprio
mem = malloc (100 x 10242) // aloca 100 MB de meméria RAM
tp = (N xt.)+t. //duragdo da atividade de cada consumidor
tp =t+t, //datado fimdaexecugdo deste processo
while t < t; do
for k =1to W do
val = random (0. .. 255)
pos =random (0. ..100 x 1024?)
mem [pos] =val [/ escreve valor aleatério em posi¢do aleatéria
end for
sleep (t,,) // espera entre ciclos de escritas
: end while
. free (mem) // libera a memoria alocada

R e A S e
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Os processos consumidores foram escritos em C, devido a sua portabilidade. Com
iss0, 0 processo consumidor € exatamente 0 mesmo programa nos quatro sistemas avali-
ados. Os processos de medi¢do também foram escritos em C, com exce¢cdao do Windows,
onde foi utilizado um programa nativo dessa plataforma. O processo pai foi escrito em
Java, pois suas fung¢des de criagdo de novos processos independem de plataforma.

4.2. Coleta de informacoes do niicleo

Basicamente, o processo de medi¢do coleta as informagdes de processador e memoria
providas pelo nicleo e as salva em um arquivo, a cada segundo. O processo de medic¢do é
especifico para cada sistema operacional, pois as interfaces de acesso as informagdes de
nucleo sdo distintas para cada sistema, conforme descrito a seguir.
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No sistema FreeBSD, a ferramenta sysctl permite acessar/ajustar mais de 500
variaveis do nucleo, organizadas hierarquicamente. As varidveis referentes a utilizagdo
de CPU (em fticks de rel6gio) e de memoria sdo: kern.cp_time (vetor com tempos
de CPU em modo usudrio e sistema), vm.stats.vm.v_swappgsin (pdginas lidas no
ultimo segundo) e vim. stats.vm.v_swappgsout (paginas escritas no ultimo segundo).
O Linux implementa o sistema de arquivos virtual /proc [Cowardin 1997], que oferece
uma hierarquia de informag¢des do nucleo através da abstragdo de arquivos e diretorios.
Muitas ferramentas de monitora¢cdo, como o fop e vmstat usam o sistema /proc como fonte
de informacdo. Em nossos experimentos, os dados de consumo de CPU foram obtidos do
arquivo /proc/stat, enquanto os dados sobre operacdes de paginacdo foram obtidos do
arquivo /proc/vmstat (campos pgpgin € pgpgout).

O OpenSolaris oferece fungdes e estruturas de dados para tratar informagdes
do nicleo e de mddulos, denominada kstat e representada pelo dispositivo virtual
/dev/kstat. A funcdo kstat_data_lookup permite localizar uma varidvel especi-
fica e obter seu valor. As varidveis usadas sd0: cpu_ticks_user (tempo de CPU em
modo usudrio), cpu_ticks_kernel (tempo de CPU em modo sistema), pgswapin (péa-
ginas lidas no tultimo segundo) e pgswapout (paginas escritas no ultimo segundo). O
Windows nao oferece uma API publica para coletar dados do nicleo. Ao invés disso,
uma ferramenta chamada perfmon (Monitor do Sistema) permite acessar dados de de-
sempenho do sistema. O perfmon classifica os recursos do computador como objetos,
aos quais sdo associados contadores. Os contadores considerados para o objeto CPU
(em %) e para o objeto memoria foram: $User Time (tempo de CPU em modo usué-
ri0), $Privileged Time (idem, modo sistema), Pages Input/sec (pdginas lidas no
ultimo segundo) e Pages Output/sec (paginas escritas no ultimo segundo).

