
Gerência de tempo no Sistema Operacional EPOS

Giovani Gracioli, Danillo Moura Santos, Roberto de Matos,
Lucas Francisco Wanner, Antônio Augusto Fröhlich

1Laboratório de Integração Software e Hardware (LISHA)
Universidade Federal de Santa Catarina (UFSC)

Caixa Postal 476, 88049-900, Florianópolis, SC, Brasil

{giovani,danillo,roberto,lucas,guto}@lisha.ufsc.br

Resumo. Uma das tarefas de um sistema operacional é o tratamento de even-
tos de tempo. Tradicionalmente a gerência de tempo é baseada em interrupções
periódicas de um dos relógios de hardware do sistema (ticks). Porém, esta abor-
dagem apresenta limitações, como falta de precisão, maior custo computacional
e maior consumo de energia. Isso motivou a procura por novas soluções, e o
emprego de técnicas de temporizadores não periódicos (ex.: one-shot timers)
tornou-se freqüente, principalmente em sistemas operacionais de propósito es-
pecífico, que possuem algum tipo de restrição de tempo, energia ou processa-
mento (ex.: sistemas embarcados, de tempo real e multimídia). Este trabalho
faz uma comparação entre as implementações de temporizadores de disparo
único e temporizadores periódicos na gerência de tempo do sistema operaci-
onal EPOS. São apresentados os impactos no tamanho de código do sistema
(Footprint), número de trocas de contextos, número de execuções do tratador de
interrupção e tempo de computação em diferentes cenários de execução.

Abstract. One of the tasks of an operating system is to handle time events. Tra-
ditionally, time management is based on periodical interrupts from one of the
system’s hardware timers (ticks). However, this approach presents limitations,
such as lack of precision, large overhead, and large power consumption. These
limitations have motivated the use of non-periodical timers (e.g. one-shot ti-
mers), specially in specific-purpose operating systems with timing restrictions,
such as embedded, real-time, and multimedia systems. This work presents a
comparison between single-shot and periodical timer implementations in the
time management abstractions in the EPOS operating system. We present the
impact of the different implementation in terms of memory footprint, number of
context switches, number of interrupt handler executions and run time in diffe-
rent execution scenarios.

1. Introdução

Tradicionalmente os sistemas operacionais de propósito geral implementam tempori-
zações baseadas em interrupções periódicas de um dos relógios de hardware do sis-
tema (ticks). Com a proliferação dos sistemas computacionais e o emprego des-
ses nas mais diversas aplicações, foram revelados problemas nessas abordagens que
utilizam gerenciamento de tempo periódico [Tsafrir et al. 2005, Farines et al. 2000,
Aron and Druschel 2000], entre eles: a falta de precisão, maior custo computacional e

SBC 2008 46

maior consumo de energia. Isso motivou a procura por novas soluções e o emprego da téc-
nica de temporizadores não periódicos, como por exemplo, os temporizadores de disparo
único (one-shot timers). Estas técnicas passaram a ser empregadas em sistemas operacio-
nais de propósito específico, tais como sistemas embarcados, de tempo real e multimídia,
os quais possuem algum tipo de restrição de tempo, energia ou processamento.

Os temporizadores periódicos são implementados baseados em interrupções de
um relógio de hardware (ticks). A cada tick, o kernel executa tarefas administrativas como
verificação de alarmes a serem disparados, contagem de tempo da tarefa que está execu-
tando no processador, análise de escalonamento, preempções e outros serviços periódicos
do sistema. Esse tipo de abordagem revela vários problemas [Tsafrir et al. 2005]: des-
perdício de energia no caso de sistemas embarcados e móveis, problemas de segurança,
tarefas soft real-time e multimídia ficam sujeitas a precisão limitada do relógio do sistema.

Além desses problemas, a implementação de temporizadores periódicos pode
gerar erros grosseiros nos serviços de temporização providos pelo SO às tare-
fas [Farines et al. 2000]. Por exemplo, no sistema operacional Linux, a resolução do
temporizador é de 10ms. Suponha que uma aplicação solicite uma temporização de 15ms
logo após o retorno de interrupção do temporizador. Nesse cenário, a tarefa deve esperar
até a próxima interrupção, onde o sistema começa a contagem do tempo e ainda esperar
20ms, duas interrupções de 10ms. Assim, uma tarefa que solicitou uma temporização de
15ms deverá esperar 30ms para ter sua temporização atendida, o que para muitas aplica-
ções é inaceitável.

