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Abstract. This work explores energy as a parameter for QoS in embedded sys-
tems that are powered by batteries. The goal is to guarantee that the batteries
used in this system can last at least the time required by the application and
yet to preserve the deadlines of hard real-time tasks. We propose equations to
check at project-time if a given set of tasks is schedulable.At execution-time, a
preemptive scheduler for imprecise tasks based on the EDF algorithm prevents
the optional subtasks execution if the mandatory subtasks deadlines or the bat-
tery lifetime will not be met. A prototype was developed inEPOS using power
management mechanisms provided by the system.

Resumo. Este trabalho explora a energia como parâmetro para QoS em siste-
mas embarcados que são alimentados por baterias. O objetivoé garantir que
as baterias usadas nesses sistemas possam durar no mı́nimo o tempo requerido
pela aplicaç̃ao e ainda preservar osdeadlinesdas tarefashardde tempo real.
Nós propomos equações que verificam em tempo de projeto se um dado conjunto
de tarefaśe escalońavel. Em tempo de execução, um escalonador preemptivo
para tarefas imprecisas baseado no algoritmoEDF impede partes opcionais de
executarem caso osdeadlinesdas partes obrigat́orias ou o tempo de duração
da bateria ñao ser̃ao atendidos. Um protótipo foi desenvolvido noEPOScom a
utilização de seus mecanismos de gerência de energia.

1. Introdução

Sistemas embarcados são plataformas computacionais dedicados a executar um determi-
nado conjunto de tarefas com objetivos especı́ficos, como monitorar e/ou controlar os
ambientes nos quais estão inseridos. Normalmente, esses sistemas apresentam rigorosas
limitações em termos das capacidades de processamento e de memória. Além disso, mui-
tos deles, devido à natureza móvel das suas aplicações,são alimentados por baterias com
uma limitada carga de energia. Considerando todas essas limitações, é importante que
eles sejam capazes de gerenciar seus consumos de energia semcomprometer a execução
da aplicação.

O hardwaredos sistemas embarcados disponibiliza diferentes mecanismos para
realizar a gerência do consumo de energia. Dentre eles, são as técnicas de DVS (Dyna-
mic Voltage Scaling) e hibernação de recursos. Alguns trabalhos na literatura exploram
a integração dessas técnicas com abordagens que garantem qualidade de serviço (QoS).
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A maioria dessas abordagens, entretanto, apenas buscam minimizar o consumo de ener-
gia com o foco principal nas métricas tradicionais de QoS, como para processamento,
memória e comunicação. Como apresentado em um trabalho anterior [Wiedenhoft et al.
2007a], nós argumentamos que não é suficiente apenas garantir métricas tradicionais de
QoS se a carga da bateria termina antes do término das tarefas.

Nós utilizamos a energia como um parâmetro de QoS para atender o tempo de
duração do sistema especificado pelo usuário, e com isso,consideramos QoS em termos
de energia. Neste trabalho, o objetivo não é apenas reduzir o consumo de energia, mas
aumentar a utilidade da aplicação em um sistema com uma limitada carga de energia,
garantindo o tempo de duração do sistema e osdeadlinesdas tarefashard de tempo real.
A abordagem proposta espera que o desenvolvedor defina o per´ıodo mı́nimo em que o
sistema embarcado deve permanecer operacional. Através do monitoramento do tempo de
duração da bateria, o escalonador é capaz de selecionar as tarefas que serão executadas ou
pode diminuir os nı́veis de QoS com objetivo de reduzir o consumo de energia e aumentar
o tempo de duração do sistema.

Para alcançar nosso objetivo, o controle de QoS foi inspirado na computação im-
precisa [Liu et al. 1994]. A computação imprecisa divide as tarefas em duas partes: uma
implementa o fluxo obrigatório e outra implementa o fluxo opcional. O fluxo obrigatório é
a partehardde tempo real da tarefa, e deve sempre ser executado com o seudeadlineaten-
dido. O fluxo opcional é a parte “melhor esforço” da tarefa,o qual é executado apenas se
os requisitos temporais podem ser atendidos. O escalonadorda computação imprecisa im-
pede a execução das partes opcionais quando existe a possibilidade dodeadlinede alguma
parte obrigatória ser perdido, e assim, reduz a demanda porprocessamento do sistema.
Além disso, no nosso escalonador, propomos que as partes opcionais não sejam escalona-
das quando o nı́vel de energia não será suficiente para atender o tempo especificado pela
aplicação. Esse controle cria perı́odos ociosos no sistema, que permite ao escalonador
usar técnicas de gerência de energia para diminuir o consumo dos componentes durante
os perı́odos ociosos criados.