4.3. O ambiente de experimentacao

Nos experimentos foi usado um PC IBM ThinkCentre S50, com processador Intel Pen-
tium 4 2.6 GHz, placa-mae Intel 865G com componentes on-board e barramento frontal
de 533 MHz. A méquina possui 1 GB de meméria RAM Kingston DDR PC2700, com
clock de 333 MHz e tempo de acesso de 6 ns. O disco rigido usado foi um Seagate Barra-
cuda ST340014A de 40 GB IDE (conector ATA-100, 2 MB de buffer interno, velocidade
7200 RPM, taxa de transferéncia de 100 MB/s e tempo de busca de 8.5 ms). O disco foi
dividido em 4 parti¢des iguais. Um espago de 2 GB foi criado em arquivo para a drea de
swap em cada parti¢do, com a finalidade de tornar a estrutura dos sistemas o mais proxima
possivel, uma vez que a plataforma Windows nao utiliza particao de swap.

Foi feita uma instalagcdo desktop default para cada sistema operacional e nenhum
outro processo, a ndo ser os processos default do sistema operacional, estava sendo exe-
cutado durante a experimenta¢do. O compilador escolhido foi o GCC (GNU Compiler
Collection), por ser amplamente usado e possuir versdes nos sistemas operacionais ava-
liados. Nenhuma configuragcdo especifica de otimiza¢do no compilador foi utilizada. A
Tabela 1 indica a configuracdo de cada sistema, incluindo o nimero de processos ativos,
a quantidade de memoria livre e de drea de swap usada logo apds a inicializagao.

5. Resultados obtidos

Nos experimentos, foi avaliada a influéncia dos parametros na secdo 4.1, ou seja, o nu-
mero de escritas na memoria, a espera entre ciclos de escrita e a espera entre a atividade

2347



Tabela 1. Dados dos sistemas operacionais sob estudo
Sistema Versao Compilador Interface Proc | RAM / Cache | Swap
FreeBSD PC-BSD 7.0 GCC4.2.1 KDE 4 66 | 630/70MB 0
Linux OpenSUSE 10.3 | GCC4.2.1 | Gnome 2.20 | 62 | 730/ 140 MB 0
OpenSolaris 2008.11 GCC34.3 | Gnome?2.22 | 79 | 370/100 MB 0
Windows XP Pro SP3 GCC4.23 nativa 16 | 830/70 MB | 80 MB

de dois processos. Para cada parametro, foram registrados os valores de consumo de CPU
por processos e pelo sistema e o nimero de paginas lidas (page in) e de paginas escritas
(page out). Esses dados foram coletados a cada segundo por um processo de medicao
executando com prioridade normal, porém com permissoes de super-usuario. Em todos
os experimentos, foram criados 25 processos, cada um alocando 100 MB de memodria
RAM. A méquina foi reiniciada apds cada medicgao.

Em todos os sistemas estudados, os dados observados apresentam forte variacao
entre uma medida e outra, tornando sua visualizac@o e interpretacdo invidveis. Por esta
razao, foi adotado um procedimento de suavizagio (curvas de Bézier) para a representacao
grifica dos resultados (Figura 1). Assim, os graficos apresentados nas proximas secoes
nao indicam os valores exatos observados para cada cada varidvel, mas sua tendéncia, que
se manteve estdvel nas varias repeticdes de cada experimento.
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Figura 1. Plotagem dos dados brutos (esq.) e com suavizacgao (dir.)

5.1. Influéncia do niimero de escritas por ciclo

As Figuras 2 e 3 mostram o consumo de CPU para W = 1.000 e 50.000 escritas/ciclo,
mantendo o tempo de espera entre dois ciclos ¢, = 100ms e o tempo de espera entre dois
processos t. = 30s. As Figuras 4 e 5 indicam o nimero de page in/out nas duas situacdes.

