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Abstract. Several real-time Linux extensions can be found nowadays. Two of
them have received special attention recently, the patchesPreempt-RT and Xe-
nomai. This paper evaluates to what extent they provide deterministic guaran-
tees when reacting to external events, an essential characteristic when it comes
to real-time systems. To do that we define a simple but effective experimental
approach. Obtained results indicate that Preempt-RT is more prone to temporal
variations than Xenomai when the system is subject to overload scenarios.

Resumo. Várias extensões Linux para tempo real podem ser encontradas hoje
em dia. Duas delas têm recebido atenção especial recentemente: ospatches
Preempt-RT e Xenomai. Este artigo avalia em que medida elas fornecem ga-
rantias determinísticas quando reagem a eventos externos,uma característica
essencial quando se trata de sistemas de tempo real. Para tanto, definimos uma
abordagem experimental simples e eficaz. Os resultados obtidos indicam que
Preempt-RT é mais propenso a variações temporais que Xenomai quando o sis-
tema está sujeito a cenários de sobrecarga.

1. Introdução

Os sistemas de tempo real englobam diversas aplicações ligadas às áreas de telecomu-
nicações, multimídia, indústria, transporte, medicina, etc. Para tais sistemas, a escolha
adequada de Sistemas Operacionais de Tempo Real (SOTR) constitui aspecto fundamen-
tal de projeto. Apesar da importância da evolução tecnológica do hardware, certas ino-
vações podem introduzir empecilhos para a construção de SOTR. Por exemplo, os ad-
ventos de memóriacache, acesso direto à memória (DMA), co-processamento, predição
de instruções, unidadesmulticore, pipelinese execução fora de ordem constituem fontes
não-desprezíveis de indeterminismo [Liu 2000, Pratt and Heger 2004]. Assim, a constru-
ção de um sistema operacional de uso genérico com foco em previsibilidade temporal
permanece um desafio de pesquisa atual.

Apesar de sua difusão e popularidade, okernel padrão do Linux
[D. P. Bovet 2005] falha na oferta de garantias temporais típicas dos sistemas de
tempo real críticos [Marchesotti et al. 2006, Abeni et al. 2002]. Para contornar esse
problema, várias abordagens foram desenvolvidas com o intuito de aumentar o grau
de previsibilidade temporal do Linux [I. Molnar et al. 2008,P. Gerum et al. 2008,
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Dozio et al 2003, V. Yodaiken et al. 2008, Fry and West 2007, Calandrino et al. 2006]. A
evolução rápida e a diversidade das soluções disponíveis apela para estudos comparativos
que permitam avaliar o determinismo oferecido por cada plataforma de forma a auxiliar o
projetista de sistemas de tempo real na escolha apropriada da distribuição a ser utilizada.

Este trabalho tem por objetivo apresentar e comparar ospatches do ker-
nel Linux Preempt-RT (LinuxPrt) [I. Molnar et al. 2008] e Xenomai (LinuxXen)
[P. Gerum et al. 2008] , desenvolvidos para aumentar a previsibilidade do Linux. As prin-
cipais contribuições deste trabalho são: (i) a proposta de uma metodologia de avaliação
simples baseada em software e hardware de prateleira, que utiliza uma sobrecarga do pro-
cessador através de carga de processamento, de entrada e saída, e de interrupção; (ii) a
obtenção de resultados que confirmam a capacidade de LinuxXen em oferecer garantias
temporais críticas, e (iii) a confirmação que, em situação decarga intensa, LinuxPrt não
consegue oferecer garantias temporais de maneira tão determinística quanto LinuxXen.

A Seção 2 descreve alguns fatores de imprevisibilidade do Linux e define as mé-
tricas adotadas para a comparação de LinuxPrt e LinuxXen. Estas duas plataformas são
descritas nas Seções 3 e 4. Em seguida, a descrição da metodologia de experimentação na
Seção 5 precede a apresentação dos resultados experimentais na Seção 6. Finalmente, a
Seção 7 apresenta brevemente os trabalhos relacionados e a Seção 8 conclui este trabalho.

