

Ajustando o LRU-WAR para uma Política de Gerência de

Memória Global

Ricardo L. Piantola, Edson T. Midorikawa

Departamento de Engenharia de Computação e Sistemas Digitais
Escola Politécnica da Universidade de São Paulo

05508-900 – São Paulo – SP – Brasil

piantola@uol.com.br, edson.midorikawa@poli.usp.br

Abstract. Even with recent advances in Computer Architecture, the memory wall problem

has not been solved yet. In order to lessen the performance difference between processor

and memory, it is essential to create new memory management strategies, which are

stronger in performance. Operating Systems generally use global policies for memory

management. The adaptive strategies have as principle to adapt their behaviour based on

programs memory access patterns. Its use in multiprogrammed environment has not been

properly examined in previous studies. This paper intends to present a strategy to adjust

LRU-WAR in order to obtain a good performance in a global memory management system.

The results show that the same strategy can be used in algorithms following the same

adaptive principle that LRU-WAR does.

Resumo. Mesmo com os avanços na área de arquitetura de computadores, ainda não foi

resolvida a questão sobre o desempenho das memórias em relação aos processadores.

Para atenuar esta diferença é imprescindível criar novas estratégias de gerência de

memória, que sejam mais robustas em desempenho. Os Sistemas Operacionais geralmente

utilizam políticas globais para a gerência de memória. As estratégias adaptativas têm

como princípio adaptar seu funcionamento com base no padrão de acessos à memória dos

programas. Sua utilização em ambiente multiprogramado ainda não foi adequadamente

estudada em trabalhos anteriores. Este artigo procura mostrar uma estratégia para ajustar

o LRU-WAR com a finalidade de obter bom desempenho em um sistema de gerência de

memória global. Os resultados mostram que a mesma estratégia pode ser adequada em

algoritmos que seguem o mesmo princípio adaptativo que o LRU-WAR.

1. Introdução

“Quanto mais processamos dados, mais dados surgem para serem processados”, está é uma

das versões da dita Lei de Parkinson. O aumento da carga computacional tem motivado a

evolução dos computadores. No contexto da computação moderna a centralização de recursos

se tornou evidente com o atual ressurgimento das tecnologias de virtualização, como o

VMware ESX Server e o sistema Viridian da Microsoft, e com a recente difusão de

processadores multi-cores. A necessidade de uma gerência eficiente de recursos aumenta

consideravelmente, em particular a gerência eficiente da memória principal.

 Várias equipes de pesquisadores têm desenvolvido trabalhos no âmbito de algoritmos

para gerência de memória virtual em sistemas operacionais. Há propostas recentes na

SBC 2008 1

literatura sobre algoritmos adaptativos de substituição de páginas, como SEQ [Glass and Cao

1997], EELRU [Smaragdakis et al 1999], LIRS [Jiang and Zhang 2002], ARC [Megiddo and

Modha 2003], CAR [Bansal and Modha 2004] e LRU-WAR [Cassettari and Midorikawa

2004b]. Contudo estes algoritmos não foram desenvolvidos visando seu uso para ambientes

multiprogramados com o controle das páginas de várias aplicações simultaneamente.

 O objetivo principal deste artigo é apresentar uma forma de ajustar o algoritmo

adaptativo de substituição de páginas LRU-WAR para uma política de sistema de gerência de

memória global, através da utilização da técnica profiling e da adição de um parâmetro de

controle, que levou à criação de um novo algoritmo chamado LRU-WARlock.

 Este artigo está organizado da seguinte forma. A seção 2 discute o uso da

adaptabilidade em políticas globais, descrevendo o desempenho dos algoritmos adaptativos

“tradicionais” nesses sistemas de gerência de memória. A seção 3 descreve a proposta de

adaptação do LRU-WAR. A avaliação de desempenho é realizada sobre o algoritmo LRU-

WARlock é apresentada na seção 4. A seção 5 finaliza o artigo e traz as principais conclusões,

indicando alguns trabalhos futuros.

2. O Uso da Adaptabilidade em Políticas Globais

Toda política de substituição de páginas em um sistema de paginação por demanda deve

escolher uma vítima para dar lugar a uma nova página referenciada, quando não há mais

espaço disponível na memória. Caso a página escolhida seja sempre uma página do próprio

processo que sofreu a falta de página, a política utilizada pelo sistema de memória é dita local.

Porém, é possível que o sistema de gerência de memória trabalhe de uma forma global. Um

algoritmo de substituição global atua com todas as páginas da memória, e escolhe a vítima

independente do processo que sofreu a falta de página.