O escalonador proposto é baseado no escalonadorEarliest Deadline First[Liu
and Layland 1973] (EDF), no qual as tarefas com menoresdeadlinespossuem maiores
prioridades. Um protótipo desta proposta foi implementado no EPOS [Marcondes et al.
2006], um sistema operacional embarcado baseado em componentes. EPOS disponibi-
liza um conjunto de mecanismos para a gerência do consumo deenergia, desde uma
infra-estrutura que permite as aplicações realizarem a gerência apropriada [Hoeller et al.
2006], até um gerente com diferentes modos de operação que realiza a gerência para a
aplicação [Wiedenhoft et al. 2007b]. Além desses mecanismos, EPOSprovê um sistema
de monitoramento da carga da bateria, que informa a energia restante.

2. Trabalhos Relacionados

GRACE-OS [Yuan 2004] é um sistema operacional eficiente em termosde energia para
aplicações móveis de multimı́dia. Esse sistema usa técnicas de adaptações multi-camadas
para garantir QoS em sistemas comsoftwaree hardwareadaptativos. GRACE-OS com-
bina escalonamento de tempo real com mecanismos de DVS para dinamicamente geren-
ciar o consumo de energia. Ele foi implementado sobre o sistema operacional LINUX e
suporta apenas tarefassoft de tempo real. GRUB-PA [Scordino and Lipari 2004] é, de
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certa forma, semelhante ao GRACE-OS. A principal diferença é que GRUB-PA suporta
tanto tarefassoftde tempo real quanto tarefashard de tempo real.

Niu [Niu and Quan 2005] propôs minimizar a anergia consumida para sistemas
softde tempo real enquanto garante requisitos de QoS. Esse objetivo é alcançado através
de um algoritmo de escalonamento hı́brido (estático/dinˆamico) que utiliza DVS e através
de técnicas de particionamento do conjunto de tarefas em tarefas obrigatórias e em ta-
refas opcionais. Nesse trabalho, os requisitos de QoS são qualificados pela restrição
(m,k), a qual especifica que tarefas devem atender no mı́nimom deadlinesem qual-
querk liberações de tarefas consecutivas. Em um trabalho semelhante, Harada [Harada
et al. 2006] propôs resolver o compromisso entre a maximização dos nı́veis de QoS e a
minimização do consumo de energia. Nesse trabalho, cada tarefa é dividida em parte obri-
gatória e em parte opcional, e é realizada a alocação de ciclos e freqüência do processador
com garantias de QoS.

Outras pesquisas exploram um balanceamento entre QoS das aplicações e con-
sumo de energia através de adaptações nas aplicações visando atender o tempo especi-
ficado pelo usuário. Um sistema que utiliza essa técnica éODYSSEY [Flinn and Satya-
narayanan 1999]. ODYSSEY realiza o monitoramento da energia fornecida e da energia
necessária para executar as tarefas. Com essas informaç˜oes o monitor é capaz de seleci-
onar o estado correto entre economia de energia e qualidade da aplicação. Esse trabalho
também demonstra como as aplicações podem dinamicamente alterar seus comportamen-
tos (“fidelidade” dos dados) com o objetivo de economizar energia.

ECOSYSTEM [Zeng et al. 2002] é outro sistema operacional que suporta
aplicações adaptativas. Esse sistema é baseado em uma “moeda” corrente que as
aplicações utilizam para “pagar” (alocar) e utilizar recursos do sistema (CPU, disco,
rede), chamadacurrentcy. O sistema distribuicurrentciesperiodicamente para as tare-
fas de acordo com uma equação que define uma velocidade de descarga que a bateria
pode assumir para forçar o sistema a durar um perı́odo de tempo definido. Isso faz com
que as aplicações adaptem as execuções de acordo com seus currentcies. Esse modelo
unifica o cálculo de energia sobre os diferentes dispositivos dehardwaree proporciona
uma alocação satisfatória de energia entre as aplicaç˜oes.