Uma das alternativas para solucionar esses problemas é a utilização da gerência de
tempo não periódica, tendo como abordagem mais comum, os temporizadores de disparo
único (one-shot timers), ou seja, a interrupção do temporizador acontecerá somente no
momento para o qual foi agendado. Esses temporizadores são diferentes dos temporiza-
dores periódicos, onde um temporizador é disparado com uma freqüência predefinida e
a lógica de controle de tempo é feita em software. Temporizadores periódicos possuem
um período, tempo levado para um disparo, que é a unidade mínima de temporização
do sistema que o utiliza. Por sua vez, temporizadores de disparo único são programados
em hardware, por isso a resolução máxima de tempo suportada é a resolução do próprio
temporizador em hardware.

Este trabalho faz uma análise de duas implementações de gerência de tempo no
sistema operacional EPOS, uma baseada em temporizadores de disparo único e a outra
baseada em temporizadores periódicos. São apresentados os impactos no tamanho de
código do sistema (Footprint), número de trocas de contextos, número de execuções do
tratador de interrupção, e no tempo de computação das Threads. Esta análise visa discutir
os pontos positivos e negativos da implementação baseada em temporizadores de disparo
único em relação à implementação baseada em temporizadores periódicos.

Esse artigo está organizado da seguinte forma: na seção 2 são apresentados os
trabalhos relacionados e as diferentes abordagens na gerência de tempo em um SO en-
contradas na literatura; na seção 3 é descrita a gerência de tempo do sistema operacional
EPOS já existente e a abordagem baseada em (one-shot timers); a apresentação dos re-
sultados e sua análise são feitas na seção 4 e as considerações finais aparecem na seção
5.

SBC 2008 47

2. Trabalhos Relacionados

Em [Tsafrir et al. 2005] é apresentada uma análise dos problemas da falta de precisão,
da assincronicidade e consumo de energia na utilização dos temporizadores periódicos
e propõe uma solução baseada em uma abordagem chamada Smart Timers. Os Smart
Timers são definidos com três características básicas: 1) Temporização precisa com limite
configurável da latência máxima; 2) Overhead reduzido agregando eventos próximos e 3)
Overhead reduzido evitando a sobrecarga desnecessária de eventos periódicos.

Kohout [Kohout et al. 2003] apresenta estratégias utilizadas para suportar de ma-
neira eficiente sistemas operacionais de tempo real com alguns componentes implemen-
tados em hardware. O intuito é diminuir o impacto causado pelo sistema operacional
de tempo real na aplicação. Este impacto é medido em termos de tempo de resposta e
utilização da CPU. Neste trabalho é proposto um gerenciador de tarefas Tempo Real (do
inglês Real Time Task Manager - RTM), que é uma espécie de banco de dados de tarefas
em hardware, sendo implementado como um periférico no mesmo chip do processador
(desde que o processador esteja em uma FPGA). O RTM suporta funções de núcleo, como
no caso do gerenciamento de tempo, causando uma redução de até 10% (com 24 tarefas)
na utilização do processador para tratamento de ticks do timer do sistema.

Soft Timer [Aron and Druschel 2000] é uma implementação de temporizadores
que não é vinculada somente as interrupções do relógio de hardware. Essa abordagem
aproveita o retorno de chamadas do sistema para verificar se existe alguma tarefa pendente
e assim liberá-la. Característica que possibilita a diminuição do número das trocas de
contexto, do número e do overhead das interrupções do relógio físico, já que as chamadas
ao sistema acontecem a uma taxa muito maior que as interrupções do relógio. Por outro
lado, como a freqüência exata das chamadas ao sistema é imprevisível, não existe uma
garantia de precisão e a estrutura de temporizadores periódicos tradicionais são utilizados
para certificar o funcionamento mínimo do sistema.