O consumo de CPU em modo usudrio foi baixo quando avaliado em 1.000 es-
critas/ciclo, com excecdo do OpenSolaris, que apresentou picos de 40% de CPU no ini-
cio e final da execugdo. O FreeBSD apresentou um consumo de CPU consistentemente
acima dos demais, tanto em modo usudrio quanto em modo sistema. Ja com 50.000
escritas/ciclo, o comportamento do Linux se distancia dos demais, sobretudo em modo
sistema: a atividade de processador no Linux chega a 100%, considerando-se a soma dos
dois modos de operagcdo. O FreeBSD conserva seu comportamento estdvel, enquanto o
OpenSolaris apresenta um consumo inicial de aproximadamente 30% da CPU, que vai
decrescendo ao longo do tempo, sem os picos de processamento do caso anterior.
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Figura 3. Consumo de CPU para 50.000 escritas/ciclo

O Windows apresenta pouco consumo de CPU em modo usudrio, mesmo quando
avaliado em 50.000 escritas/ciclo. H4 um consumo aproximado de 6% apenas quando
os processos entdo sendo ativados. Pode-se observar que o Windows € o sistema que
apresenta menor consumo de CPU nos experimentos. Cabe observar que o Windows nao
conseguiu executar todos os processos dentro do tempo previsto ¢, (Algoritmo 1).

O nimero de page in/out é bastante modesto quando avaliado em 1.000 escri-
tas/ciclo. O Windows apresentou um maior valor nesta avalia¢do. Ja quando avaliado em
50.000 escritas/ciclo, o nimero de page in/out é significativamente maior. O Linux € o
sistema que apresenta a maior movimentacao de pdginas entre o disco e a memoria, atin-
gindo picos de quase 5.000 page out por segundo. Os demais sistemas ndo ultrapassaram
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Figura 5. Operacoes de paginacao para 50.000 escritas/ciclo

1.500 page out por segundo.

5.2. Influéncia do tempo de espera entre ciclos de escritas

As Figuras 6 ¢ 7 mostram o consumo de CPU para t, = 100ms e t,, = 1.000ms,
mantendo o nimero de escritas/ciclo W' = 10.000 e o tempo de espera para ativagio de
cada processo t. = 30s. As Figuras 8 e 9 apresentam o nimero de page in/out nesses

experimentos.
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Figura 6. Consumo de CPU com tempo de espera de 100ms
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Figura 7. Consumo de CPU com tempo de espera de 1.000ms

Pode-se observar que quanto menor o tempo de espera entre ciclos de escritas,
maior € o consumo de CPU. O Linux € o sistema com o maior consumo de CPU quando
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Figura 9. Operacgoes de paginacao com tempo de espera de 1.000ms

avaliado com tempo de espera de 100 ms. O FreeBSD apresenta um consumo médio de
15% de CPU em modo sistema, independentemente do tempo de espera entre ciclos de
escrita. O Windows apresentou, em média, baixo consumo de CPU; no entanto, quando
avaliado em 1.000ms apresentou picos de mais de 10% de uso de CPU em modo sistema.
De forma geral, quanto maior o tempo de espera entre ciclos de escritas menor € o nimero
de page in/out. O Linux apresenta o maior pico de page in/out por segundo, nos trés
primeiros experimentos. No entanto, o Windows apresentou maior taxa de page in quando
avaliado em 1.000ms.

5.3. Influéncia do tempo entre duas ativacoes de processos

As Figuras 10 e 11 mostram o consumo de CPU para t. = 1s e {. = 30s, mantendo o
numero de escritas por ciclo W = 10.000 e o tempo de espera entre ciclos t,, = 100ms.
As Figuras 12 e 13 indicam o nimero de page in/out sob as mesmas condicoes.

O OpenSolaris apresentou o maior consumo de CPU em modo sistema quando
avaliado com 1s de espera. Este pico se manteve proximo a 40% nos trés experimentos.
Ja o Linux, apresentou maior consumo de CPU quando avaliado com ¢. de 30 segundos,
atingindo novamente picos de 100% de uso de CPU. Além disso, o Linux é o sistema que
apresenta 0 maior nimero de page in/out nos trés experimentos. O Linux atingiu mais de
4.500 page out por segundo. O Windows atingiu picos de aproximadamente 1.000 page
out por segundo. O OpenSolaris, de modo geral, foi o sistema que apresentou 0 menor
numero de page in/out nos experimentos.
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Figura 11. Consumo de CPU com 30s de espera entre dois processos