3. Conceitos

Este trabalho objetiva garantir que a bateria usada em um sistema embarcado possa durar
no mı́nimo o tempo desejado pela aplicação e ainda preservar osdeadlinesdas tarefas es-
senciais, ou seja, osdeadlinesdas tarefashard de tempo real. Nosso escalonador realizar
diminuições controladas dos nı́veis de QoS com objetivo de economizar energia quando
é detectada que a carga da bateria não será suficiente paraatender o tempo especificado
pela aplicação. O controle da diminuição dos nı́veis deQoS da aplicação é inspirado nos
mecanismos da computação imprecisa [Liu et al. 1994], quedivide as tarefas em duas
partes: uma parte obrigatória e outra parte opcional. O escalonador proposto é baseado
no algoritmo de escalonamento EDF (Earliest Deadline First).

3.1. Computaç̃ao Imprecisa

Computação imprecisa é uma técnica de escalonamento originalmente proposta para aten-
der os requisitos temporais das tarefas de tempo real atrav´es de diminuições controladas
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dos nı́veis de QoS. O controle dos nı́veis de QoS realizado pela computação imprecisa
diminui a qualidade do resultado, não executando as partesopcionais, com objetivo de
garantir que nenhumdeadlinede execução das partes obrigatórias seja perdido.

Com a divisão de cada tarefa em duas partes, a computação imprecisa une a
computação de tempo real e as técnicas de “melhor esforço” para, respectivamente, a
parte obrigatória e a parte opcional. A parte obrigatóriadas tarefas gera resultados im-
precisos que refletem o mı́nimo de QoS para garantir que essesresultados sejam úteis.
Os resultados imprecisos têm suas qualidades elevadas quando as partes opcionais são
executadas, com a geração de resultados precisos.

Na literatura existem diversas possibilidades de aplicações da computação im-
precisa, como, por exemplo, o processamento de imagens. Neste exemplo, as partes
obrigatórias gerariam uma imagem com uma qualidade mı́nima aceitável, enquanto que
as partes opcionais aumentariam a qualidade dessa imagem. Os algoritmos “a qual-
quer tempo” são outras possibilidades de aplicações para a computação imprecisa, que
incluem: os métodos numéricos, os cálculos de raı́zes, os cálculos de polinômios, as
aproximações numéricas, e entre outros. Esses algoritmos, normalmente, implementam
métodos iterativos que refinam os resultados depois de cadaiteração. Nesse caso, quanto
mais tempo o algoritmo é executado, melhor é a qualidade doresultado. As aplicações
de controle&conforto são outras possibilidades para a computação imprecisa. Um exem-
plo é o monitoramento da temperatura de uma caldeira que pode derreter ou até mesmo
explodir caso ultrapasse uma certa temperatura. Nesse exemplo, o controle verifica em
perı́odos especı́ficos a temperatura da caldeira e aciona recursos para diminuir essa tem-
peratura caso ultrapasse um valor. O conforto pode realizarcálculos adicionais nos dados
das temperaturas obtidas, como a média das temperaturas analisadas em um determinado
perı́odo, a contagem do número de vezes que a temperatura chegou a um certo nı́vel, e
entre outros.

A partir desse conceito de divisão de cada tarefa em parte obrigatória e parte opci-
onal, a computação imprecisa mostra-se favorável para autilização em nossa proposta em
relação à energia. A figura 1 apresenta uma tarefa que consumiria X unidades de energia
obrigatoriamente, e quando dividida em parte obrigatória(Y unidades de energia) e parte
opcional (Z unidades de energia) permite a economia de Z unidades de energia caso a
parte opcional não seja executada.

Possibilidade de economia de
Z unidades de Energia

0 100 0 60 100

X unidades de Energia
Consumidas

Y + Z
unidades de Energia

OpcionalObrigatória

= X

Figura 1. Computaç ão imprecisa em relaç ão à energia consumida.

3.2. EDF

O algoritmo EDF (Earliest Deadline First) [Liu and Layland 1973] é um mecanismo de
escalonamento tempo real baseado em prioridades dinâmicas e muito utilizado na litera-
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tura. EDF distribui maiores prioridades para as tarefas comdeadlinesmais curtos. Em
tempo de projeto, um teste de escalonabilidade avalia a possibilidade de alguma tarefa
perder o seu respectivodeadline. Em tempo de execução, um escalonador preemptivo
escolhe a tarefa em estadoProntode mais alta prioridade.