Firm Timer [Goel et al. 2002] combina três abordagens diferentes: temporizado-
res de disparo único, soft timers, [Aron and Druschel 2000] e temporizadores periódicos
para prover um mecanismo eficiente de alta resolução e baixo overhead. Essa combinação
permite reduzir a necessidade de interrupções, atenuando o risco de overheads excessivos.

A base da maioria desses trabalhos é evitar as intervenções desnecessárias do sis-
tema operacional causadas pelo tratamento de interrupções do temporizador, onde na
maior parte do tempo a única ação é incrementar o contador de ticks do sistema. Com
a abordagem dos temporizadores de disparo único a interrupção acontecerá somente no
momento para o qual foi agendado, evitando o overhead do tratamento de interrupções
periódicas. Mesmo com o tratamento dessa interrupção de agendamento sendo mais com-
plexo, devido a necessidade de re-programação do temporizador para a próxima tarefa da
fila, na maioria dos casos, onde o intervalo entre acordar as tarefas é maior que o de um
tick do sistema, os temporizadores de disparo único possuem melhor desempenho. Nas
próximas seções serão apresentadas as duas implementações da gerência de tempo (perió-
dica e one-shot timer) no sistema operacional EPOS e os impactos causados no sistema.
Na próxima seção são apresentados os resultados comparativos da nova implementação.

SBC 2008 48

3. Gerência de Tempo no EPOS

O EPOS (Embedded Parallel Operating System) é um sistema operacional para sistemas
embarcados desenvolvido seguindo a AOSD [Fröhlich 2001] (Application-Oriented Sys-
tem Design), que faz uso da Engenharia de Domínio para definir componentes que repre-
sentam entidade significantes de um domínio. O sistema operacional EPOS ainda com-
bina conceitos de FBD (Family-Based Design), AOP (Aspect-Oriented Programming),
Orientação a Objetos e Meta-Programação Estática na qual permite a organização de
famílias de componentes independentes de cenário. Através de um metaprograma que
utiliza regras de composição, o EPOS possui um framework de componentes que permite
a geração de sistemas adaptados à aplicação. As abstrações do sistema são adaptadas
aos cenários de execução utilizando-se técnicas de orientação a aspectos, aplicadas com
Adaptadores de cenários [Fröhlich and Schröder-Preikschat 2000]. Regras coordenam as
operações realizadas pelo metaprograma, especificando restrições e dependências para a
composição das abstrações do sistema. Cada aspecto pode ser aplicado individualmente
a cada abstração do sistema, por exemplo, a aplicação do aspecto concorrência em um
componente faz com que este tenha seus métodos de acesso guardados por um Mutex ou
Semáforo. O uso de metaprogramação para a composição das abstrações do sistema não
adiciona overhead em tempo de execução.

O uso de mediadores de hardware [Polpeta and Fröhlich 2004] ainda permi-
tem que o mesmo sistema suporte arquiteturas distintas (ex. H8, AVR, POWERPC,
SPARCV8, IA32) mantendo uma mesma interface com a aplicação. Basicamente os
mediadores de hardware são construções que encapsulam dependências arquiteturais em
sistemas projetados seguindo AOSD, dando aos componentes de hardware como CPU,
FPU, barramentos entre outros, interfaces comuns de Sistema Operacional. Por exemplo,
no caso da gerência de tempo, os temporizadores em hardware apresentam diversas fun-
ções distintas, e podem ser configurados de diversas formas diferentes. Um temporizador
pode atuar como um modulador de largura de pulsos controlando um circuito analógico,
como Watchdog, como temporizador de intervalo programável ou um simples temporiza-
dor de intervalo fixo. Cada um desses possíveis tipos de temporizadores possuem as suas
peculiaridades de configuração.

No nível mais alto do sistema EPOS o tempo é manipulado pela família de abstra-
ções denominada Timepiece, composta pelas abstrações Clock, Alarm e Chronometer.
Cada abstração possui uma função específica no sistema, a abstração Clock é responsá-
vel por armazenar o tempo corrente e está disponível apenas em sistemas que possuem
dispositivos de relógios de tempo-real (RTC); a abstração Chronometer é utilizada para
realizar medições de tempo com alta precisão; e a abstração Alarm pode ser utilizada para
gerar eventos, para acordar uma Tarefa/Thread ou chamar uma função. Essa família é su-
portada pelos mediadores de hardware Timer, TimeStamp Counters (TSC) e Real-Time
Clocks. [Marcondes et al. 2006]