2. Métricas de comparação
O método convencional utilizado para minimizar o impacto das interrupções sobre a exe-
cução dos processos consiste em dividir a execução do tratador de interrupção em duas
partes. A primeira parte executa operações críticas de forma imediata e com as interrup-
ções desabilitadas, o que constitui aseção críticado tratador. Eventualmente, pode-se
reabilitar as interrupções de modo a permitir preempção, tomando-se o cuidado de ga-
rantir o acesso controlado aos dados compartilhados através delocks. Na segunda parte,
as operações não-críticas são possivelmente adiadas e executadas com as interrupções
habilitadas. No Linux, estas execuções postergadas são chamadas desoftirqs.

2.1. Latência de interrupção

Uma requisição de interrupção, ou simplesmenteinterrupção, do processador por um
dispositivo dehardwareé assíncrona e pode acontecer em qualquer momento do ciclo
de execução do processador. Em particular, tal requisição pode ocorrer enquanto a seção
crítica do tratador de outra interrupção estiver executando, com as interrupções desabi-
litadas. Tal cenário pode provocar uma latência não determinística para a detecção da
requisição de interrupção pelo processador. O tempo decorrido entre o instante no qual
uma requisição de interrupção acontece e o início da execução do tratador associado é
chamado delatência de interrupção. Esta grandeza foi contemplada como métrica para
efeito de comparação das plataformas estudadas, pois caracteriza a capacidade do sistema
para reagir a eventos externos.

2.2. Latência de ativação

No kernelLinux, logo após o término da seção crítica do tratador de interrupção, osoftirq
correspondente está apto a executar. No entanto, entre o instante no qual a seção crí-
tica termina e o instante no qual osoftirq começa a executar, outras interrupções podem
acontecer, provocando um possível atraso na execução dossoftirqs.
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Nas plataformas de tempo real, eventos de temporizadores oude hardwaresão
utilizados para disparar tarefas, num modelo similar aossoftirqs. Tal tarefa, muitas vezes
periódica, fica suspensa a espera de um evento. Quando o evento ocorre, a requisição de
interrupção associada aciona o tratador correspondente que, por sua vez, acorda a tarefa.
O intervalo de tempo entre os instantes de ocorrência do evento e o início da execução da
tarefa associada é chamada delatência de ativação. Assim como no caso dossoftirqs,
a latência de ativação pode ser aumentada pela ocorrência deinterrupções. Além disso,
a execução de outrossoftirqspode ser escalonada de acordo com alguma política (ex:
FIFO, prioridade fixa), o que pode também gerar interferências na latência de ativação.
Assim como a latência de interrupção, a latência de ativaçãocaracteriza a capacidade de
um sistema para reagir a eventos externos.

3. LinuxPrt

Para prover precisão temporal, LinuxPrt [McKenney 2005, Rostedt and Hart 2007] utiliza
uma nova implementação dos temporizadores de alta resolução desenvolvida por Thomas
Gleixner [L. Torvalds et al. 2008]. Baseado no valor no registradorTime Stamp Counter
(TSC) da arquitetura Intel ou em relógios de alta resolução,esta implementação oferece
uma API que permite obter valores temporais com resolução demicro-segundos. De
acordo com resultados apresentados [Rostedt and Hart 2007,Siro et al. 2007], os tempos
de latência de ativação obtidos usando esta API são da ordem de algumas dezenas deµs

nos computadores atuais.

LinuxPrt comporta várias modificações que tornam okerneltotalmente preemp-
tível. Dessa forma, assim que um processo de mais alta prioridade é desbloqueado, este
consegue adquirir o processador com latência mínima, sem necessidade de espera pelo
fim da execução de um processo de menor prioridade, mesmo que este esteja executando
em modokernel. Para limitar os efeitos de imprevisibilidade causados porrecursos com-
partilhados, LinuxPrt modifica as primitivas de sincronização de maneira a permitir a
implementação de um protocolo baseado em herança de prioridade [Sha et al. 1990].