Um teste de escalonabilidade exato para o algoritmo EDF é apresentado a seguir.
O sistema de tempo real considerado contémn tarefas periódicas e independentes,τ =
{τ0, τ1, ..., τn−1}. Cadaτi é caracterizado por três parâmetros,(Pi, Di, Ci), onde,Pi é o
perı́odo em que a tarefai é escalonada,Di é o prazo (deadline) máximo de conclusão
relativo ao instante da liberação da tarefai eCi é o tempo de execução da tarefai no pior
caso (incluı́do tempos de espera pela inversão de prioridades). Para este teste é suposto
que∀τi, Di = Pi . A utilizaçãoUi de uma tarefai em termos de processamento é
representada pela equaçãoUi = Ci

Di
. A capacidade de um processador é definida como 1,

ou seja, 100%. Um sistema comω processadores possui capacidadeω. Dessa forma, para
as tarefas serem escalonáveis no algoritmo EDF, o somatório das utilizações de todas as
tarefas deve ser menor ou igual a capacidade dos processadores, ou seja,

n
∑

i=1

(

Ci

Di

)

≤ ω (1)

ondeω = 1 para um sistema com mono-processador. Caso
∑n

i=1 Ui > ω, o processador
estará sobrecarregado e as tarefas não são escalonáveis nesse algoritmo.

4. Escalonador

O nosso escalonador, baseado no algoritmo EDF, garante a execução das partes obri-
gatórias com os seus respectivosdeadlinesatendidos, independentemente do nı́vel de
energia do sistema. Entretanto, a execução das partes opcionais não é garantida. Nesta
proposta, as partes opcionais são executadas somente se osdeadlinesdas partes obri-
gatórias e o tempo de duração da bateria desejado são sustentados. A figura 2 representa
as tarefas que atendem ao parâmetro de energia (tempo de duração do sistema) e as tarefas
que atendem ao parâmetro do tempo (deadlinedas partes obrigatórias). A intersecção des-
sas representações indica as tarefas que podem ser executadas e que serão atendidas em
relação aos dois parâmetros desejados (energia e tempo). As tarefas fora dessa intersecção
não são escalonáveis neste algoritmo.

Energia Tempo

Figura 2. Intersecç ão entre a energia e o tempo.
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O objetivo deste escalonador não é apenas economizar a energia consumida no
sistema, pois, caso contrário, a técnica seria simplesmente nunca executar as partes op-
cionais. A partir disso, o objetivo é atender o tempo especificado pela aplicação com
a execução dentro dosdeadlinesdas partes obrigatórias e com a execução do máximo
possı́vel das partes opcionais, ou seja, otimizar a utilidade da aplicação.

O algoritmo do escalonador proposto neste trabalho é apresentado na figura 3, no
qual as partes obrigatórias e opcionais são tratadas comotarefas em termos de escalona-
mento. Neste algoritmo,π é o intervalo entre medições da carga da bateria que pode ser
especificado pelo programador da aplicação e que deve levar em consideração que cada
medição também consome energia para ser realizada. Esseintervalo depende do estado
de energia da bateria constatado na última medição. Casoa última medição constate que
existe energia suficiente e que ultrapasse um determinadothreshold, o valor do intervalo
será maior, pois o sistema não necessita que sejam realizadas medições freqüentes. Entre-
tanto, caso a última medição constate que a energia existente não é suficiente para atender
o tempo de duração especificado, as medições devem ser mais freqüentes, pois tarefas
opcionais estão sendo descartadas.

1: FOR cada tarefa que entra no estado dePronto:
2: Calcula o novodeadlineabsoluto de acordo com o tempo decorrido
3: Calcula a prioridade baseada nodeadlineabsoluto
4: Adiciona na fila de acordo com a prioridade calculada
5:
6: FOR cadaπ unidades de tempo: /*π especificado pelo programador e depende do estado de energia*/
7: Afere a bateria
8: Verifica se existe energia suficiente para atender o tempo desejado pela aplicação
9:
10: FOR cada reescalonamento:
11: Seleciona na fila a tarefa com estadoProntode mais alta prioridade
12: IF , tarefa éhard de tempo real,THEN
13: Executa a tarefa selecionada
14: ELSE, /* tarefa é melhor esforço */
15: IF , existe energia suficiente para atender o tempo de duraçãorequerido,THEN
16: Executa a tarefa selecionada
17: ELSE, /* bateria não possui energia suficiente */
18: Executa a gerência de energia
19:

Figura 3. Algoritmo do escalonador proposto.