A periodicidade do sistema é caracterizada na abstração Alarm, que por sua vez,
é suportada pelo mediador Timer que configura o temporizador de hardware para ge-
rar interrupções a uma freqüência determinada. No atendimento dessas interrupções são
contabilizados os ticks e executada uma rotina para verificação e liberação de eventos
agendados. Além do overhead causado pelo atendimento periódico das interrupções, se
um evento for agendado para um tempo menor ou não múltiplo que o período do sistema,

SBC 2008 49

a invocação da tarefa agendada pode ser atrasada por erros de arredondamento inerentes a
granularidade dos ticks. A Figura (1) apresenta o diagrama de classes das duas principais
abstrações que compõe o gerenciamento de tempo do sistema EPOS para a arquitetura
AVR. A Abstração Alarm utiliza dois Timers em Hardware disponíveis na arquitetura
AVR. Um destes Timers, o ATMega128_Timer_3, é utilizado para controlar a fila de re-
quisições do Alarm, este é um Timer de 16 bits, o que permite o agendamento de Alarmes
de até aproximadamente 9 segundos com o Clock do sistema em∼ 7.2MHz e PRESCALE
de 1024 no Clock do Timer. O outro Timer, ATMega128_Timer_1, gera interrupções pe-
riódicas que acionam o escalonador do sistema, estas interrupções acontecem somente no
momento em que o escalonador deve executar e o tempo destas é configurado baseado no
QUANTUM do sistema.

Figura 1. Diagrama de classes de Abstrações e Mediadores de Hardware (Timers)
do sistema EPOS com disparo único

O tratamento de uma interrupção no gerenciamento de tempo periódico, além de
contabilizar os ticks e liberar eventos agendados, também é responsável por chamar o
tratamento de tempo do escalonador (master_handler). Esta rotina decrementa o conta-
dor de ticks e verifica se este contador é menor ou igual a zero, chamando a rotina de
escalonamento de threads em caso positivo.

As modificações para eliminar as interrupções periódicas programadas no tempo-
rizador (contagem dos ticks) e para criar a estrutura de temporização baseada na técnica
de disparo único se concentraram na abstração Alarm. Com a mudança do conceito de

SBC 2008 50

interrupção periódica para intervalo variável do próximo disparo, o tratador de interrup-
ções do Alarm foi implementado como mostra o diagrama de sequência na Figura 2.
Diferente da abordagem periódica, onde a cada tick o tratador da interrupção chamava
o master_handler, a nova implementação utiliza dois temporizadores em hardware inde-
pendentes. Um relativo às requisições dos alarmes (fila _requests), ou seja, é programado
para disparar no exato momento em que foi agendado para acordar uma tarefa e outro
ligado ao escalonamento do sistema, programado para disparar a cada QUANTUM de
escalonamento, como supracitado.

Figura 2. Diagrama de seqüência do tratamento da interrupção do temporizador
de disparo único no EPOS

Com essa modificação, o temporizador relacionado ao escalonamento é configu-
rado na inicialização do sistema e ao ser disparado simplesmente chama a rotina de es-
calonamento. Isto deixa o tratamento da interrupção simples e rápido, pois não necessita
fazer o controle do número de ticks a cada interrupção e também diminui a influência do
escalonador no sistema. Já o temporizador ligado aos alarmes só é inicializado na criação
de um Alarm. Ao ser criado, o Alarm é inserido em uma lista ordenada e relativa, de
forma que o valor inserido seja exatamente o valor necessário para a programação do tem-
porizador. Quando chega uma interrupção, o tratador retira o Alarm que está na primeira
posição da fila, verifica se ainda existem Alarms na fila e se caso exista, reprograma o
temporizador com o valor do próximo. Este tratador de interrupção é executado muito
menos vezes que o tratador periódico, pois só é chamado quando existe um evento de

SBC 2008 51

tempo a ser gerenciado. Podemos ver os impactos nestes números na próxima seção.