Em relação à latência de interrupção, LinuxPrt utiliza threadsde interrupções.
Quando uma linha de interrupção é iniciada, umthreadé criado para gerenciar as requi-
sições de interrupção associadas a esta linha. Na ocorrência de uma requisição, o tratador
associado mascara a requisição, acorda othread da interrupção e volta para o código
interrompido. Desta forma, a parte crítica do tratador de interrupção é reduzida ao seu
mínimo e a latência causada pela sua execução, além de ser breve, é determinística. Em
algum momento futuro, othreadde interrupção acordado é escalonado, de acordo com a
sua prioridade, dando espaço para indeterminismo, o que será objeto do presente estudo.

Usando programas corretamente escritos, respeitando as regras de programação
de LinuxPrt e alocando os recursos de acordo com os requisitos temporais, a solução
LinuxPrt tem a vantagem de oferecer o ambiente de programação do sistema Linux, dando
acesso às bibliotecas C e ao conjunto de software disponívelpara este sistema.

4. LinuxXen

Diferentemente de LinuxPrt, a plataforma LinuxXen utiliza uma abordagem baseada no
mecanismo de indireção das interrupções introduzido na técnica de “proteção otimista das
interrupções” [Stodolsky et al. 1993]. Quando uma requisição de interrupção acontece, a
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camada de indireção, também chamada denanokernel, identifica se esta é relativa a uma
tarefa de tempo real ou se é destinada a um processo do Linux. No primeiro caso, o trata-
dor da interrupção é executado imediatamente. Caso contrário, a requisição é enfileirada
e, em algum momento futuro, entregue para o Linux quando inexistirem tarefas de tempo
real. Quando o Linux precisa desabilitar as interrupções, onanokernelapenas deixa o Li-
nux acreditar que as interrupções estão desabilitadas. No entanto, onanokernelcontinua
a interceptar qualquer interrupção dehardware. Nesta ocorrência, a interrupção é tratada
imediatamente se for destinada a uma tarefa de tempo real. Caso contrário, a interrupção
é enfileirada, até que okernelLinux reabilite suas interrupções.

Para a implementação donanokernel, LinuxXen utiliza uma camada de virtuali-
zação dos recursos chamada Adeos (Adaptative Domain Environment for Operating Sys-
tems) [Yaghmour 2001]. OpatchAdeos facilita o compartilhamento e o uso dos recursos
dehardwaree oferece uma interface de programação simples e independente da arquite-
tura. Resumidamente, Adeos é baseado nos conceitos de domínio e de canal hierárquico
de interrupção. Um domínio caracteriza um ambiente de execução isolado, no qual pode-
se executar programas ou até mesmo sistemas operacionais completos. O canal hierár-
quico de interrupção, chamadoipipe, serve para priorizar a entrega da interrupções entre
os domínios. Quando um domínio se registra no Adeos, ele é colocado numa posição no
ipipe de acordo com os seus requisitos temporais. Adeos utiliza então o mecanismo de
indireção das interrupções para organizar a entrega hierárquica das interrupções, seguindo
a ordem de prioridade dos domínios.

Os serviços de tempo real de LinuxXen correspondem ao domínio mais prioritário
do ipipe, chamado “domínio primário”. Este domínio corresponde, portanto, ao núcleo de
tempo real no qual as tarefas são executadas em modo protegido. O “domínio secundário”,
por sua vez, corresponde aokernelLinux, no qual o conjunto de bibliotecas e software
usual do Linux está disponível. Em contrapartida, as garantias temporais são mais fracas,
dado que o código pode utilizar as chamadas de sistemas bloqueantes do Linux.

5. Metodologia experimental

Em geral, realizar medições precisas de tempo no nível dos tratadores de interrupção pode
não ser tão simples. De fato, o instante exato no qual uma requisição de interrupção acon-
tece é de difícil medição, pois tal evento é assíncrono e podeser causado por qualquer
dispositivo dehardware. Para obter medidas das latências de interrupção e ativaçãocon-
fiáveis com alto grau de precisão, aparelhos externos, tais como osciloscópios ou outros
computadores, são necessários. Visto que o objetivo do presente trabalho foi caracterizar
e comparar o grau de determinismo das plataformas operacionais estudadas, adotou-se
uma metodologia experimental simples e efetiva, que pode ser reproduzida facilmente em
outros contextos.

5.1. Configuração do experimento

O dispositivo experimental utilizou três estações: (1) a estação de mediçãoEM , na qual
os dados foram coletados e onde temos uma tarefa de tempo realτ à espera de eventos
externos; (2) a estação de disparoED, que foi utilizada para enviar pacotes Ethernet com
uma freqüência fixa à estaçãoEM ; e (3) a estação de cargaEC , utilizada para criar uma
carga de interrupção na estaçãoEM . As estações de disparo e carga foram conectadas
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Figura 1: Configuração do experimento.

a estação de medição por duas redes Ethernet distintas, utilizando duas placas de redes
(eth0 e eth1), conforme ilustrado no diagrama da Figura 1.

As chegadas dos pacotes enviados porED emEM servem para disparar uma cas-
cata de eventos na estaçãoEM , permitindo a simulação de eventos externos via sua porta
paralela (PP). Mais explicitamente, cada chegada de um pacote Ethernet emeth0 foi utili-
zada para disparar uma requisição de interrupção na PP, escrevendo no pino de interrupção
desta porta (ver Figura 2). Esta escrita foi realizada pelo próprio tratadorTeth0

de inter-
rupção da placaeth0. O instantet1 de escrita no pino de interrupção da PP pelo tratador
Teth0

constitui então o início da seqüência de eventos utilizadospara medir as latências de
interrupção (Latirq) e de ativação (Latativ). Vale observar que não existe relação entre a
chegada de pacotes na placaeth0 deEM e a atividade sendo executada nesta estação.

As medidas seguiram o seguinte roteiro, ilustrado pela Figura 2:

• A estaçãoED envia pacotes Ethernet para a placaeth0 da estaçãoEM , provocando
interrupções assíncronas em relação às aplicações executando emEM .

• A interrupção associada à chegada de um pacote provoca a preempção da aplica-
ção em execução no processador pelo tratador de interrupçãoTeth0

.
• O tratadorTeth0

foi restrito ao seu mínimo: ele apenas escreve no pino de inter-
rupção da PP e armazena o instantet1 na memória. Este instante corresponde,
portanto, ao valor lido no relógio local, no instante na escrita da PP, logo após a
chegada de uma pacote Ethernet.

• A requisição de interrupção associada à escrita no pino de interrupção da PP pro-
voca a preempção da aplicação em execução no processador pelo tratador de in-
terrupçãoTPP .

Latativ

placa de rede
Eventos
IRQs

kernel
Modo

usuário
Modo

Teth0
TPP

tempo

Processos

t1 t2 t3

porta paralela

τ

TPP

Latirq

Figura 2: Cálculo das latências de interrupção e ativação na estação EM .
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• TPP grava o instantet2 e acorda a tarefaτ . Este valort2 corresponde ao valor do
relógio local, logo após o início deTPP .

• No momento que a tarefaτ acorda, ela grava o instantet3 e volta a ficar suspensa
até a próxima interrupção na PP. Portanto,t3 corresponde ao tempo no qual a
tarefaτ começa a executar, no final da cascata de eventos provocada pela chegada
de um pacote na placa de rede.