4.1. Testes de Escalonabilidade em Tempo de Projeto

Como o escalonador proposto é baseado no algoritmo EDF, é possı́vel seguir a mesma
lógica para o cálculo da escalonabilidade das tarefas em tempo de projeto com algu-
mas adaptações. Supondo que o sistema de tempo real considerado possuan tarefas
periódicas e independentes,τ = {τ0, τ1, ..., τn−1}, sendo∀τi, Di = Pi . No modelo da
computação imprecisa, cadaτi é dividida em parte obrigatória e parte opcional com tem-
pos de execuções nos piores casos, respectivamente, deµi e θi. Com isso, o tempo total
de execução deτi no pior caso éCi = µi + θi . Para atender o nosso objetivo em relação
aosdeadlinesdas partes obrigatórias, a equação (2) deve ser respeitada
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n
∑

i=1

(

µi

Di

)

+ σ ≤ ω (2)

ondeω = 1 para um sistema com mono-processador, eσ representa o pior caso
de interferências, que inclui: tempo gasto no sistema operacional, nas trocas de contexto,
no próprio algoritmo de escalonamento. A equação (2) deve ser atendida para as tare-
fas serem escalonáveis em relação aosdeadlinesdas partes obrigatórias, caso contrário
(
∑n

i=1

(

µi

Di

)

+ σ > ω), o processador estará sobrecarregado.

Com a inclusão do tempo de execução da parte opcional na equação (2), podemos
determinar se as tarefas como um todo serão executadas (parte obrigatória e parte opcio-
nal). Entretanto, é importante observar que a equação (3) não é um requisito fundamental
no nosso algoritmo e será relevante, apenas, quando a equac¸ão (2) é válida, caso contrário,
as tarefas já não seriam escalonáveis.

n
∑

i=1

(

µi + θi

Di

)

+ σ ≤ ω (3)

As partes obrigatórias e as partes opcionais são escalon´aveis em relação aos seus
deadlinesquando a equação (3) for respeitada. Caso contrário, umacerta fraçãoχ das
partes opcionais é descartada. A equação (4) apresenta como encontrar a fraçãoχ.

χ =

∑n
i=1

(

µi+θi

Di

)

+ σ − ω
∑n

i=1

(

θi

Di

) (4)

O objetivo em relação à energia pode ser alcançado seguindo o mesmo tipo de
raciocı́nio lógico que foi realizado até o presente momento, mas tendo em vista a o con-
sumo de energia das tarefas. O consumo de energia deτi no pior caso,Ei, é dado pela
soma dos consumos de energia da parte obrigatória e da parteopcional nos piores casos,
respectivamente,Eµi eEθi , (Ei = Eµi +Eθi). Nós supomos que, semelhante aos tempos
de execuções nos piores casos, os consumos de energia nos piores casos são previamente
conhecidos pelo programador da aplicação. Esses valorespodem ser obtidos traçando
os perfis ou através de outras técnicas. O número máximo possı́vel de execuções,ηi,
de τi no tempo requerido pela aplicação,Tt, é dado pela divisão entre o tempo reque-
rido e o intervalo de execução deτi, ou seja,ηi = Tt

Pi
. Tt é dado pelo programador da

aplicação baseado na capacidade da bateria. Com o intuitode atender, no mı́nimo, as
partes obrigatórias das tarefas, temos a equação (5) queindica se o conjunto das tarefas
será escalonável em relação à energia.

n
∑

i=1

(

Eµi × ηi

Et

)

+ ǫ ≤ 1 (5)

OndeEt é a energia total do sistema (especificação da bateria), ou seja, a ca-
pacidade da bateria,ǫ representa o pior caso do consumo de energia de diferentes fato-
res, como, a energia consumida pelo sistema operacional, pelas trocas de contexto, pelo
próprio algoritmo de escalonamento. A capacidade do sistema em relação à energia é
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definida como 1, ou seja, 100%. Substituindoηi de τi na equação (5) temos a equação
(6).

n
∑

i=1

(

Eµi × Tt

Pi × Et

)

+ ǫ ≤ 1 (6)

As tarefas são escalonáveis em relação à energia no nosso algoritmo se a equação
(6) for atendida. Caso contrário (

∑n
i=1

(

Eµi×Tt

Pi×Et

)

+ǫ > 1), o sistema não atenderá ao tempo
de duração requerido pela aplicação para esse conjuntode tarefas.