4. Análise dos Resultados
Com o intuito de avaliar o impacto da implementação da abordagem de temporizadores
de disparo único no sistema operacional EPOS foi utilizada uma aplicação que é uma
implementação do problema Jantar dos Filósofos [Tanenbaum 2001], na qual 5 Threads
(filósofos) alternam dois comportamentos: pensar e comer. Para comer, o filósofo neces-
sita de dois garfos (pois o prato é macarrão) e existem na mesa 5 garfos, portanto, dois
filósofos não adjascentes podem comer ao mesmo tempo. Nesta implementação, um fi-
lósofo "pensa" (faz um pedido de delay ao Alarm de tempo variável e ao acordar, adquiri
dois garfos (semáforo p()) e "janta". Quando o filósofo reassume o controle, os semáforos
são liberados ((v()). Cada thread é executada 10 vezes.

A aplicação teste foi implementada utilizando um microcontrolador Atmel AT-
Mega128 de 8 bits com Clock de aproximadamente 7.2 MHz, 4 KB de memória RAM,
128 KB de memória flash de programa, 2 temporizadores de 8 bits e 1 temporizador de
16 bits. Como já explicado no quarto parágrafo da seção 3 um temporizador de 8 bits foi
utilizado para o disparo do escalonador do sistema e o outro de 16 bits para gerenciamento
da fila do Alarm. Nesta análise, 4 características foram avaliadas:

1. Consumo de Memória: sistemas embarcados são caracterizados pela falta de re-
cursos de processamento, memória e energia. Um sistema operacional para um
sistema embarcado deve economizar o máximo de recursos possíveis. Neste con-
texto, esta métrica avalia e compara o consumo de memória utilizado pela imple-
mentação da aplicação teste usando uma versão do EPOS com temporização de
disparo único e outra com temporização periódica.

2. Tempo de Computação: o tempo de computação de uma thread é o tempo transcor-
rido entre o início e o término da sua execução. O tempo de computação pode ser
influenciado pela interferência sofrida por tarefas de maior prioridade no sistema,
ou seja, a tarefa que está em execução é preemptada e a mais prioritária ganha
o direito de ser executada. Além disso, na solução de temporização periódica,
a tarefa que está em execução também sofre uma interferência a cada interrup-
ção do temporizador, pois na implementação existente o tratador de interrupção
tem maior prioridade. Na temporização não-periódica, o tratador da interrupção
só será executado quando uma tarefa, como a liberação de alarmes, precisar ser
realizada.

3. Número de Trocas de Contexto: uma troca ou chaveamento de contexto se refere
à troca de uma tarefa/Thread que está sendo processada por outra, podendo a
primeira não ter sido concluída. É garantido que quando o contexto anterior ar-
mazenado seja restaurado, o ponto de execução (contexto de software) volte ao
mesmo estado anterior.

4. Número de Execuções do Tratador de Interrupções: esta métrica visa comprovar
o real ganho de processamento através do menor número de execuções do tratador
de interrupção do temporizador. Usando um temporizador de disparo único, o nú-
mero de execuções do tratador tende a diminuir, pois ele somente irá ser chamado
quando alguma ação na gerência de tempo deve ser realmente efetuada.

A Tabela 1 apresenta o consumo de memória da aplicação teste das duas versões
do EPOS, com temporizador de disparo único e periódico. A versão de disparo único

SBC 2008 52

Tabela 1. Consumo de memória da aplicação teste com e sem o uso do tempori-
zador de disparo único no EPOS.
Temporização Periódica (bytes) Disparo Único (bytes) Diferença (bytes)

32000 32504 504

consumiu 504 bytes a mais do que a versão periódica. Isso ocorreu devido ao uso de 2
temporizadores, um relacionado ao escalonador e outro para a gerência de eventos.

Os testes a seguir foram realizados em três cenários. Estes cenários são descritos
abaixo, mostrando o tempo que cada Filósofo (Thread) passa pensando e depois comendo
a cada execução:

• Cenário 1: Pensa por 1000000 µs e come por 5000000 µs
• Cenário 2: Pensa por 100000 µs e come por 500000 µs
• Cenário 3: Pensa por 25000 µs e come por 125000 µs

Estes cenários foram criados para avaliar o impacto do uso de temporizadores de
disparo único em aplicações que passam a maior parte do tempo aguardando eventos do
timer, como será mostrado nas tabelas e gráficos a seguir.