Como representado na Figura 2,Latirq corresponde à diferençat2 − t1 e Latativ

a diferençat3 − t2. No decorrer do experimento, a transferência das medições da me-
mória para o sistema de arquivos foi realizada por um canal FIFO lido por um processo
usuário de forma a impedir qualquer interferência entre a aquisição dos dados e seu ar-
mazenamento no sistema de arquivos. Além da prioridade deste processo ser menor que
as demais tarefas e tratadores de interrupções executados em modokernel, os eventos de
transferências de dados eram suficientemente raros (20 por segundo) para não interferir
nas medidas realizadas.

5.2. Cargas de I/O, processamento e interrupção

Num primeiro momento, realizou-se experimentos com uma carga mínima no processador
da estaçãoEM (modosingle). Desta forma, observou-se o comportamento temporal das
três plataformas em situação favorável. Em seguida, dois tipos de cargas foram utilizados
simultaneamente para sobrecarregarEM . Tais sobrecargas tiveram por objetivo avaliar
a capacidade de cada plataforma em garantir uma latência determinística no tratamento
das interrupções e na ativação de tarefas de tempo real, apesar da existência de outras
atividades não-críticas. As cargas de I/O e processamento foram realizadas executando as
instruções seguintes na estaçãoEM :

while "true"; do
dd if=/dev/hda2 of=/dev/null bs=1M count=1000
find / -name ” * .c” | xargs egrep include
tar -cjf /tmp/root.tbz2 /usr/src/linux-xenomai
cd /usr/src/linux-preempt; make clean; make

done

Um outro estresse de interrupção foi criado utilizando uma comunicação UDP en-
tre a estaçãoEM configurada como servidor e a estaçãoEC configurada como cliente.
Para isolar esta comunicação da comunicação entreEM eED, utilizou-se a segunda placa
de redeeth1 de EM , assim com ilustrado pelo diagrama da Figura 2. Durante o expe-
rimento, o processo cliente hospedado pela estaçãoEC transmitiu pequenos pacotes de
64 bytesna freqüência máxima permitida pela rede, ou seja, com uma freqüência supe-
rior a 200kHz (um pacote a cada10µs). Desta forma, mais de 100.000 interrupções por
segundo foram geradas pela placaeth1 deEM . A placaeth1 foi registrada na linha de
interrupção 18 deEM , cuja prioridade é menor que a prioridade da porta paralela.Nos
experimentos com cargas, os dois tipos de estresses foram aplicados simultaneamente e
as medições só foram iniciadas alguns segundos depois.

6. Avaliação de LinuxPrt e LinuxXen

6.1. Configuração

Os experimentos foram realizados em computadores Pentium 4com processadores de 2.6
GHz e 512 Mb de memória, com o objetivo de ilustrar o comportamento temporal das três
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plataformas seguintes:

• Linux Std: Linux padrão -kernelversão 2.6.23.9 (opçãolow-latency);
• Linux Prt: Linux com opatchPreempt-RT (rt12) -kernelversão 2.6.23.9;
• Linux Xen: Linux com opatchXenomai - versão 2.4-rc5 -kernelversão 2.6.19.7.

Utilizou-se a configuração LinuxStd para realizar experimentos de referência para
efeito de comparação com as duas plataformas de tempo real LinuxPrt e LinuxXen. A ver-
são estável dokernel2.6.23.9, disponibilizada em dezembro de 2007 foi escolhida para o
estudo de LinuxPrt, pois estepatchtem evoluído rapidamente desde sua primeira versão
publicada há dois anos. No entanto, utilizou-se a versão dokernel2.6.19.7 para o estudo
da versão 2.4-rc5 de Xenomai. De fato, considerou-se desnecessário atualizar a versão do
kernel, pois Xenomai é baseado no Adeos (ver Seção 4) e, portanto, asgarantias tempo-
rais oferecidas para as aplicações executando no primeiro domínio dependem apenas da
versão do Xenomai e dopatchAdeos associado, e não, da versão dokernelLinux.