A inclusão da energia consumida pelas partes opcionais no pior caso na equação
(6) possibilita que verifiquemos se as tarefas, como um todo (parte obrigatória e parte
opcional), serão executadas. Como discutido anteriormente, isso não é um requisito obri-
gatório e a equação (7) só deve ser calculada se a equaç˜ao (6) é respeitada, ou seja, partes
obrigatórias atendidas.

n
∑

i=1

(

(Eµi + Eθi) × Tt

Pi × Et

)

+ ǫ ≤ 1 (7)

Caso a equação (7) seja respeitada, todas as partes obrigatórias e opcionais das
tarefas são executadas em relação à energia do sistema.Caso contrário, uma determinada
fraçãoγ das partes opcionais não será executada, pois o sistema n˜ao atenderia ao tempo
de duração desejado pela aplicação. A equação (8) fornece a fração de partes opcionais
descartadas em relação à energia.

γ =

∑n
i=1

(

(Eµi+Eθi)×Tt

Pi×Et

)

+ ǫ − 1
∑n

i=1

(

Eθi×Tt

Pi×Et

) (8)

Neste algoritmo, o objetivo é atender os dois parâmetros em relação ao tempo e
à energia, respectivamente, osdeadlinesdas partes obrigatórias e o tempo de duração
da bateria especificado pela aplicação. Com isso, (9) é a equação completa do nosso
escalonador que deve ser verdadeira para as tarefas serem escalonáveis.

[

n
∑

i=1

(

µi

Di

)

+ σ ≤ ω

]

∧

[

n
∑

i=1

(

Eµi × Tt

Pi × Et

)

+ ǫ ≤ 1

]

(9)

As partes obrigatórias das tarefas tem as execuções garantidas no nosso escalo-
nador em relação aos seusdeadlinese ao parâmetro de energia caso a equação (9) seja
respeitada. A fração máximaλ possı́vel de tarefas opcionais perdidas em relação aos dois
parâmetros pode ser obtida através da equação (10).

λ = max (χ, γ) (10)

4.2. Teste de Escalonabilidade em Tempo de Execução

Com objetivo de prover QoS em termos de energia e aproveitar melhor os recursos
com a execução das partes opcionais é necessário verificar periodicamente em tempo
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de execução se o tempo de duração do sistema requerido pela aplicação,Ttκ, no instante
κ pode ser alcançado. Para isso,Ttκ é recalculado no instanteκ de acordo com o tempo
decorrido. A energia total do sistema (carga da bateria),Etκ, também, deve ser recal-
culada no instanteκ . As plataformas dos sistemas embarcados, normalmente, provêm
mecanismos para obter a carga da bateria. Os novos valores podem realimentar a equação
(11) com o intuito de verificar seTtκ pode ser atendido.

n
∑

i=1

(

Eµi × Ttκ

Pi × Etκ

)

+ ǫ ≤ 1 (11)

As partes obrigatórias possuem garantia de execução e, assim, as partes opcio-
nais podem ser escalonadas caso a equação (11) seja atendida, pois essa equação indica
que existe energia suficiente para atenderTtκ. Caso contrário, as partes opcionais serão
descartadas. O escalonador chama um gerente do consumo de energia no tempo em que
as partes opcionais estariam em execução, aproveitando otempo ocioso do sistema para
economizar energia. Quando for constatado que a equação (11) volta a ser verdadeira, as
partes opcionais das tarefas voltam a ser escalonadas.

Em princı́pio, nós supomos que a energia consumida pela pr´oxima parte opcional
a ser escalonada é irrelevante com relação a energia total do sistema. Entretanto, se essa
constatação não for verdadeira necessitamos adicionarna equação (11) a energia no pior
caso da próxima parte opcional a ser escalonada. Nesse caso, se a equação não for ver-
dadeira é necessário descartar essa parte opcional e adicionar na equação a próxima a ser
escalonada e, assim, sucessivamente até ser encontrada uma parte opcional que respeite a
equação, caso nenhuma atenda, o gerente de energia é acionado.