Para avaliar a estabilidade dos resultados, cada experimento foi repetido trés vezes sob as
mesmas condi¢des. Tendo em vista o carater dinamico dos mecanismos de geréncia de
memoria implementados pelos sistemas estudados, era de se esperar uma grande varia-
cdo dos resultados obtidos durante os experimentos. Todavia, essa variacdo se mostrou
modesta: a Figura 14 mostra os resultados obtidos no pior caso, um experimento sobre o
sistema FreeBSD usando W = 10.000 escritas/ciclo, t,, = 100ms e t. = 10s. Todos os

demais experimentos tiveram resultados mais estdveis.
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Figura 14. Variagao do numero de page in/out no FreeBSD

5.5. Avaliacao dos resultados

De forma geral, os mecanismos de tratamento de thrashing dos sistemas avaliados ndo
sdo suficientes para conter de forma eficiente esse fendmeno. Cada sistema se comportou
de forma distinta nos experimentos realizados. Além do comportamento demonstrado nos
gréificos apresentados, ha que se considerar também a impressdo subjetiva do usudrio de
um sistema sob thrashing. De forma geral, o FreeBSD € o sistema que apresentou a maior
estabilidade de consumo de CPU, seja em modo usudrio ou em modo sistema, durante os
experimentos. Esse sistema, assim como o OpenSolaris, apresentou os maiores atrasos na
interatividade do sistema, de acordo com o que foi percebido pela interacdo do usudrio.

O OpenSolaris apresenta um crescimento inicial de consumo CPU, principalmente
em modo de sistema, apds a ativagdo dos processos. Esse consumo comega a decrescer de
forma significativa a medida em que mais processos vao sendo ativados. O OpenSolaris
foi o sistema que apresentou maior consumo de memoria RAM antes dos experimentos,
e também foi o que apresentou maior perda de interatividade, conforme percebido pela
interacdo do usudrio. O Windows apresentou, em geral, baixo consumo de CPU durante
os experimentos. Ao contrdrio dos demais sistemas, o Windows atrasou a atividade de
alguns processos, que ndo terminaram no prazo esperado. Além disso, foi o sistema que
levou mais tempo para se recuperar do thrashing, sob a 6tica da interatividade.

Ao contrario dos demais sistemas, em alguns momentos o Linux apresentou 100%
de consumo de CPU, dois quais 90% referentes a consumo de CPU em modo de sistema.
Além disso, o Linux apresentou os maiores picos de page in/out. Pode-se concluir que
esse consumo elevado de CPU em modo sistema foi utilizado para o processamento de
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page in/out, pois € nesse periodo que ocorrem 0s maiores picos. Pode-se observar que
o mecanismo de foken implementado no Linux consegue um desempenho melhor que os
demais, justamente por ceder privilégios para um determinado processo em um dado ins-
tante. Assim, a0 menos um processo consegue um avango substancial em sua execugao.
Sob a ética de usudrio, o Linux foi o sistema que apresentou a menor degradacio de in-
teratividade e a mais rdpida recuperacao do thrashing. Essa percepcao ndo € facilmente
mensurdvel, mas pode ser facilmente percebida pela interacdo do usuario.

6. Conclusao

Este artigo apresentou a avaliacdo de alguns sistemas operacionais de mercado em situ-
acdo de thrashing de memoria. Foi proposta uma ferramenta portdvel que conduz cada
sistema operacional a um thrashing controlado e posteriormente de volta a operacao nor-
mal. Além disso, foram identificadas as informacdes de desempenho disponiveis em cada
sistema e os mecanismos usados para coletd-las. Foram realizados experimentos que ava-
liam o comportamento dos sistemas sob estudo durante e apOs o thrashing. O impacto
causado pelo thrashing parece ser ainda pouco estudado; em nossas pesquisas nao conse-
guimos identificar outros estudos quantitativos desse fendmeno. O presente estudo pode
ser estendido para abranger outros sistemas operacionais populares, como o MacOS X.
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