As medidas das latências de interrupção e de ativação foram realizadas pela con-
sulta doTime Stamp Counter(TSC), permitindo uma precisão abaixo de30ns (88 ciclos),
verificada experimentalmente. Utilizou-se uma freqüênciade disparo dos eventos pela
estaçãoED de 20Hz. Para cada plataforma, dois experimentos de 10 minutos foram re-
alizados. O primeiro sem carga nenhuma do sistema e o segundoaplicando os estresses
apresentados na Seção 5.2.

6.2. Resultados experimentais

Os resultados experimentais são apresentados nas Figuras 3e 4, onde o eixo horizontal re-
presenta o instante de observação variando de 0 a 60 segundose o eixo vertical representa
as latências medidas emµs (tais valores podem ser multiplicados por2.610

3 para obter o
número de ciclos do TSC). Apesar de cada experimento ter durado no mínimo uma hora,
escolheu-se apresentar apenas resultados para um intervalo de60s, pois este intervalo é
suficiente para observar o padrão de comportamento de cada plataforma. Neste inter-
valo, o total de eventos por experimentos é 1200, pois a freqüência de chegada de pacotes
utilizada foi de20Hz.

Abaixo de cada Figura, os seguintes valores são indicados: Valor Médio (VM),
desvio padrão (DP), valor mínimo (Min) e valor máximo (Max).Estes valores foram
obtidos considerando a duração de uma hora de cada experimento. Na medida do possível,
utilizou-se a mesma escala vertical para todos os gráficos. Conseqüentemente, alguns
valores altos podem ter ficado fora das Figuras. Tal ocorrência foi representada por um
triângulo próximo do valor máximo do eixo vertical.

6.2.1. Latência de interrupção

A Figura 3 apresenta as latências de interrupção medidas, com e sem estresse do sistema.
Como pode ser observado, sem carga, o LinuxStd e o LinuxXen tem comportamentos
parecidos. Com carga, observa-se uma variação significativa do LinuxStd, como esperado.

Com relação ao LinuxPrt, dois resultados chamam atenção. Primeiro, o compor-
tamento do sistema sem carga exibe latências da ordem de 20µs. Isto é causado pela
implementação dosthreadsde interrupção vista na Seção 3. Segundo, contradizendo as
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Figura 3: Latência de interrupção com freqüência de escrita na PP de 20Hz.
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expectativas, a aplicação do estresses teve um impacto significativo, provocando uma alta
variabilidade das latências. De fato, entre o instante no qual o tratadorTPP requer a
interrupção do processador e o instante no qual estethreadacorda efetivamente, uma ou
várias interrupções podem ocorrer. Neste caso, a execução dos tratadores associados pode
provocar o atraso da execução deTPP .

Para cancelar esta variabilidade indesejável, é possível usar o LinuxPrt sem
utilizar a implementação dethreads de interrupção. Para tanto, usa-se a opção
IRQF_NODELAYna requisição inicial da linha de interrupção. Utilizando esta opção na
definição da linha de interrupção da porta paralela, o comportamento do LinuxPrt passa
a ser semelhante ao LinuxStd.

6.2.2. Latência de ativação

A Figura 4 apresenta os resultados para as latências de ativação sem estresse e com es-
tresse do processador. Como pode ser observado, o comportamento de LinuxStd é ina-
dequado para atender os requisitos de tempo real. LinuxPrt e LinuxXen, por outro lado,
apresentam valores de latências dentro dos padrões esperados. Vale a pena notar o com-
portamento destes sistemas com carga. Apesar do valor médioencontrado para LinuxXen

(8, 7µs) ser superior ao do LinuxPrt (3, 8µs), o desvio padrão é significativamente menor
em favor de LinuxXen, característica desejável nos sistemas de tempo real críticos. De
fato, para tais sistemas, deseja-se que o pior caso seja próximo do caso médio.

