

Extensão da UML para Suporte ao Projeto de RTOS

Douglas P. B. Renaux1,2

1Departamento de Eletrônica – Universidade Tecnológica Federal do Paraná (UTFPR)
Av. Sete de Setembro 3165 – Curitiba – PR

2 eSysTech – Embedded Systems Technologies
Travessa da Lapa 96, cj 73 – Curitiba - PR

douglasrenaux@utfpr.edu.br

Abstract. UML is an extensible language that can be adapted to specific needs
of domain areas, thus, increasing the semantic contents of its models. This
paper presents a proposal of an UML extension, in the form of an UML
profile, that supports the modeling of domain knowledge for real-time
operating systems, typically used in the development of embedded systems.

Resumo. A UML foi concebida para ser uma linguagem extensível, de forma
a se adaptar às necessidades específicas de diversas áreas e permitir a
elaboração de modelos com maior conteúdo semântico. Neste artigo
apresenta-se uma extensão à UML que suporta o processo de desenvolvimento
de sistemas operacionais de tempo real, tipicamente utilizados em sistemas
embarcados. A utilização desta extensão é ilustrada com exemplos envolvendo
o desenvolvimento de um RTOS que está em fase de elaboração.

1. Objetivo
A Linguagem Unificada de Modelagem (UML) [Rumbaugh 04] foi desenvolvida na
década de 90 para homogeneizar as notações utilizadas pelas metodologias e ferramentas
de modelagem da época. A UML tem semântica rigorosamente definida, por meio de um
metamodelo, e permite a modelagem tanto dos aspectos estruturais (estáticos) como dos
aspectos comportamentais (dinâmicos) de um sistema.

A proposta da UML é de uma notação padronizada que pela sua generalidade poderia
ser utilizada na modelagem de qualquer tipo de sistema e em particular nos sistemas de
software. A conseqüência óbvia desta generalidade, e do elevado nível de abstração da
linguagem, é a falta de especialização em determinadas áreas de desenvolvimento e,
portanto, da ausência dos conceitos específicos destas áreas. A UML trata desta questão
permitindo que a linguagem seja estendida e especializada por intermédio de Perfis
(Profile). Um Perfil para uma determinada área define um conjunto de estereótipos
(stereotypes) especializados e respectivas propriedades e valores atribuídos (tagged
values) associados, bem como restrições (constraints).

O objetivo é o desenvolvimento de um Perfil de UML para a área de Sistemas
Operacionais. Trata-se de um trabalho em andamento que tem por escopo inicial os
núcleos operacionais (kernel), também conhecidos por RTOS (Real-Time Operating
System), utilizados em sistemas embarcados operando com restrições temporais.

Justifica-se a necessidade de um Perfil de UML para esta área para criar modelos
especializados que contemplam os inúmeros conceitos específicos desta área. A presença
destes conceitos especializados permitirá a construção de modelos mais ricos, i.e., com
maior expressividade. Esta notação extendida não se aplica apenas aos desenvolvedores
de RTOS, mas a todos aqueles que continuamente evoluem estes sistemas,
desenvolvendo drivers para novos dispositivos, realizando manutenção e a
acrescentando novos serviços ao kernel. Aplica-se também aos desenvolvedores de
aplicações, e no estágio atual em particular aos desenvolvedores de aplicações
embarcadas, que podem passar a utilizar modelos especializados para os conceitos
específicos desta área.

Justifica-se, ainda, pela importância da área de desenvolvimento de software embarcado
e pelo uso crescente de RTOS nos sistemas embarcados, como forma de reduzir a
complexidade do desenvolvimento de software embarcado e melhorar a modularidade e
compartimentalização deste.

2. Contexto
A identificação da necessidade de um Perfil para RTOS se deu durante o
desenvolvimento da versão 2.0 do X Real-Time Kernel [Esystech 07]. A primeira versão
deste kernel foi desenvolvida durante o período de incubação da empresa eSysTech na
Incubadora de Inovações Tecnológicas do CEFET-PR, atual Universidade Tecnológica
Federal do Paraná. O hospedeiro da incubação, o Laboratório de Inovação e Tecnologia
em Sistemas Embarcados (LIT), teve forte influência no desenvolvimento do X, pelo seu
histórico anterior de desenvolvimento de um kernel de tempo real, denominado PET1. O
PET foi inicialmente desenvolvido para uso acadêmico, para suporte às disciplinas do
CPGEI (Programa de Pós-Graduação em Engenharia Elétrica e Informática Industrial), e
como plataforma de desenvolvimento utilizada pelos alunos de mestrado e doutorado.
Sua robustez e confiabilidade levaram o PET ao uso industrial, em áreas como centrais
telefônicas públicas e equipamentos de automação comercial e industrial. O X Real-Time
Kernel2 foi o resultado de uma evolução do PET, envolvendo a Orientação a Objetos, a
Componentização e a Portabilidade entre Plataformas.

3. Mecanismos de extensão da UML
Um Perfil de UML (UML Profile) é uma variante de UML especializada em alguma
área. Dentre os perfis adotados pela OMG (Object Management Group) [OMG 08]
estão o SysML (Systems Modeling Language), para especificação, análise, projeto e
verificação de sistemas complexos; o UML Profile for Schedulability, Performance and
Time (RT-UML) para modelagem dos aspectos de tempo, escalonamento e desempenho
em sistemas em tempo real; e vários outros como o MARTE (Modeling and Analysis of
Real-time and Embedded Systems – em desenvolvimento) e o UML Profile for Systems
on a Chip. Um Perfil estende o metamodelo da UML [OMG 06] especializando-o para
uma área. Além dos perfis adotados pela OMG, vários outros perfis são desenvolvidos

1 Software registrado no INPI (Instituto Nacional de Propriedade Industrial).
2 Software registrado no INPI (Instituto Nacional de Propriedade Industrial).

para atender à demandas específicas, a exemplo da área de Programação Orientada a
Aspectos [Aldawud 01].

O objetivo dos perfis de UML é de oferecer uma linguagem customizada para certos
domínios sem alterar a semântica da UML. Desta forma, um perfil é simplesmente um
conjunto coerente de elementos especializados do metamodelo (estereótipos) com
valores atribuídos e regras/restrições. Os estereótipos são usados para representar
conceitos específicos de um domínio de forma simples e leve.

Um estereótipo tipifica uma classe ou objeto. Ao fazê-lo, define um conjunto de
propriedades que devem ser especificadas para uma classe ou objeto em particular,
utilizando valores atribuídos, bem como um conjunto de regras, ou restrições, que devem
ser seguidos. Um estereótipo pode ser especificado textualmente, pela notação
<<NomeEstereótipo>> ou através de um símbolo gráfico ou ícone, o que em muitas
situações facilita a leitura do diagrama.

Valores atribuídos (tagged values) são apresentados na forma { propriedade = valor }.
Cada estereótipo define um conjunto de propriedades que devem ser preenchidas pelas
instâncias (classes e objetos) daquele estereótipo.

Já uma restrição é uma regra, de determinado domínio, que é aplicada sobre elementos /
conceitos daquele domínio.

O Perfil RT-UML define várias dezenas de estereótipos e suas respectivas propriedades
e restrições. Dentre os estereótipos definidos encontramos: <<RTAction>>,
<<RTclkInterrupt>>, <<RTdelay>>, <<RTevent>>, <<RTnewTimer>> e <<RTreset>>.
É interessante notar que os dois últimos estereótipos se aplicam a operações e não a
classes.

Outra característica da UML, que a nosso ver é bastante poderosa na modelagem mas
pouco utilizada pelos desenvolvedores, é a possibilidade de acrescentar compartimentos
a uma classe, além dos três compartimentos padrões que contém nome, atributos e
operações. Estes compartimentos podem ter um nome associado (named compartment)
para facilitar o entendimento.

4. Extensão Proposta
A tabela a seguir apresenta os estereótipos propostos neste trabalho, de acordo com o
modelo apresentado em [Douglass 04]

Estereótipo Aplicável à Propriedades Descrição
<<thread>> Função ou

operação
Period
WCExecutionTime

Esta função/operação é a rotina principal
(root) de uma thread. As características da
thread estão descritas como propriedades.

<<monitor>> Classe ou
Módulo de SW.

 A implementação desta classe / módulo
garante que as operações/funções associadas
são mutuamente exclusivas .

<<function>> Classificador Usado principalmente na notação detalhada
(ver próxima seção) para identificar que este
classificador se refere a uma operação de
uma classe ou a uma função.

<<attribute>> Classificador Usado principalmente na notação detalhada
para identificar que este classificador se
refere a um atributo de uma classe.

<<ISR>> Operações
Funções

IrqPriorityLevel
IrqNesting

A função, ou operação (método) de uma
classe, é utilizada como rotina de
atendimento à interrupção.

A propriedade IrqPriorityLevel tem um valor
numérico correspondente ao nível de
prioridade daquela interrupção.

A propriedade IrqNesting é falsa se outras
interrupções estiverem bloqueadas durante a
execução desta ISR, e verdadeira se o
aninhamento de interrupções é permitido.

<<IST>> RootFunction de
uma Thread

RootOperation
de uma classe
ativa

ThPriorityLevel A função, ou operação de uma classe ativa, é
utilizada como função principal
(RootFunction) de uma Thread. Esta thread
tem por papel ser a Interrupt-Service-Thread
para alguma interrupção.

A propriedade ThPriorityLevel tem valor
numérico correspondente ao nível de
prioridade daquela tarefa no nível base.

<<irq>> Relacionamento irqId Este relacionamento representa o sinal ele-
trico correspondente ao pedido de
interrupção. A propriedade irqId é o
identificador desta interrupção.

<<synch_msg>> Relacionamento MaxSize O relacionamento entre estas classes se dá
através de mensagens síncronas, implemen-
tadas por mecanismos providos pelo RTOS ou
pelo run-time system. A liberação da tarefa
transmissora da mensagem só ocorre quando
a tarefa receptora tiver respondido a
mensagem.

<<assynch_msg>> Relacionamento O relacionamento entre estas classes se dá
por meio do envio de mensagens assíncro-
nas. A tarefa transmissora não suspende sua
execução devido ao envio da mensagem. A
mensagem fica armazenada num buffer até
que a tarefa receptora esteja apta a consumi-
la.

<<function_call>> Relacionamento O relacionamento entre estas classes se dá
por meio de chamada de operação ou
função. É, portanto, síncrono, i.e., o
chamador suspende enquanto o chamado
executa. A thread não é suspensa, apenas a
função/operação chamadora.

<<atomic>> Função;
Acesso à variável

 A implementação da função ou do acesso à
variável garante a sua atomicidade,
dispensando o chamador de proteger a
chamado/acesso de interrupções ou de

alterações externas ao fluxo do programa.

<<r>> Relacionamento Acesso de leitura à variável.

<<w>> Relacionamento Acesso de escrita à variável.

<<rw>> Relacionamento Acesso de leitura e escrita à variável.

<<ar>> Relacionamento Acesso atômico de leitura à variável.

<<aw>> Relacionamento Acesso atômico de escrita à variável.

<<imarw>> Relacionamento Acesso atômico de escrita/leitura à variável.
A atomicidade é garantida por
mascaramento de interrupção.

<<nparw>> Relacionamento Acesso atômico de escrita/leitura à variável.
Atomicidade é garantida por bloqueio de
preempção.

<<msg_queue>> Classe Capacity Esta classe implementa um canal de comuni-
cação unidirecional entre duas threads. Atra-
vés deste canal a thread transmissora pode
enviar pacotes de informação (mensagens)
para a thread receptora. A msg_queue tem
uma capacidade de armazenamento de
mensagens que é configurável.

<<timer>> Classificador isPeriodic
Duration

Representa uma abstração de um serviço do
kernel responsável pelo envio de mensagens
assíncronas temporizadas ou pela mudança
de estado de uma tarefa (de Suspenso para
Pronto).

A propriedade lógica isPeriodic é verdadeira
quando este temporizador for periódico e é
falsa quando este temporizador for single-
shot. A propriedade Duration representa o
duração da temporização ou o seu período.

Algumas propriedades adicionais mais comuns são:

Propriedade Aplicável à Descrição
mutually exclusive Operações

Funções
As operações / funções envolvidas na restrição são
mutuamente exclusivas.

preemptable Thread
Função
Operação

Esta thread / função / operação tolera preempção.

non-preemptable Thread
Função
Operação

Esta thread / função / operação não tolera preempção.