Tabela 2. Número de execuções do tratador de interrupção. Temporização perió-
dica X Disparo Único.

Cenário Tratador Temporização Periódica Disparo Único Diferença
Cenário 1 int_handler 26005 100 25905
Cenário 1 master_handler 26415 3559 22856
Cenário 2 int_handler 9843 100 9743
Cenário 2 master_handler 10252 320 9932
Cenário 3 int_handler 3079 100 2979
Cenário 3 master_handler 3239 68 3171

A Tabela 2 apresenta o número de execuções do tratador de interrupção do tem-
porizador. Obviamente, o tratador de interrupção na temporização periódica executa de
Tick em Tick (∼ 1,38 ms), mesmo que nenhum evento esteja pronto para ser atendido. Di-
ferentemente, o tratador do temporizador de disparo único somente é executado quando
algum evento deve ser gerenciado, obtendo até 25905 execuções a menos(Cenário 1). A
cada tick, o tratador periódico chama o tratador do master_handler (escalonador), para
que este seja executado sempre, mesmo que outro alarme seja disparado no mesmo tick,
sendo que na versão com temporizador de disparo único o master_handler somente é
acionado quando o QUANTUM é alcançado.

Tabela 3. Número de trocas de contexto entre as threads para os 3 cenários.
Cenário Temporização Periódica Disparo Único Diferença

Cenário 1 616 344 272
Cenário 2 615 360 255
Cenário 3 617 317 300

Na Tabela 3 é mostrado o número de trocas de contexto das duas versões do EPOS
com a aplicação teste. E como esperado a versão com temporizador de disparo único ob-

SBC 2008 53

teve até 300 trocas de contexto a menos(Cenário 3), que é um reflexo do número de exe-
cuções do tratador de interrupção, que acaba diminuindo o QUANTUM efetivo da Thread.
Com a diminuição do overhead do sistema operacional, o QUANTUM de tempo dado as
tarefas para execução é melhor aproveitado, sofrendo menos preempções do escalonador.

 100000

 110000

 120000

 130000

 140000

 150000

Thread 1 Thread 2 Thread 3 Thread 4 Thread 5

T
em

po
 d

e
ex

ec
uç

ão
 (

m
s)

Disparo Único
Temporização Periódica

(a) Cenário 1

 10000

 11000

 12000

 13000

 14000

 15000

 16000

Thread 1 Thread 2 Thread 3 Thread 4 Thread 5

T
em

po
 d

e
ex

ec
uç

ão
 (

m
s)

Disparo Único
Temporização Periódica

(b) Cenário 2

 1000

 2000

 3000

 4000

 5000

 6000

Thread 1 Thread 2 Thread 3 Thread 4 Thread 5

T
em

po
 d

e
ex

ec
uç

ão
 (

m
s)

Disparo Único
Temporização Periódica

(c) Cenário 3

Figura 3. Tempo de computação das threads nos 3 cenários.

SBC 2008 54

Na Figura 3 é mostrado o tempo de computação de cada uma das Threads (Fi-
lósofos) nos 3 cenários. Nos cenários 1 e 2 vemos que o tempo de computação médio
das Threads é menor na implementação com gerenciador de tempo de disparo único. Já
no cenário 3, onde os filósofos (Threads) passam tempos menores pensando e comendo,
vemos que a implementação baseada em ticks impacta menos no tempo de computação.
Isso acontece pois os ticks processados pelo SO são muito próximos dos intervalos re-
quisitados pelas Threads, fazendo que cada tratador de interrupção, praticamente, dispare
um alarme. Isso nos leva a concluir que os tempos de computação serão quase os mesmos
nas duas implementações, para aplicações com intervalos pequenos (menores que 10000
µs).

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 10 100 1000 10000 100000

T
em

po
 to

ta
l d

e
ex

ec
uç

ão
 (

m
s)

Tempo de espera de cada Thread (ms)

Temporização Periódica
Disparo Único

Figura 4. Tempo total de execução variando tempo de espera

Na Figura 4, uma nova série de testes mostra o comportamento do gerenciamento
de tempo periódico e baseado em disparo único, quando se varia o tempo total de espera de
cada Thread (Tempo de pensar e comer de cada filósofo). Esta figura mostra que quando a
aplicação passa a maior parte do tempo aguardando eventos de temporizadores, o impacto
do sobrecusto no gerenciamento periódico é maior, resultando em maior tempo total de
execução. Quando o tempo de espera total é pequeno, há pouca diferença no desempenho
das duas alternativas, resultando em tempos de computação bastante parecidos.