É interessante ainda comparar o comportamento de LinuxPrt sem utilizar o con-
texto dethreadsde interrupção, isto é, com a opçãoIRQF_NODELAY, comentada ante-
riormente. Como pode ser observado na Figura 5, apesar das latências de ativação sem
estresse apresentar bons resultados em comparação ao LinuxPrt, seus valores com es-
tresse indicam um comportamento menos previsível que o LinuxXen.

7. Trabalhos relacionados

Alguns resultados experimentais comparando LinuxPrt com LinuxStd são apresenta-
dos por [Rostedt and Hart 2007]. Duas métricas são usadas, latências de interrup-
ção e de escalonamento, relacionadas ao escalonamento de uma tarefa periódica. No
entanto, os experimentos foram realizados sem sobrecarga do processador e a me-
todologia usada não foi precisamente descrita. [Siro et al.2007] realizam um es-
tudo comparativo do LinuxPrt, de RT-Linux [V. Yodaiken et al. 2008] e de LinuxRTAI

[P. Mantegazza et al. 2008] no qual eles utilizam conjuntamente obenchmarkLMbench
[McVoy and Staelin 1996] e medidas de desvios na execução de uma tarefa periódica.
Nestes experimentos, os autores aplicaram uma sobrecarga “média” do processador,
sem considerar carga de interrupção. Num outro trabalho, divulgado apenas na Internet
[Benoit and Yaghmour 2005], os desenvolvedores do projeto Adeos apresentam resulta-
dos comparativos relativos ao Linux com ospatchesPreempt-RT e Adeos. Esta avaliação,
bastante abrangente, utiliza obenchmarklmbench [McVoy and Staelin 1996] para carac-
terizar o desempenho das duas plataformas e apresenta resultados de medidas de latências
de interrupção realizadas com a porta paralela.

O presente trabalho apresenta resultados de latência de interrupção que confirma
os resultados obtidos em [Benoit and Yaghmour 2005] para a plataforma LinuxXen. Já
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Figura 4: Latência de ativação com freqüência de escrita na P P de 20Hz.
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Figura 5: Latência de ativação do Linux Prt desabilitando o th-
read associado as interrupções da PP (opção IRQF_NODELAY).

os resultados encontrados aqui para LinuxPrt, sem a opçãoIRQF_NODELAY, diferiram
dos apresentados por [Benoit and Yaghmour 2005], pois uma degradação das garantias
temporais por esta plataforma foi observada, tal como vistona Seção 6.2.1. Em rela-
ção às latências de ativação, não temos conhecimento de nenhum outro trabalho compa-
rativo. Experimentos idênticos aos relatados aqui foram conduzidos para a plataforma
LinuxRTAI [Regnier 2008] e os resultados encontrados são semelhantesaos apresentados
para LinuxXen, dado que ambas plataformas utilizam o mesmonanokernel.

8. Conclusão
Neste trabalho, a avaliação de duas soluções de SOTR baseadas em Linux foi realizada.
A metodologia experimental permitiu medir as latências de interrupção e de ativação, em
situações de carga variável, tanto do processador quanto deeventos externos tratados por
interrupção. Enquanto o Linux padrão apresentou latênciasno pior caso acima de100µs,
as plataformas LinuxPrt e LinuxXen conseguiram prover garantias temporais com uma
precisão abaixo de20µs. No entanto, para se conseguir este comportamento em relação
ao LinuxPrt, foi necessário desabilitarthreadsde interrupção, tornando o sistema menos
flexível. Com taisthreads, o comportamento de LinuxPrt sofre considerável degradação
da sua previsibilidade temporal. A plataforma LinuxXen se mostrou mais adequada, pois
tanto oferece um ambiente de programação em modo usuário, quanto consegue previsibi-
lidade temporal característica de sistema de tempo real.
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