 Existem algumas vantagens em utilizar políticas globais em sistemas de gerência de

memória. Alguns processos podem precisar de mais memória que outros, neste caso a política

global pode dimensionar corretamente a quantidade de memória para cada processo. Os

processos que estão bloqueados, esperando algum serviço, mantêm páginas na memória

consumindo espaço que poderia ser utilizado por páginas de outros processos. Em um sistema

com política global isto é minimizado.

 Os algoritmos adaptativos de substituição tentam adaptar seu comportamento de forma

dinâmica conforme o padrão de referências à memória. Alguns dos algoritmos adaptativos

mais conhecidos na literatura são: SEQ, EELRU, LIRS, ARC, CAR e LRFU [Lee at al 2001].

Algoritmos adaptativos recentes utilizam técnicas de Inteligência Artificial para ajudá-los na

adaptação, como por exemplo, o FPR [Sabeghil and Yaghmaee 2006].

 A maioria dos algoritmos adaptativos “tradicionais” é inadequada para um sistema de

memória com política global. Os projetos desses algoritmos visam analisar um padrão de

acesso de uma única aplicação. Quando os acessos são contabilizados de forma global, ou

seja, as referências à memória são coletadas de múltiplas aplicações, estes algoritmos se

SBC 2008 2

comportam de maneira ineficiente. Muitos desses algoritmos, incluindo o LRU-WAR,

investem maior foco de suas análises na recência dos acessos e não na freqüência. A análise

da freqüência de acessos é um fator importante para uma política global e é apresentada mais

detalhadamente na próxima seção.

3. Proposta de Adaptação do LRU-WAR

O principal objetivo da adaptação do algoritmo LRU-WAR é fazer com que ele consiga obter

bom desempenho em ambientes com política de gerência de memória global, onde se torna

mais difícil a detecção de padrões de acessos. Para conquistar esse objetivo foi criado o

algoritmo LRU-WARlock, que complementa o LRU-WAR, sem modificar sua idéia original

da exploração dos acessos seqüências.

 O princípio do funcionamento de LRU-WARlock surgiu da idéia de separar os acessos

diferentes do padrão de acesso seqüencial e tratá-los de outra maneira. A questão crucial foi

descobrir o que mais atrapalhava a detecção de referências seqüenciais. A resposta estava no

bom funcionamento geral do LRU. Em um ambiente multiprogramado com sistema de

gerência de memória global paginado, a memória é composta pelas páginas de diferentes

programas. Neste cenário, com vários working sets [Denning 1968] de diferentes programas

presentes na memória, é possível encontrar vários padrões de acesso diferentes: por exemplo,

muitas páginas com poucos acessos e algumas páginas com alta quantidade de referências. A

solução neste cenário seria remover as páginas dos working sets da detecção do padrão

seqüencial do LRU-WAR, ou seja, separar as páginas acessadas mais freqüentemente.

 O mecanismo utilizado pelo LRU-WARlock é a reserva de parte da memória para as

páginas com a maior freqüência de acessos. A outra parte da memória mantém o

funcionamento original do LRU-WAR desconsiderando a parte reservada. Foi criado um

parâmetro de controle do algoritmo chamado K. O parâmetro K está relacionado com a

porcentagem de memória que é reservada para as páginas com alta freqüência de acesso, e

pode ser controlado diretamente pelo sistema operacional.

 Com relação à determinação das páginas de maior freqüência, foi escolhida a técnica

de profiling. Essa técnica possibilita capturar informações em tempo de execução da

aplicação, e utilizar esse conhecimento em futuras execuções. Alguns compiladores já

utilizam essa técnica para prover otimização na geração do código executável. O compilador

Intel C++ utiliza a técnica Profile-Guided Optimization (PGO) [Intel 2008], que localiza quais

partes da aplicação são mais freqüentemente executadas, direcionando assim o foco da

otimização.

3.1. Algoritmo LRU-WARlock

O algoritmo LRU-WARlock está dividido logicamente em duas partes: o LRU-WAR sem

modificação e uma nova parte que utiliza a técnica de profiling como auxílio, mais o novo

parâmetro de controle K.

SBC 2008 3

 A parte referente ao LRU-WAR continua monitorando os acessos à memória, entre

duas faltas de páginas consecutivas, utilizando a dimensão máxima da área de trabalho como

fator decisivo de adaptabilidade. Existem três estados possíveis de execução definidos:

tendência LRU, tendência seqüencial e operação seqüencial. Na operação padrão, tendência

LRU, o critério adotado para a substituição de páginas é o LRU, o mesmo se aplica à

tendência seqüencial. Quando são detectados acessos seqüenciais, o algoritmo entra em

operação seqüencial, sendo adotado para a substituição de páginas MRU-n (com o parâmetro

n igual a W+1, onde W é tamanho da Área de Trabalho – Figura 1).

 Região protegida Fila LRU

 L

Região
Reservada Região Seqüencial Região LRU

 W

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
 K=20% Área de trabalho M=25

Figura 1. Divisão lógica do algoritmo LRU-WARlock.

 A nova região da divisão lógica do algoritmo (Figura 1), a Região Reservada, é

composta pelas páginas referenciadas com maior freqüência, e está fora de todo o

processamento descrito na parte do LRU-WAR. O tamanho da Região Reservada é definido

pelo novo parâmetro de controle K, em porcentagem do total de páginas.

 A Figura 2 apresenta o pseudocódigo do algoritmo, onde são destacados os acréscimos

ao código original do LRU-WAR.

1. Se a página referenciada está na memória:
2. Se o bit “page locked” for igual a zero:
3. Se está em Operação Seqüencial:
4. Termina a Operação Seqüencial
5. Aumenta o tempo de carência
6. Aumenta Área de Trabalho
7. Reordena a página na primeira posição da fila.
8. Senão, se não está na memória e não está nas páginas do profile:
9. Se a memória está cheia (memória total – memória reservada):
10. Se estiver em Operação Seqüencial
11. Remove a página na posição (Área de Trabalho + 1) da fila;
12. Senão, se estiver em Tendência Seqüencial:
13. Se a Área de Trabalho for menor que L e excedeu a carência
14. Entrar em Operação Seqüencial
15. Remove a página na posição LRU da fila;
16. Senão (Está em Tendência LRU):
17. Se Área de Trabalho for menor que L
18. Entrar em Tendência seqüencial
19. Diminui Área de Trabalho e ajusta carência.
20. Remove a página na posição LRU da fila;
21. Carrega a página referenciada no início da fila.
22. Senão, se não está na memória e está no profile:

23. Carrega a página referenciada

24. Adiciona o bit “page locked” a página

 Figura 2. Pseudocódigo do algoritmo LRU-WARlock.

SBC 2008 4

 As novas condições adicionadas ao código são referenciadas nas linhas 8 e 22: se a

página acessada não está na memória e não está no profile, então executará o LRU-WAR ou

se a página não está na memória e está no profile, então a página é alocada na Região

Reservada. Quando a página é alocada na Região Reservada, seu bit “page locked” é ativado.

Neste caso a página não será mais removida da memória até que o programa termine sua

execução. No pseudocódigo essa tarefa está nas linhas 23 e 24.

 Este tratamento diferenciado proporcionado pelo LRU-WARlock, classificando as

referências à memória de acordo com o padrão de acesso, permite a melhor adaptação do

LRU-WAR em ambientes multiprogramados. Outra vantagem parte do princípio em que se a

página referenciada estiver na Região Reservada, não é necessário executar nenhum ajuste nos

parâmetros, diferente do LRU-WAR que executa os passos de 3 a 7.

4. Análise do Desempenho

Nesta seção apresentamos a análise efetuada sobre o algoritmo adaptativo de substituição de

páginas LRU-WARlock. Começamos com a descrição dos traces de aplicações e ferramentas

utilizadas para a avaliação e, na seqüência, a análise dos resultados obtidos através dos testes.

4.1. Caracterização dos Traces Utilizados

A avaliação do LRU-WARlock foi efetuada usando três diferentes traces de aplicações, são

eles: multi1, multi2 e multi3 (Tabela 1). Os três traces [Kim et al 2000] foram selecionados

pelo fato de conterem acessos simultâneos de aplicações, simulando um ambiente

multiprogramado. As ferramentas utilizadas nas simulações fazem parte do ambiente

Elephantools [Cassettari and Midorikawa 2004a].

 Passaremos a apresentar a composição dos traces utilizados nos testes, além de uma

breve descrição dos padrões de acesso e comportamento com algoritmos de substituição da

literatura.

Tabela 1. Descrição dos traces utilizados.

Trace Descrição Origem
Total de

páginas

multi1 Execução simultânea das aplicações cscope e cpp. LIRS 2606

multi2 Execução simultânea das aplicações cscope, cpp e postgres. LIRS 5684

multi3
Execução simultânea das aplicações cpp, gnuplot, glimpse e
postgres.

LIRS 7454

O trace multi1 é composto pelas aplicações cscope e cpp. O cscope é uma ferramenta

interativa de verificação de programa fonte escrita em linguagem C. Seu padrão de acesso à

memória faz referências a looping com forte localidade temporal e outras referências de

padrão diverso (Figura 3.a). O cpp é o pré-processador do GNU C, onde durante sua execução

pode ser observado blocos de referências seqüenciais à memória em conjunto com outras

referências. O trace multi1 intercala acessos dessas duas aplicações, uma com referências a

SBC 2008 5

looping e a outra com acesso seqüencial. Este padrão de acesso prejudica muito o desempenho

do algoritmo LRU [Jiang and Zhang 2002], isso acontece até que o espaço de memória

disponível seja maior ou igual ao tamanho total das duas aplicações (Figura 3.b). Os

programas individuais apresentam um padrão de acessos adequado ao LRU-WAR, porém

como estão intercalados pela multiprogramação, diminuem consideravelmente o desempenho

do algoritmo.

MULTi1

2600

3600

4600

5600

6600

7600

8600

9600

10600

20
0

300 40
0

50
0

600 700 800 900
100

0
110

0
120

0
130

0
140

0
15

00
16

00
17

00
18

00
19

00
200

0

Tamanho da memória

N
ú

m
e

ro
 d

e
 f

a
lt

a
s

 d
e

 p
á

g
in

a

Ótimo

LRU

LRU-WAR

CAR

EELRU

 (a) Padrão de acessos à memória. (b) Desempenho de alguns algoritmos.

Figura 3. Características do trace multi1.

O trace multi2 tem a mesma composição do trace multi1 com a adição do programa postgres.

O postgres é um sistema de banco de dados relacional da Universidade da Califórnia.

Apresenta um padrão de acessos seqüencial e looping com períodos não constantes. A Figura

4.a mostra o padrão de acessos do trace multi2. Contudo, ao adicionar o programa postgres, e

comparar o LRU-WAR com o LRU (Figura 4.b) vemos que a melhoria no desempenho não

consegue ultrapassar 13% com 2400 de tamanho da memória, contra 39% de melhoria com

relação ao LRU no trace multi1 para memórias de tamanho 1600 (Figura 3.b). Esta é uma

conseqüência visível, e o motivo está diretamente relacionado com o aumento do nível de

multiprogramação, que deixa mais difícil a detecção de padrões seqüenciais pelo algoritmo

LRU-WAR.

MULTi2

5600

7600

9600

11600

13600

15600

17600

19600

21600

200 400 60
0

80
0

100
0

12
00

14
00

160
0

180
0

200
0

220
0

240
0

26
00

28
00

30
00

320
0

34
00

36
00

36
00

40
00

Tamanho da memória

N
ú

m
e

ro
 d

e
 f

a
lt

a
s

 d
e

 p
á

g
in

a

Ótimo

LRU

LRU-WAR

CAR

EELRU

 (a) Padrão de acessos à memória. (b) Desempenho de alguns algoritmos.

Figura 4. Características do trace multi2.

O terceiro trace escolhido, o multi3, tem a configuração um pouco diferente dos dois

primeiros. É formado pelo cpp, prostgres, glimpse e gnuplot. O cpp está contido nos dois

SBC 2008 6

primeiros traces e o prostgres no multi2. O glimpse é um utilitário usado na busca de

informações em textos. Seu padrão de referência a memória é bem diverso. Já o gnuplot tem

um padrão de acessos seqüencial bem definido. O gnuplot é um programa interativo de

plotagem gráfica. É possível observar (Figura 5.b) que com o aumento da quantidade de

programas contidos no multi3, a diferença de desempenho entre o algoritmo LRU e LRU-

WAR diminui. Neste caso a diferença chega apenas a 8% com tamanho de memória de 3200

páginas. Este resultado é também devido ao aumento da multiprogramação, que cria

dificuldades de detecção de padrões seqüenciais pelo algoritmo LRU-WAR.

MULTi3

7000

9000

11000

13000

15000

17000

19000

21000

23000

25000

20
0

400 600 800
10

00
120

0
140

0
16

00
18

00
20

00
22

00
240

0
260

0
280

0
300

0
320

0
34

00
36

00
380

0
400

0
420

0
440

0
46

00
48

00
500

0

Tamanho da memória

N
ú

m
e

ro
 d

e
 f

a
lt

a
s

 d
e

 p
á

g
in

a

Ótimo

LRU

LRU-WAR

CAR

EELRU

 (a) Padrão de acessos à memória. (b) Desempenho de alguns algoritmos.

Figura 5. Características do trace multi3.

4.2. Resultados Obtidos e Análises

Apresentamos nesta seção, cumprindo os objetivos definidos neste trabalho, as análises e os

resultados do estudo do desempenho do algoritmo LRU-WARlock, a adaptação do LRU-

WAR para sistemas com política de memória global.

Multi1

Em um programa com padrões de acessos seqüenciais, o algoritmo LRU-WAR atinge um

excelente desempenho. Trabalhos anteriores demonstraram este comportamento em sistemas

de gerência de memória local [Cassettari and Midorikawa 2004], e que também ainda é

possível melhorá-lo ajustando seus parâmetros C e L dinamicamente [Midorikawa, Piantola

and Cassettari 2007]. Como o trace multi1 apresenta acessos de duas aplicações intercaladas

em um sistema de gerência de memória global, o LRU-WAR apresentou desempenho não

muito bom, mesmo com os dois programas que compõem o multi1 tendo acessos seqüenciais

(Figura 6.b).

 Todos os testes de desempenho foram realizados variando o parâmetro K de 10 a 90%,

mas apresentamos aqui somente os resultados para 20, 50 e 90%. O trace multi1 possui

menos páginas e menos referências à memória em comparação com os traces multi2 e multi3.

Isto pelo fato de ter somente dois programas inclusos no trace, porém isso não descaracteriza

sua importância.

 No multi1, a análise do perfil de freqüência de acessos às páginas mostra que somente

SBC 2008 7

7,5% das páginas são responsáveis por 50% dos acessos à memória (Figura 6.a). Quando o

parâmetro K=20, o LRU-WARlock supera o LRU-WAR em todos os tamanhos de memória,

com ganho médio de quase 16%. O pico de desempenho foi obtido para uma memória de

1400 páginas, com um ganho de 39,3% em relação ao LRU-WAR.

 Com o parâmetro de controle K=50, a Região Reservada ocupa 50% do total da

memória. Uma característica interessante do LRU-WARlock é em relação às memórias de

tamanho pequeno, pois neste caso é garantido que metade dos acessos são cobertos com

apenas 400 páginas de memória, para um trace como o multil1, com 2606 páginas diferentes.

O aumento de desempenho foi de, na média e de pico, respectivamente, 19% e 42% em

relação ao LRU-WAR.

MULTi1- Acessos por Páginas

0

10

20

30

40

50

60

70

80

90

100

0 8 15 23 31 38 46 54 61 69 77 84 92
10

0

Número de Páginas acumuladas %

N
ú

m
e

ro
s

 d
e

 a
c

e
s

s
o

s

a
c

u
m

u
la

d
o

s
 %

MULTi1

2600

3600

4600

5600

6600

7600

8600

9600

10600

20
0

30
0

400 50
0

60
0

70
0

800 900
100

0
11

00
12

00
130

0
14

00
15

00
16

00
17

00
180

0
19

00
20

00

Tamanho da memória

N
ú

m
e

ro
 d

e
 f

a
lt

a
s

 d
e

 p
á

g
in

a

Ótimo

LRU-WAR

LRU-WARlock 20%

LRU-WARlock 50%

LRU-WARlock 90%

(a) Páginas versus Acessos (b) Variação do parâmetro K.

Figura 6. Gráficos do trace multi1.

 Quando a Região Reservada tem tamanho 90% do total da memória, o maior

desempenho continua sendo para o tamanho de memória igual a 1400, que é de quase 50%

melhor que a desempenho do algoritmo LRU-WAR. O ganho em desempenho médio também

é alto e quase chega a 26% (Figura 6.b)

 Um fato importante que foi observado na análise dos traces foi com relação ao tempo

em que o LRU-WARlock fica no modo de operação seqüencial. Em todos os casos estudados,

o período em que o algoritmo trabalha com deteção de acessos seqüenciais aumentou. Para o

multi1, o algoritmo LRU-WAR ficou em torno de 11% do tempo em operação seqüencial. Já

o algoritmo LRU-WARlock para K=50, este tempo aumentou 5 vezes, chegando a 56%. Com

K=90, o algoritmo LRU-WARlock fica em média 86% em operação seqüencial. Este

resultado mostra que com essa estratégia fica mais fácil detectar acessos seqüenciais presentes

nos acessos à memória, aumentando sua eficiência.

Multi2

A maior característica do trace multi2 para a análise surge do fato de ser semelhante ao

multi1. A diferença entre eles é a adição do programa postgres, desta forma aumentando o

nível de multiprogramação. O desempenho do LRU-WAR diminui, pois se torna mais difícil

ainda distinguir padrões de acessos com a inserção de novas referências intercaladas (Figura

4.a). A estratégia do LRU-WARlock também garante bom desempenho para este trace

SBC 2008 8

(Figura 7.b). Deste modo, algoritmos que utilizam técnicas para separar padrões podem obter

bons resultados.

 A análise do perfil de freqüência de acessos às páginas mostra que metade das 26311

referências é feita por apenas 348 páginas de um total de 5684 páginas, ou seja, somente 6%

das páginas são responsáveis por 50% dos acessos a memória (Figura 7.a).

 Quando K=20, o LRU-WARlock supera o LRU-WAR em todos os tamanhos de

memória, com uma média de ganho de 11%, desconsiderando tamanhos de memória maiores

que 3200, quando então as curvas de faltas de página se convergem para todos os algoritmos

analisados (Figura 7.b). O maior ganho de desempenho foi obtido para uma memória de 2000

páginas, com um ganho de 27% em relação ao LRU-WAR e quase 31% em relação ao LRU

com memória de 2200 páginas.

 Para K=50, trabalhando com metade da memória reservada para páginas de acessos

freqüentes, o LRU-WARlock apresenta um comportamento interessante. A curva representada

no gráfico começa a se alinhar com a curva do algoritmo Ótimo, diminuindo ainda mais sua

identidade com a curva do LRU. Com essa nova característica, o ganho médio aumenta

consideravelmente para 18%, obtendo uma tolerância maior para todos os tamanhos de

memória. Um exemplo claro desse comportamento é o ganho obtido para memória de 1400

páginas, para K=20 foi de 7%, e para K=50 com mesmo tamanho de memória o ganho é

triplicado, 22% em relação ao LRU-WAR. O ápice do desempenho se encontra na simulação

com memória com tamanho de 2000 páginas, com ganho relativo ao LRU-WAR de 33%,

comparado com o valor de 27% quando K=20.

MULTi2- Acessos por Páginas

0

10

20

30

40

50

60

70

80

90

100

0 9 18 26 35 44 53 62 70 79 88 97

Número de Páginas acumuladas %

N
ú

m
e

ro
s

 d
e

 a
c

e
s

s
o

s

a
c

u
m

u
la

d
o

s
 %

MULTi2

5600

7600

9600

11600

13600

15600

17600

19600

21600

200 40
0

60
0

800
10

00
12

00
140

0
16

00
18

00
200

0
22

00
24

00
260

0
28

00
30

00
32

00
340

0
36

00
36

00
400

0

Tamanho da memória

N
ú

m
e

ro
 d

e
 f

a
lt

a
s

 d
e

 p
á

g
in

a

Ótimo

LRU-WAR

LRU-WARlock 20%

LRU-WARlock 50%

LRU-WARlock 90%

(a) Páginas versus Acessos (b) Variação do parâmetro K.

Figura 7. Gráficos do trace multi2.

 Quando K=90, o LRU-WARlock superou o LRU-WAR em todos os tamanhos de

memória com uma vantagem média muito superior, de quase 30%. Um fato que deve ser bem

observado, relativo à aproximação do algoritmo testado ao Ótimo, é quando a memória tem

tamanho de 400 páginas. Por muito pouco o LRU-WARlock não se iguala ao desempenho

teórico do algoritmo Ótimo, com uma diferença de apenas 3,35% do total de faltas. O maior

desempenho continua sendo com tamanho de memória de 2000 páginas, com quase 45%

SBC 2008 9

melhor que o LRU-WAR (Figura 7.b). Estes resultados mostram que o LRU-WARlock é bem

adequado para sistemas com política de memória global.

Multi3

Dos traces usados, aquele que tem o maior nível de multiprogramação é o multi3. São quatro

programas com diversos padrões de acessos intercalados entre eles. Neste caso o algoritmo

LRU-WAR toma decisões equivocadas entrando muitas vezes em operação seqüencial, e

assim apresenta para alguns tamanhos de memória desempenho pior que o LRU. Como não

existe uma uniformidade da localidade temporal, páginas que serão acessadas em um futuro

próximo são descartadas prematuramente. Para esta seqüência de referências o LRU-

WARlock também supera o LRU-WAR (Figura 8.b).

 A variação do parâmetro K mostrou que quanto maior a área destinada às páginas mais

freqüentes, melhor é a detecção das páginas seqüências pelo algoritmo, criando assim uma

divisão de padrões. Quando o K=20 a média de ganho sobre o algoritmo LRU-WAR é de

10,5%, apenas 0,5 ponto percentual a menos comparado com o multi2. O pico de desempenho

encontra-se na simulação com o tamanho de memória de 2800 páginas, com desempenho

quase 22% melhor em comparação com o LRU-WAR.

 Para K=50 o aumento no desempenho é linear em relação a K=20. Média de 17% de

ganho em relação ao LRU-WAR e pico de quase 30% com o tamanho de memória 2600

páginas. A curva perde a característica herdada pelo LRU e se alinha à curva do algoritmo

Ótimo.

 Quando K=90 a média de ganho de desempenho é mais constante entre os tamanhos

das memórias, com média de 26% comparado ao LRU-WAR. O maior desempenho obtido é

sobre o tamanho de memória 2600 páginas, com 37% de ganho em relação ao LRU-WAR.

Um ponto interessante da análise tem relação ao tamanho de memória de 4000 páginas, que

teve o maior ganho em desempenho relativo ao parâmetro K=20, foi multiplicado por 3,85

vezes (ganho variando de 6% para 23%).

MULTi3- Acessos por Páginas

0

10

20

30

40

50

60

70

80

90

100

0 7 13 20 27 34 40 47 54 60 67 74 81

Número de Páginas acumuladas %

N
ú

m
e

ro
s

 d
e

 a
c

e
s

s
o

s

a
c

u
m

u
la

d
o

s
 %

MULTi3

7000

9000

11000

13000

15000

17000

19000

21000

23000

25000

200 40
0

600 80
0

10
00

120
0

140
0

16
00

180
0

20
00

22
00

240
0

26
00

28
00

300
0

32
00

340
0

360
0

38
00

400
0

42
00

44
00

460
0

48
00

500
0

Tamanho da memória

N
ú

m
e

ro
 d

e
 f

a
lt

a
s

 d
e

 p
á

g
in

a

Ótimo

LRU-WAR

LRU-WARlock 20%

LRU-WARlock 50%

LRU-WARlock 90%

(a) Páginas versus Acessos (b) Variação do parâmetro K.

Figura 8. Gráficos do trace multi3.

 Este comportamento pode ser explicado pelo fato de que as páginas mais acessadas

dos traces, pertencem ao working set de cada programa. Essas páginas não são muitas, mas

SBC 2008 10

tem uma freqüência de acesso muito grande. No trace multi3, 50% das 30241 referências são

para somente 617 páginas das 7454 páginas que compõem o trace, ou seja, pouco mais de 8%

do número total de páginas. Desta forma, a área não reservada da memória, que irá trabalhar

com o algoritmo LRU-WAR, deve conter muitas páginas que são acessadas com pouca

freqüência, facilitando assim, a detecção de padrões seqüenciais.

5. Conclusões e Trabalhos Futuros

Este trabalho apresentou um estudo sobre a adequação do algoritmo adaptativo LRU-WAR

para políticas de gerência de memória global. Este estudo foi conduzido sobre o algoritmo

LRU-WAR modificado, que foi chamado LRU-WARlock, o qual aplicou a técnica de

profiling para determinação das páginas com maior freqüência de acessos e a inclusão de um

novo parâmetro de controle K. Foram utilizados três traces com características de

multiprogramação para os estudos de desempenho com políticas de gerência de memória

global.

 A contribuição mais importante deste artigo é mostrar que, apesar dos algoritmos

adaptativos terem sido projetados para sistemas que utilizem políticas de gerência de memória

locais, é possível ajustá-los para apresentarem também bom desempenho em sistemas de

gerência de memória global. As análises revelaram que é imprescindível tratar o aspecto da

freqüência nos acessos à memória, quando o sistema utilizar uma política de gerência de

memória global. A prova desta tese está no fato observado em que, nos três traces estudados,

menos de 9% do número total de páginas é responsável por 50% das referências á memória.

 Para os três traces estudados, o algoritmo LRU-WAR entra em operação seqüencial,

em média, em 13% do tempo. E o algoritmo LRU-WARlock fica em operação seqüencial em

41% para K=20 e chega a 89% para K=90. Combinado com o bom desempenho, pode-se

afirmar que o LRU-WARlock passou a acertar mais as detecções de padrões seqüenciais,

proporcionando uma melhoria de até 44% sobre o LRU-WAR.

 Os resultados apontam que o LRU-WAR adequado para política de gerência global

(LRU-WARlock) é uma boa alternativa de algoritmo adaptativo de substituição de páginas, e

pode ser ajustado dinamicamente pelos seus parâmetros de acordo com a necessidade do

sistema de gerência de memória. Além disso, o overhead de execução do algoritmo é menor

porque o processamento responsável pela detecção de padrões do LRU-WAR é executado

somente para aquelas páginas que não fazem parte da Região Reservada.

 Alguns estudos complementares podem ser desenvolvidos para dar continuidade a este

trabalho. Uma sugestão a considerar é incluir um mecanismo no LRU-WAR que trate a

freqüência de acessos de forma dinâmica sem profiling e que não inviabilize sua

implementação. Uma segunda sugestão é repetir o estudo realizado neste artigo para outros

algoritmos adaptativos de substituição de páginas, de forma que se possa descobrir um padrão

geral de adequação de algoritmos para políticas de gerência global da memória.

SBC 2008 11

 Além da freqüência de acessos, outras informações poderiam ser disponibilizadas ao

algoritmo de substituição para auxiliar na gerência de memória, como por exemplo, o padrão

de acessos a memória, composição do working set, última referência de cada página. Estudos

sobre qual informação é mais relevante estão sendo conduzidos.

Referências

Bansal, S. and Modha, D. S. (2004) “CAR: Clock with Adaptive Replacement”, In Proc. of the
USENIX Conference on File and Storage Technologies (FAST’04), San Francisco, pp.187-200.

Cassettari, H. H. (2004). “Análise da Localidade de Programas e Desenvolvimento de Algoritmos

Adaptativos para Substituição de Páginas.” Dissertação de Mestrado. Escola Politécnica da
Universidade de São Paulo, 2004.

Cassettari, H.H. and Midorikawa, E.T. (2004a) “Caracterização de Cargas de Trabalho em Estudos

sobre Gerência de Memória Virtual”, In Anais do III Workshop em Desempenho de Sistemas
Computacionais e de Comunicação (WPerformance 2004), Salvador, BA.

Cassettari, H.H. and Midorikawa, E.T. (2004b) “Algoritmo Adaptativo de Substituição de Páginas

LRU-WAR: Exploração do Modelo LRU com Detecção de Acessos Seqüenciais”. In: Anais do I
Workshop de Sistemas Operacionais (WSO 2004), Salvador, BA.

Denning, P.J. (1968) “The working set model for program behavior”. In: Communications of the
ACM 11, 5, pp. 323-333.

Glass, G. and Cao, P. (1997) “Adaptive Page Replacement Based on Memory Reference Behavior”, In
Proc. of the ACM International Conference on Measurement and Modeling of Computer Systems
(SIGMETRICS’97), Seattle, pp.115-126.

Intel. (2008). “Profile-Guided Optimizations Overview”. Disponível em
http://www.intel.com/software/products/compilers/docs/flin/main_for/mergedprojects/optaps_for/c
ommon/optaps_pgo_ovw.htm. Acesso em 16/03/2008.

Jiang, S. and Zhang, X. (2002) “LIRS: An Efficient Low Inter-Reference Recency Set Replacement

Policy to Improve Buffer Cache Performance”, In Proc. of the ACM International Conference on
Measurement and Modeling of Computer Systems (SIGMETRICS’02), Marina Del Rey, pp.31-42.

Kim, J.M. et al. “A low-overhead high-performance unified buffer management scheme that exploit

sequential and looping references”, In: Symposium on Operating System Design and
Implementation, 4., San Diego, 2000. OSDI' 2000: Proceedings. San Diego: USENIX, 2000
pp.119-134.

Lee, D. et al. (2001) “LRFU: a spectrum of policies that subsumes the Least Recently Used and Least

Frequently Used policies”. IEEE Transactions on Computers, vol.50, n.12, p.1352-1361.

Megiddo, N. and Modha, D. S. (2003) “ARC: A Self-Tuning, Low Overhead Replacement Cache”, In
Proc. of the USENIX Conference on File and Storage Technologies (FAST’03), San Francisco,
pp.115-130.

Midorikawa, E.T., Piantola, R.L., Cassettari, H.H. (2007) “Influência dos Parâmetros de Controle no

Desempenho de Algoritmos Adaptativos de Substituição de Páginas”. In: Anais do IV Workshop
de Sistemas Operacionais (WSO 2007), Rio de Janeiro, RJ.

Sabeghil, M. and Yaghmaee (2006), M. H. “Using fuzzy logic to improve cache replacement

decisions”. IJCSNS International Journal of Computer Science and Network Security, Seoul, v.6,
n.3A, pages182-188.

Smaragdakis, Y., Kaplan, S., and Wilson, P. (1999) “EELRU: Simple and Effective Adaptive Page

Replacement”, In Proc. of the ACM International Conference on Measurement and Modeling of
Computer Systems (SIGMETRICS’99), Atlanta, pp.122-133.

SBC 2008 12