5. Conclusões
Este artigo apresentou uma comparação entre as implementações de temporizadores de
disparo único e temporizadores periódicos na gerência de tempo do sistema operacional
EPOS. Embora a abordagem de temporização de disparo único não seja a mais eficiente
dentre os algoritmos de gerenciamento de tempo não-periódicos, esta implementação pos-
sibilitou uma primeira visão dos impactos positivos e negativos da classe de temporiza-
dores não periódicos no EPOS.

Quatro métricas foram avaliadas com o intuito de medir os impactos da imple-
mentação das abordagens de gerência de tempo periódica e não-periódica no EPOS. O

SBC 2008 55

número de trocas de contexto e o número de execuções do tratador de interrupção obti-
veram melhorias significativas no desempenho do sistema. E como esperado, o consumo
de memória da implementação não-periódica foi maior, devido ao uso de dois tempori-
zadores. Já o tempo de computação das tarefas sofre menos impacto do gerenciamento
de tempo do sistema de disparo único quando a aplicação passa a maior parte do tempo
aguardando eventos de timer.

Apesar da melhoria do desempenho do sistema no caso médio, existem situações
onde a abordagem não-periódica pode não se tornar uma boa alternativa, por exemplo,
quando a freqüência do tratamento de interrupções do temporizador de disparo único
tende a freqüência do número de ticks de um temporizador periódico. Com isso, o nú-
mero de chamadas ao tratador é semelhante. A implementação de outros algoritmos de
gerenciamento de tempo não-periódicos mais eficientes, como smart timers, será alvo de
trabalhos futuros.

Referências
Aron, M. and Druschel, P. (2000). Soft timers: efficient microsecond software timer

support for network processing. ACM Trans. Comput. Syst., 18(3):197–228.

Farines, J.-M., da Silva Fraga, J., and de Oliveira, R. S. (2000). Sistemas de Tempo Real.
Escola de Computação: IME-USP, S ao Paulo, SP.

Fröhlich, A. A. (2001). Application-Oriented Operating Systems. Number 17 in GMD
Research Series. GMD - Forschungszentrum Informationstechnik, Sankt Augustin.

Fröhlich, A. A. and Schröder-Preikschat, W. (2000). Scenario Adapters: Efficiently Adap-
ting Components. In Proceedings of the 4th World Multiconference on Systemics, Cy-
bernetics and Informatics, Orlando, U.S.A.

Goel, A., Abeni, L., Krasic, C., Snow, J., and Walpole, J. (2002). Supporting time-
sensitive applications on a commodity os. In OSDI.

Kohout, P., Ganesh, B., and Jacob, B. (2003). Hardware support for real-time operating
systems. In CODES+ISSS ’03: Proceedings of the 1st IEEE/ACM/IFIP international
conference on Hardware/software codesign and system synthesis, pages 45–51, New
York, NY, USA. ACM.

Marcondes, H., Hoeller, A., Wanner, L., and Frohlich, A. (20-22 Sept. 2006). Operating
systems portability: 8 bits and beyond. Emerging Technologies and Factory Automa-
tion, 2006. ETFA ’06. IEEE Conference on, pages 124–130.

Polpeta, F. V. and Fröhlich, A. A. (2004). Hardware mediators: A portability artifact for
component-based systems. In Yang, L. T., Guo, M., Gao, G. R., and Jha, N. K., editors,
EUC, volume 3207 of Lecture Notes in Computer Science, pages 271–280. Springer.

Tanenbaum, A. S. (2001). Modern Operating Systems. Prentice Hall PTR, Upper Saddle
River, NJ, USA.

Tsafrir, D., Etsion, Y., and Feitelson, D. G. (2005). General purpose timing: the fai-
lure of periodic timers. Technical Report 2005-6, School of Computer Science and
Engineering, the Hebrew University, Jerusalem, