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Abstract. Even with recent advances in Computer Architecture, the memory wall problem 

has not been solved yet. In order to lessen the performance difference between processor 

and memory, it is essential to create new memory management strategies, which are 

stronger in performance. Operating Systems generally use global policies for memory 

management. The adaptive strategies have as principle to adapt their behaviour based on 

programs memory access patterns. Its use in multiprogrammed environment has not been 

properly examined in previous studies. This paper intends to present a strategy to adjust 

LRU-WAR in order to obtain a good performance in a global memory management system. 

The results show that the same strategy can be used in algorithms following the same 

adaptive principle that LRU-WAR does. 

Resumo. Mesmo com os avanços na área de arquitetura de computadores, ainda não foi 

resolvida a questão sobre o desempenho das memórias em relação aos processadores. 

Para atenuar esta diferença é imprescindível criar novas estratégias de gerência de 

memória, que sejam mais robustas em desempenho. Os Sistemas Operacionais geralmente 

utilizam políticas globais para a gerência de memória. As estratégias adaptativas têm 

como princípio adaptar seu funcionamento com base no padrão de acessos à memória dos 

programas. Sua utilização em ambiente multiprogramado ainda não foi adequadamente 

estudada em trabalhos anteriores. Este artigo procura mostrar uma estratégia para ajustar 

o LRU-WAR com a finalidade de obter bom desempenho em um sistema de gerência de 

memória global. Os resultados mostram que a mesma estratégia pode ser adequada em 

algoritmos que seguem o mesmo princípio adaptativo que o LRU-WAR. 

1. Introdução 

“Quanto mais processamos dados, mais dados surgem para serem processados”, está é uma 

das versões da dita Lei de Parkinson. O aumento da carga computacional tem motivado a 

evolução dos computadores. No contexto da computação moderna a centralização de recursos 

se tornou evidente com o atual ressurgimento das tecnologias de virtualização, como o 

VMware ESX Server e o sistema Viridian da Microsoft, e com a recente difusão de 

processadores  multi-cores. A necessidade de uma gerência eficiente de recursos aumenta 

consideravelmente, em particular a gerência eficiente da memória principal. 

 Várias equipes de pesquisadores têm desenvolvido trabalhos no âmbito de algoritmos 

para gerência de memória virtual em sistemas operacionais. Há propostas recentes na 
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literatura sobre algoritmos adaptativos de substituição de páginas, como SEQ [Glass and Cao 

1997], EELRU [Smaragdakis et al 1999], LIRS [Jiang and Zhang 2002], ARC [Megiddo and 

Modha 2003], CAR [Bansal and Modha 2004] e LRU-WAR [Cassettari and Midorikawa 

2004b]. Contudo estes algoritmos não foram desenvolvidos visando seu uso para ambientes 

multiprogramados com o controle das páginas de várias aplicações simultaneamente. 

 O objetivo principal deste artigo é apresentar uma forma de ajustar o algoritmo 

adaptativo de substituição de páginas LRU-WAR para uma política de sistema de gerência de 

memória global, através da utilização da técnica profiling e da adição de um parâmetro de 

controle, que levou à criação de um novo algoritmo chamado LRU-WARlock. 

 Este artigo está organizado da seguinte forma. A seção 2 discute o uso da 

adaptabilidade em políticas globais, descrevendo o desempenho dos algoritmos adaptativos 

“tradicionais” nesses sistemas de gerência de memória. A seção 3 descreve a proposta de 

adaptação do LRU-WAR. A avaliação de desempenho é realizada sobre o algoritmo LRU-

WARlock é apresentada na seção 4. A seção 5 finaliza o artigo e traz as principais conclusões, 

indicando alguns trabalhos futuros. 

2. O Uso da Adaptabilidade em Políticas Globais 

Toda política de substituição de páginas em um sistema de paginação por demanda deve 

escolher uma vítima para dar lugar a uma nova página referenciada, quando não há mais 

espaço disponível na memória. Caso a página escolhida seja sempre uma página do próprio 

processo que sofreu a falta de página, a política utilizada pelo sistema de memória é dita local. 