5. Implementaç̃ao

Um protótipo foi desenvolvido com o intuito de testar a abordagem de escalonamento
proposta usando o EPOS(Embedded Parallel Operating System) [Marcondes et al. 2006].
EPOSé umframeworkcom componentes hierarquicamente organizados para a gerac¸ão de
sistemas especı́ficos a uma determinada aplicação embarcada. O EPOSanalisa o conjunto
das aplicações dedicadas que ele deve suportar para a geração do sistema, e então, confi-
gura o sistema de acordo. Além disso, através das abstrações, mediadores dehardwaree
aspectos, o EPOSpermite o desenvolvimento de aplicações totalmente independentes de
plataformas. Esse sistema suporta desde uma arquitetura de32 bits (IA32, PowerPC) até
uma arquitetura de 8 bits (AVR8).

No EPOS, todo componente do sistema implementa uma interface uniforme de
gerência de energia [Hoeller et al. 2006]. Essa infra-estrutura permite às aplicações
interagirem com o sistema para implementar uma apropriada gerência de energia para
sistemas embarcados. Com a utilização dessa infra-estrutura, o EPOS disponibiliza um
gerente de energia dinâmico com baixos sobrecustos para a aplicação [Wiedenhoft et al.
2007b]. Esse gerente de energia usa heurı́sticas “replugáveis” para a gerência de energia,
permitindo configurabilidade e adaptabilidade para aplicações especı́ficas. O gerente do
EPOSpossui diferentes modos de operação: a possibilidade de escolha se o gerente será
habilitado ou não, a possibilidade de configurar somente oscomponentes desejados pela
aplicação para a gerência, e se o gerente será ativo ou passivo na gerência de energia.
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EPOS também disponibiliza um monitor da carga da bateria, o que contribui para
alcançarmos os objetivos deste trabalho. O monitor do EPOSé baseado na observação da
tensão da bateria para obter a carga da mesma, pois as baterias possuem a caracterı́stica
de ter suas tensões reduzidas conforme a utilização. Entretanto, existem alguns detalhes
a serem observados, pois a tensão amostrada não é relacionada linearmente com a taxa de
descarga da bateria, o sistema não tem a capacidade de converter toda a tensão fornecida
em recurso utilizável e, também, existe uma tensão mı́nima em que o sistema opera. A
figura 4 apresenta o gráfico Tensão X Tempo, no qual pode ser observado que a taxa
de diminuição da tensão é variável no tempo. A partir disso, o monitor estabelece uma
relação discreta entre a tensão obtida e a carga da bateria, através da divisão das tensões
obtidas em 10 fatias de tempo, chamadas épocas, nas quais astensões possuem diferentes
variações, como apresentado no gráfico. Cada época corresponde a uma porcentagem da
capacidade nominal da bateria utilizada.

( V )

( T )

Figura 4. Gr áfico da Tens ão X Tempo.

O monitor do EPOSnão realiza um acompanhamento constante da tensão real da
bateria, apesar disso ser possı́vel, pois cada leitura consome energia para ser realizada,
além de um sobrecusto considerável para a aplicação. Para diminuir esses efeitos, o mo-
nitor utiliza uma estrutura com informações conhecidas previamente que permite acom-
panhar o consumo de energia de uma forma aproximada. As informações são a respeito
das caracterı́sticas especı́ficas da bateria e dos consumosde energia pelos componentes
de hardwaredo sistema a ser monitorado. No inı́cio da execução o monitor verifica a
carga da bateria através da tensão, como mencionado anteriormente, e durante a execução
atualiza esse valor com as energias consumidas pelos perif´ericos do sistema.

Nós estendemos EPOS para suportar o nosso algoritmo de escalonamento com
tarefas imprecisas e execuções condicionais aos parâmetros de tempo e de energia. As
tarefas imprecisas no EPOS foram modeladas com base nas funções monotônicas da
computação imprecisa. Nessa modelagem, as tarefas melhoram a qualidade do resul-
tado durante o tempo que permanecem executando e na pior das hipóteses não alteram
o resultado. Com isso, a parte obrigatória retorna a solução com o mı́nimo de QoS ne-
cessária para a continuidade da aplicação e a parte opcional faz refinamentos sucessivos
nessa solução. O término dessas tarefas pode ocorrer em qualquer momento da execução
sem ocasionar problemas de integridade no resultado, assimsendo, o escalonador pode
decidir em qualquer instante finalizar a execução da parteopcional. A aplicação fica res-
ponsável pela integridade dos resultados através de diferentes métodos, como o uso de
bits de controle ou mesmo o uso detimestampsda última atualização dos dados.
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A implementação das tarefas imprecisas no EPOS foi realizada através da criação
de duasthreads, uma contendo o fluxo de execução da parte obrigatória e outra com o
fluxo de execução da parte opcional. O sistema cria essasthreadsde uma forma trans-
parente para o programador da aplicação. Essa abordagem apenas espera que o progra-
mador especifique, no momento da criação de uma tarefa imprecisa, dois ponteiros para
funções: um para a parte obrigatória e outro para a parte opcional, com os seus respectivos
parâmetros.