A extensão proposta também define ícones associados a alguns dos estereótipos. São
eles:

• Ícone para temporizador (timer):

• Ícone para Message Queue:

Além de utilizar o já conhecido ícone para hardware:

5. Exemplos de Uso
A figura a seguir apresenta uma pequena fração do diagrama de objetos referente à Fila
de Temporizadores. Pode-se notar que o objeto tl da classe CTimerList tem os atributos
head_time e head, embora os mesmos não estejam listados na posição habitual, em um
dos compartimentos da representação gráfica do objeto. Da mesma forma, o objeto tl
tem uma operação denominada Insert, cujo parâmetro é do tipo CTimer. A notação
denominamos detalhada pois permite que se represente nos diagrama as propriedade e
relacionamentos de cada atributo ou operação de classe ou objeto.

Neste diagrama, observa-se que o atributo head_time é atômico, indicando que o mesmo
será acessado de forma indivisível (ou seja, a implementação garante que a seqüência de
instruções que acessam este atributo não pode ser interrompida). Da mesma forma, a
execução da operação Insert() também não pode ser interrompida, seja por preempção,
interrupção, ou outro motivo.

O atributo head aponta para o objeto tim1. Este, por sua vez, tem um atributo next que
aponta para tim2. Como o objeto tim2 é da mesma classe que tim1, não é mais
necessário repetir a notação detalhada, portanto, em tim2, o atributo next aparece na sua
posição habitual.

Na Figura 2 apresenta-se a recepção de caracteres por uma porta serial. A UART é o
hardware, estereótipo representado pelo seu ícone, que gera pedidos de interrupção
(<<irq>>). Estes são tratados pela operação UART_isr() da classe Serial. Esta operação
está estereotipada como <<ISR>>; durante sua execução faz acessos de leitura e escrita
ao atributo in_buffer_next_in. A atomicidade destes acessos está garantida pelo
mascaramento das interrupções durante a execução da UART_isr().

Figura 1 - Diagrama de Objetos de uma Fila de Temporizadores

<<ISR>>

UART_isr()

getChar()

Serial<<irq>>

<<attribute>>

in_buffer_next_in:uint

isPeriodic = true
Duration = 50 msec

<<function>>

Update()

<<assync_msg>>

<<thread>>

SerialMain()

<<thread>>

Receiver()

Put Get

UART
<<imarw>>

IrqPriorityLevel = 7
IrqNesting = false

Capacity = 32

Figura 2 –Interação entre tarefas

A cada 50 milisegundos uma mensagem assíncrona ativa a operação Update() da classe
Serial. A classe Serial é uma classe ativa e, portanto, tem uma thread associada, cuja
função principal é SerialMain(), uma operação da classe Serial. Esta função envia os
bytes recebidos através de uma MessageQueue, representada pelo ícone do tubo. A
direção do fluxo das mensagens pela MessageQueue é dada pela seta no tubo. A thread
SerialMain deposita mensagens na MessageQueue por meio da associação Put enquanto
a thread Receiver as recebe pela associação Get.

6. Considerações Finais
A extensão proposta, na forma de um Perfil de UML, embora ainda não concluída, tem
se mostrado de grande utilidade no desenvolvimento de um núcleo operacional de tempo
real, tanto no desenvolvimento do núcleo propriamente dito, como no desenvolvimento
de device drivers e de aplicações embarcadas. O uso deste Perfil em diferentes projetos,
irá definir necessidade adicionais, que poderão ser acrescentadas na forma de novos
estereótipos, propriedade e restrições.

Referências

[Aldawud 01] Aldawud, Omar, Elrad, Tzilla and Bader, Atef, "A UML Profile for Aspect
Oriented Modeling", OOPSLA 2001 - Workshop on Advanced Separation of Concerns in
Object-Oriented Systems, Tampa Bay, Florida - Outubro, 2001.

[Douglass 04] Douglass, Bruce Powel (2004) “Real-Time UML: Advances in the UML
for Real-Time Systems”, Addison-Wesley, USA.

[Esystech 07] eSysTech “Manual do Usuário: X Real-Time Kernel”, Agosto 2007.

[OMG 06] Meta Object Facility Core Specification version 2.0, OMG, January 2006.

[OMG 08] Object Management Group. www.omg.org. Acessado em Fev 2008.

[Rumbaugh 04] Rumbaugh, James; Jacobson, Ivar; Booch, Grady (2004) “The Unified
Modeling Language Reference Manual”. Addison-Wesley.