Porém, é possível que o sistema de gerência de memória trabalhe de uma forma global. Um 

algoritmo de substituição global atua com todas as páginas da memória, e escolhe a vítima 

independente do processo que sofreu a falta de página. 

 Existem algumas vantagens em utilizar políticas globais em sistemas de gerência de 

memória. Alguns processos podem precisar de mais memória que outros, neste caso a política 

global pode dimensionar corretamente a quantidade de memória para cada processo. Os 

processos que estão bloqueados, esperando algum serviço, mantêm páginas na memória 

consumindo espaço que poderia ser utilizado por páginas de outros processos. Em um sistema 

com política global isto é minimizado.  

 Os algoritmos adaptativos de substituição tentam adaptar seu comportamento de forma 

dinâmica conforme o padrão de referências à memória. Alguns dos algoritmos adaptativos 

mais conhecidos na literatura são: SEQ, EELRU, LIRS, ARC, CAR e LRFU [Lee at al 2001]. 

Algoritmos adaptativos recentes utilizam técnicas de Inteligência Artificial para ajudá-los na 

adaptação, como por exemplo, o FPR [Sabeghil and Yaghmaee 2006]. 

 A maioria dos algoritmos adaptativos “tradicionais” é inadequada para um sistema de 

memória com política global. Os projetos desses algoritmos visam analisar um padrão de 

acesso de uma única aplicação. Quando os acessos são contabilizados de forma global, ou 

seja, as referências à memória são coletadas de múltiplas aplicações, estes algoritmos se 
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comportam de maneira ineficiente. Muitos desses algoritmos, incluindo o LRU-WAR, 

investem maior foco de suas análises na recência dos acessos e não na freqüência. A análise 

da freqüência de acessos é um fator importante para uma política global e é apresentada mais 

detalhadamente na próxima seção. 

3. Proposta de Adaptação do LRU-WAR 

O principal objetivo da adaptação do algoritmo LRU-WAR é fazer com que ele consiga obter 

bom desempenho em ambientes com política de gerência de memória global, onde se torna 

mais difícil a detecção de padrões de acessos.  Para conquistar esse objetivo foi criado o 

algoritmo LRU-WARlock, que complementa o LRU-WAR, sem modificar sua idéia original 

da exploração dos acessos seqüências.  

 O princípio do funcionamento de LRU-WARlock surgiu da idéia de separar os acessos 

diferentes do padrão de acesso seqüencial e tratá-los de outra maneira. A questão crucial foi 

descobrir o que mais atrapalhava a detecção de referências seqüenciais. A resposta estava no 

bom funcionamento geral do LRU. Em um ambiente multiprogramado com sistema de 

gerência de memória global paginado, a memória é composta pelas páginas de diferentes 

programas. Neste cenário, com vários working sets [Denning 1968] de diferentes programas 

presentes na memória, é possível encontrar vários padrões de acesso diferentes: por exemplo, 

muitas páginas com poucos acessos e algumas páginas com alta quantidade de referências. A 

solução neste cenário seria remover as páginas dos working sets da detecção do padrão 

seqüencial do LRU-WAR, ou seja, separar as páginas acessadas mais freqüentemente. 

 O mecanismo utilizado pelo LRU-WARlock é a reserva de parte da memória para as 

páginas com a maior freqüência de acessos. A outra parte da memória mantém o 

funcionamento original do LRU-WAR desconsiderando a parte reservada. Foi criado um 

parâmetro de controle do algoritmo chamado K. O parâmetro K está relacionado com a 

porcentagem de memória que é reservada para as páginas com alta freqüência de acesso, e 

pode ser controlado diretamente pelo sistema operacional.  

 Com relação à determinação das páginas de maior freqüência, foi escolhida a técnica 

de profiling. Essa técnica possibilita capturar informações em tempo de execução da 

aplicação, e utilizar esse conhecimento em futuras execuções. Alguns compiladores já 

utilizam essa técnica para prover otimização na geração do código executável. O compilador 

Intel C++ utiliza a técnica Profile-Guided Optimization (PGO) [Intel 2008], que localiza quais 

partes da aplicação são mais freqüentemente executadas, direcionando assim o foco da 

otimização. 