Na execução, o escalonador sempre escolhe a parte de mais alta prioridade de
acordo osdeadlinescomo nosso algoritmo é baseado no EDF. As partes opcionais são
escalonadas quando não existirem partes obrigatórias com o estadoPronto e se houver
energia, ou seja, as partes opcionais possuem prioridades inferiores as partes obrigatórias.
Caso uma parte obrigatória entre no estadoPronto e sua parte opcional ainda não te-
nha terminado de executar no perı́odo anterior, o escalonador imediatamente finaliza a
execução da parte opcional. Essas caracterı́sticas fazem com que não ocorram perdas
dosdeadlinesdas partes obrigatórias. O contexto da parte opcional é sempre reiniciado
quando ela sai do estadoProntoe entra no estadoEsperando.

O escalonador também atualiza em tempo de execução oTtκ com o tempo de-
corrido no sistema e oEtκ com a utilização do monitor de energia do EPOS. Com essas
variáveis atualizadas, o escalonador realimenta a equação (11) em perı́odosπ de tempos
para determinar se o sistema é capaz de manter a carga de trabalho sem que a bateria ter-
mine antes deTtκ seja alcançado.π dependerá do resultado da última análise de energia.
No melhor caso, a equação (11) é atendida e as partes opcionais podem ser escalonadas.
Caso contrário, as partes opcionais serão descartadas e oescalonador executa (nesses in-
tervalos que as partes opcionais estariam em execução) o gerente de energia do EPOSque
encontra-se no modo passivo. Nesse caso, além da economia de energia por não execu-
tar as partes opcionais, o gerente reduz o consumo global do sistema através do uso de
técnicas de gerência de energia. No instanteκ + ι em que o escalonador identifique que
Ttκ+ι pode ser alcançado novamente, o sistema volta a escalonar as partes opcionais.

6. Conclus̃ao

Este trabalho propôs uma abordagem que explora a energia como um parâmetro de QoS
em sistemas embarcados móveis para atender o tempo de durac¸ão do sistema e, ainda,
preservar osdeadlinesdas tarefashard de tempo real. Nossa abordagem foi inspirada
pelos conceitos de tarefas imprecisas, que são tarefas quepodem ser divididas em parte
obrigatória e parte opcional. Neste artigo, testes de escalonabilidade em tempo de projeto
foram apresentados com o objetivo do programador da aplicac¸ão verificar se o conjunto
de tarefas utilizado será escalonável no nosso algoritmocom relação aos dois parâmetros
desejados, ou seja, tempo e energia. Em tempo de execução,nosso escalonador baseado
no algoritmo EDF garante osdeadlinesdas partes obrigatórias e com a realimentação
da equação de energia verifica se o tempo de duração do sistema exigido será alcançado.
Caso algum dos parâmetros desejados seja comprometido, aspartes opcionais serão des-
cartadas, ou seja, será realizada uma diminuição dos nı́veis da qualidade de serviço da
aplicação. Um protótipo foi desenvolvido no EPOS, que permitiu a execução de um ge-
rente de energia nos perı́odos ociosos em que as partes opcionais foram impedidas de
executar, consumindo menos energia e aumentando o tempo de duração da bateria.
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Systems Portability: 8 bits and beyond. In11th IEEE ETFA, pages 124–130, Prague,
Czech Republic.

Niu, L. and Quan, G. (2005). A hybrid static/dynamic dvs scheduling for real-time sys-
tems with (m, k)-guarantee.rtss, 0:356–365.

Scordino, C. and Lipari, G. (2004). Using resource reservation techniques for power-
aware scheduling. InACM EMSOFT ’04, pages 16–25, New York, NY, USA. ACM
Press.

Wiedenhoft, G. R., Hoeller, A. S. J., and Fröhlich, A. A. (2007a). Quality-Of-Service:
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