3.1. Algoritmo LRU-WARlock 

O algoritmo LRU-WARlock está dividido logicamente em duas partes: o LRU-WAR sem 

modificação e uma nova parte que utiliza a técnica de profiling como auxílio, mais o novo 

parâmetro de controle K.  

SBC 2008 3



 

 

 

 A parte referente ao LRU-WAR continua monitorando os acessos à memória, entre 

duas faltas de páginas consecutivas, utilizando a dimensão máxima da área de trabalho como 

fator decisivo de adaptabilidade. Existem três estados possíveis de execução definidos: 

tendência LRU, tendência seqüencial e operação seqüencial. Na operação padrão, tendência 

LRU, o critério adotado para a substituição de páginas é o LRU, o mesmo se aplica à 

tendência seqüencial. Quando são detectados acessos seqüenciais, o algoritmo entra em 

operação seqüencial, sendo adotado para a substituição de páginas MRU-n (com o parâmetro 

n igual a W+1, onde W é tamanho da Área de Trabalho – Figura 1). 

  
       Região protegida     Fila LRU  

               L           
  

 

Região 
Reservada Região Seqüencial Região LRU 

 
             W              

      1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20  
 K=20% Área de trabalho          M=25  

                           

Figura 1. Divisão lógica do algoritmo LRU-WARlock. 

 A nova região da divisão lógica do algoritmo (Figura 1), a Região Reservada, é 

composta pelas páginas referenciadas com maior freqüência, e está fora de todo o 

processamento descrito na parte do LRU-WAR. O tamanho da Região Reservada é definido 

pelo novo parâmetro de controle K, em porcentagem do total de páginas. 

 A Figura 2 apresenta o pseudocódigo do algoritmo, onde são destacados os acréscimos 

ao código original do LRU-WAR. 

 
1. Se a página referenciada está na memória: 
2.  Se o bit “page locked” for igual a zero:  
3.   Se está em Operação Seqüencial: 
4.   Termina a Operação Seqüencial 
5.   Aumenta o tempo de carência 
6.   Aumenta Área de Trabalho 
7.   Reordena a página na primeira posição da fila. 
8. Senão, se não está na memória e não está nas páginas do profile: 
9.  Se a memória está cheia (memória total – memória reservada): 
10.   Se estiver em Operação Seqüencial 
11.    Remove a página na posição (Área de Trabalho + 1) da fila; 
12.   Senão, se estiver em Tendência Seqüencial: 
13.   Se a Área de Trabalho for menor que L e excedeu a carência 
14.    Entrar em Operação Seqüencial 
15.    Remove a página na posição LRU da fila; 
16.   Senão (Está em Tendência LRU):  
17.   Se Área de Trabalho for menor que L 
18.    Entrar em Tendência seqüencial 
19.    Diminui Área de Trabalho e ajusta carência. 
20.    Remove a página na posição LRU da fila; 
21.  Carrega a página referenciada no início da fila. 
22. Senão, se não está na memória e está no profile: 

23. Carrega a página referenciada 

24. Adiciona o bit “page locked” a página 

  Figura 2. Pseudocódigo do algoritmo LRU-WARlock. 
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 As novas condições adicionadas ao código são referenciadas nas linhas 8 e 22: se a 

página acessada não está na memória e não está no profile, então executará o LRU-WAR ou 

se a página não está na memória e está no profile, então a página é alocada na Região 

Reservada. Quando a página é alocada na Região Reservada, seu bit “page locked” é ativado. 

Neste caso a página não será mais removida da memória até que o programa termine sua 

execução. No pseudocódigo essa tarefa está nas linhas 23 e 24.  

 Este tratamento diferenciado proporcionado pelo LRU-WARlock, classificando as 

referências à memória de acordo com o padrão de acesso, permite a melhor adaptação do 

LRU-WAR em ambientes multiprogramados. Outra vantagem parte do princípio em que se a 

página referenciada estiver na Região Reservada, não é necessário executar nenhum ajuste nos 

parâmetros, diferente do LRU-WAR que executa os passos de 3 a 7. 

4. Análise do Desempenho 

Nesta seção apresentamos a análise efetuada sobre o algoritmo adaptativo de substituição de 

páginas LRU-WARlock. Começamos com a descrição dos traces de aplicações e ferramentas 

utilizadas para a avaliação e, na seqüência, a análise dos resultados obtidos através dos testes. 

4.1. Caracterização dos Traces Utilizados 

A avaliação do LRU-WARlock foi efetuada usando três diferentes traces de aplicações, são 

eles: multi1, multi2 e multi3 (Tabela 1). Os três traces [Kim et al 2000] foram selecionados 

pelo fato de conterem acessos simultâneos de aplicações, simulando um ambiente 

multiprogramado. As ferramentas utilizadas nas simulações fazem parte do ambiente 

Elephantools [Cassettari and Midorikawa 2004a]. 

 Passaremos a apresentar a composição dos traces utilizados nos testes, além de uma 

breve descrição dos padrões de acesso e comportamento com algoritmos de substituição da 

literatura. 

Tabela 1. Descrição dos traces utilizados. 

Trace Descrição Origem 
Total de 

páginas 

multi1 Execução simultânea das aplicações cscope e cpp. LIRS 2606 

multi2 Execução simultânea das aplicações cscope, cpp e postgres. LIRS 5684 

multi3 
Execução simultânea das aplicações cpp, gnuplot, glimpse e 
postgres. 

LIRS 7454 

 

O trace multi1 é composto pelas aplicações cscope e cpp. O cscope é uma ferramenta 

interativa de verificação de programa fonte escrita em linguagem C. Seu padrão de acesso à 

memória faz referências a looping com forte localidade temporal e outras referências de 

padrão diverso (Figura 3.a). O cpp é o pré-processador do GNU C, onde durante sua execução 

pode ser observado blocos de referências seqüenciais à memória em conjunto com outras 

referências. O trace multi1 intercala acessos dessas duas aplicações, uma com referências a 
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looping e a outra com acesso seqüencial. Este padrão de acesso prejudica muito o desempenho 

do algoritmo LRU [Jiang and Zhang 2002], isso acontece até que o espaço de memória 

disponível seja maior ou igual ao tamanho total das duas aplicações (Figura 3.b). Os 

programas individuais apresentam um padrão de acessos adequado ao LRU-WAR, porém 

como estão intercalados pela multiprogramação, diminuem consideravelmente o desempenho 

do algoritmo.  
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     (a) Padrão de acessos à memória.                       (b) Desempenho de alguns algoritmos.             

Figura 3. Características do trace multi1. 

O trace multi2 tem a mesma composição do trace multi1 com a adição do programa postgres. 

O postgres é um sistema de banco de dados relacional da Universidade da Califórnia. 

Apresenta um padrão de acessos seqüencial e looping com períodos não constantes. A Figura 

4.a mostra o padrão de acessos do trace multi2. Contudo, ao adicionar o programa postgres, e 

comparar o LRU-WAR com o LRU (Figura 4.b) vemos que a melhoria no desempenho não 

consegue ultrapassar 13% com 2400 de tamanho da memória, contra 39% de melhoria com 

relação ao LRU no trace multi1 para memórias de tamanho 1600 (Figura 3.b). Esta é uma 

conseqüência visível, e o motivo está diretamente relacionado com o aumento do nível de 

multiprogramação, que deixa mais difícil a detecção de padrões seqüenciais pelo algoritmo 

LRU-WAR. 
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     (a) Padrão de acessos à memória.                      (b) Desempenho de alguns algoritmos.  

Figura 4. Características do trace multi2. 

O terceiro trace escolhido, o multi3, tem a configuração um pouco diferente dos dois 

primeiros. É formado pelo cpp, prostgres, glimpse e gnuplot. O cpp está contido nos dois 
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primeiros traces e o prostgres no multi2.  O glimpse é um utilitário usado na busca de 

informações em textos. Seu padrão de referência a memória é bem diverso. Já o gnuplot tem 

um padrão de acessos seqüencial bem definido. O gnuplot é um programa interativo de 

plotagem gráfica. É possível observar (Figura 5.b) que com o aumento da quantidade de 

programas contidos no multi3, a diferença de desempenho entre o algoritmo LRU e LRU-

WAR diminui. Neste caso a diferença chega apenas a 8% com tamanho de memória de 3200 

páginas. Este resultado é também devido ao aumento da multiprogramação, que cria 

dificuldades de detecção de padrões seqüenciais pelo algoritmo LRU-WAR.  
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     (a) Padrão de acessos à memória.                      (b) Desempenho de alguns algoritmos. 

Figura 5. Características do trace multi3. 

4.2. Resultados Obtidos e Análises 

Apresentamos nesta seção, cumprindo os objetivos definidos neste trabalho, as análises e os 

resultados do estudo do desempenho do algoritmo LRU-WARlock, a adaptação do LRU-

WAR para sistemas com política de memória global. 

Multi1 

Em um programa com padrões de acessos seqüenciais, o algoritmo LRU-WAR atinge um 

excelente desempenho. Trabalhos anteriores demonstraram este comportamento em sistemas 

de gerência de memória local [Cassettari and Midorikawa 2004], e que também ainda é 

possível melhorá-lo ajustando seus parâmetros C e L dinamicamente [Midorikawa, Piantola 

and Cassettari 2007]. Como o trace multi1 apresenta acessos de duas aplicações intercaladas 

em um sistema de gerência de memória global, o LRU-WAR apresentou desempenho não 

muito bom, mesmo com os dois programas que compõem o multi1 tendo acessos seqüenciais 

(Figura 6.b). 

 Todos os testes de desempenho foram realizados variando o parâmetro K de 10 a 90%, 

mas apresentamos aqui somente os resultados para 20, 50 e 90%. O trace multi1 possui 

menos páginas e menos referências à memória em comparação com os traces multi2 e multi3. 

Isto pelo fato de ter somente dois programas inclusos no trace, porém isso não descaracteriza 

sua importância.  

 No multi1, a análise do perfil de freqüência de acessos às páginas mostra que somente 

SBC 2008 7



 

 

 

7,5% das páginas são responsáveis por 50% dos acessos à memória (Figura 6.a). Quando o 

parâmetro K=20, o LRU-WARlock supera o LRU-WAR em todos os tamanhos de memória, 

com ganho médio de quase 16%. O pico de desempenho foi obtido para uma memória de 

1400 páginas, com um ganho de 39,3% em relação ao LRU-WAR.  

 Com o parâmetro de controle K=50, a Região Reservada ocupa 50% do total da 

memória. Uma característica interessante do LRU-WARlock é em relação às memórias de 

tamanho pequeno, pois neste caso é garantido que metade dos acessos são cobertos com 

apenas 400 páginas de memória, para um trace como o multil1, com 2606 páginas diferentes. 

O aumento de desempenho foi de, na média e de pico, respectivamente, 19% e 42% em 

relação ao LRU-WAR.  
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(a) Páginas versus Acessos                                     (b) Variação do parâmetro K. 

Figura 6. Gráficos do trace multi1. 

 Quando a Região Reservada tem tamanho 90% do total da memória, o maior 

desempenho continua sendo para o tamanho de memória igual a 1400, que é de quase 50% 

melhor que a desempenho do algoritmo LRU-WAR. O ganho em desempenho médio também 

é alto e quase chega a 26% (Figura 6.b) 

 Um fato importante que foi observado na análise dos traces foi com relação ao tempo 

em que o LRU-WARlock fica no modo de operação seqüencial. Em todos os casos estudados, 

o período em que o algoritmo trabalha com deteção de acessos seqüenciais aumentou. Para o 

multi1, o algoritmo LRU-WAR ficou em torno de 11% do tempo em operação seqüencial. Já 

o algoritmo LRU-WARlock para K=50, este tempo aumentou 5 vezes, chegando a 56%. Com 

K=90, o algoritmo LRU-WARlock fica em média 86% em operação seqüencial. Este 

resultado mostra que com essa estratégia fica mais fácil detectar acessos seqüenciais presentes 

nos acessos à memória, aumentando sua eficiência. 

Multi2 

A maior característica do trace multi2 para a análise surge do fato de ser semelhante ao 

multi1. A diferença entre eles é a adição do programa postgres, desta forma aumentando o 

nível de multiprogramação. O desempenho do LRU-WAR diminui, pois se torna mais difícil  

ainda distinguir padrões de acessos com a inserção de novas referências intercaladas (Figura 

4.a). A estratégia do LRU-WARlock também garante bom desempenho para este trace 
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(Figura 7.b). Deste modo, algoritmos que utilizam técnicas para separar padrões podem obter 

bons resultados.   

 A análise do perfil de freqüência de acessos às páginas mostra que metade das 26311 

referências é feita por apenas 348 páginas de um total de 5684 páginas, ou seja, somente 6% 

das páginas são responsáveis por 50% dos acessos a memória (Figura 7.a). 

 Quando K=20, o LRU-WARlock supera o LRU-WAR em todos os tamanhos de 

memória, com uma média de ganho de 11%, desconsiderando tamanhos de memória maiores 

que 3200, quando então as curvas de faltas de página se convergem para todos os algoritmos 

analisados (Figura 7.b). O maior ganho de desempenho foi obtido para uma memória de 2000 

páginas, com um ganho de 27% em relação ao LRU-WAR e quase 31% em relação ao LRU 

com memória de 2200 páginas.  

 Para K=50, trabalhando com metade da memória reservada para páginas de acessos 

freqüentes, o LRU-WARlock apresenta um comportamento interessante. A curva representada 

no gráfico começa a se alinhar com a curva do algoritmo Ótimo, diminuindo ainda mais sua 

identidade com a curva do LRU. Com essa nova característica, o ganho médio aumenta 

consideravelmente para 18%, obtendo uma tolerância maior para todos os tamanhos de 

memória. Um exemplo claro desse comportamento é o ganho obtido para memória de 1400 

páginas, para K=20 foi de 7%, e para K=50 com mesmo tamanho de memória o ganho é 

triplicado, 22% em relação ao LRU-WAR. O ápice do desempenho se encontra na simulação 

com memória com tamanho de 2000 páginas, com ganho relativo ao LRU-WAR de 33%, 

comparado com o valor de 27% quando K=20. 
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(a) Páginas versus Acessos                                     (b) Variação do parâmetro K. 

Figura 7. Gráficos do trace multi2. 

 Quando K=90, o LRU-WARlock superou o LRU-WAR em todos os tamanhos de 

memória com uma vantagem média muito superior, de quase 30%. Um fato que deve ser bem 

observado, relativo à aproximação do algoritmo testado ao Ótimo, é quando a memória tem 

tamanho de 400 páginas. Por muito pouco o LRU-WARlock não se iguala ao desempenho 

teórico do algoritmo Ótimo, com uma diferença de apenas 3,35% do total de faltas. O maior 

desempenho continua sendo com tamanho de memória de 2000 páginas, com quase 45% 
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melhor que o LRU-WAR (Figura 7.b). Estes resultados mostram que o LRU-WARlock é bem 

adequado para sistemas com política de memória global. 

Multi3 

Dos traces usados, aquele que tem o maior nível de multiprogramação é o multi3. São quatro 

programas com diversos padrões de acessos intercalados entre eles. Neste caso o algoritmo 

LRU-WAR toma decisões equivocadas entrando muitas vezes em operação seqüencial, e 

assim apresenta para alguns tamanhos de memória desempenho pior que o LRU. Como não 

existe uma uniformidade da localidade temporal, páginas que serão acessadas em um futuro 

próximo são descartadas prematuramente. Para esta seqüência de referências o LRU-

WARlock também supera o LRU-WAR (Figura 8.b). 

 A variação do parâmetro K mostrou que quanto maior a área destinada às páginas mais 

freqüentes, melhor é a detecção das páginas seqüências pelo algoritmo, criando assim uma 

divisão de padrões.  Quando o K=20 a média de ganho sobre o algoritmo LRU-WAR é de 

10,5%, apenas 0,5 ponto percentual a menos comparado com o multi2. O pico de desempenho 

encontra-se na simulação com o tamanho de memória de 2800 páginas, com desempenho 

quase 22% melhor em comparação com o LRU-WAR.  

 Para K=50 o aumento no desempenho é linear em relação a K=20. Média de 17% de 

ganho em relação ao LRU-WAR e pico de quase 30% com o tamanho de memória 2600 

páginas. A curva perde a característica herdada pelo LRU e se alinha à curva do algoritmo 

Ótimo. 

 Quando K=90 a média de ganho de desempenho é mais constante entre os tamanhos 

das memórias, com média de 26% comparado ao LRU-WAR. O maior desempenho obtido é 

sobre o tamanho de memória 2600 páginas, com 37% de ganho em relação ao LRU-WAR. 

Um ponto interessante da análise tem relação ao tamanho de memória de 4000 páginas, que 

teve o maior ganho em desempenho relativo ao parâmetro K=20, foi multiplicado por 3,85 

vezes (ganho variando de 6% para 23%).  
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(a) Páginas versus Acessos                                     (b) Variação do parâmetro K. 

Figura 8. Gráficos do trace multi3. 

 Este comportamento pode ser explicado pelo fato de que as páginas mais acessadas 

dos traces, pertencem ao working set de cada programa. Essas páginas não são muitas, mas 
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tem uma freqüência de acesso muito grande. No trace multi3, 50% das 30241 referências são 

para somente 617 páginas das 7454 páginas que compõem o trace, ou seja, pouco mais de 8% 

do número total de páginas. Desta forma, a área não reservada da memória, que irá trabalhar 

com o algoritmo LRU-WAR, deve conter muitas páginas que são acessadas com pouca 

freqüência, facilitando assim, a detecção de padrões seqüenciais. 

5. Conclusões e Trabalhos Futuros 

Este trabalho apresentou um estudo sobre a adequação do algoritmo adaptativo LRU-WAR 

para políticas de gerência de memória global. Este estudo foi conduzido sobre o algoritmo 

LRU-WAR modificado, que foi chamado LRU-WARlock, o qual aplicou a técnica de 

profiling para determinação das páginas com maior freqüência de acessos e a inclusão de um 

novo parâmetro de controle K. Foram utilizados três traces com características de 

multiprogramação para os estudos de desempenho com políticas de gerência de memória 

global. 

 A contribuição mais importante deste artigo é mostrar que, apesar dos algoritmos 

adaptativos terem sido projetados para sistemas que utilizem políticas de gerência de memória 

locais, é possível ajustá-los para apresentarem também bom desempenho em sistemas de 

gerência de memória global. As análises revelaram que é imprescindível tratar o aspecto da 

freqüência nos acessos à memória, quando o sistema utilizar uma política de gerência de 

memória global. A prova desta tese está no fato observado em que, nos três traces estudados, 

menos de 9% do número total de páginas é responsável por 50% das referências á memória. 

 Para os três traces estudados, o algoritmo LRU-WAR entra em operação seqüencial, 

em média, em 13% do tempo. E o algoritmo LRU-WARlock fica em operação seqüencial em 

41% para K=20 e chega a 89% para K=90. Combinado com o bom desempenho, pode-se 

afirmar que o LRU-WARlock passou a acertar mais as detecções de padrões seqüenciais, 

proporcionando uma melhoria de até 44% sobre o LRU-WAR. 

 Os resultados apontam que o LRU-WAR adequado para política de gerência global 

(LRU-WARlock) é uma boa alternativa de algoritmo adaptativo de substituição de páginas, e 

pode ser ajustado dinamicamente pelos seus parâmetros de acordo com a necessidade do 

sistema de gerência de memória. Além disso, o overhead de execução do algoritmo é menor 

porque o processamento responsável pela detecção de padrões do LRU-WAR é executado 

somente para aquelas páginas que não fazem parte da Região Reservada. 

 Alguns estudos complementares podem ser desenvolvidos para dar continuidade a este 

trabalho. Uma sugestão a considerar é incluir um mecanismo no LRU-WAR que trate a 

freqüência de acessos de forma dinâmica sem profiling e que não inviabilize sua 

implementação. Uma segunda sugestão é repetir o estudo realizado neste artigo para outros 

algoritmos adaptativos de substituição de páginas, de forma que se possa descobrir um padrão 

geral de adequação de algoritmos para políticas de gerência global da memória.  
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 Além da freqüência de acessos, outras informações poderiam ser disponibilizadas ao 

algoritmo de substituição para auxiliar na gerência de memória, como por exemplo, o padrão 

de acessos a memória, composição do working set, última referência de cada página. Estudos 

sobre qual informação é mais relevante estão sendo conduzidos. 
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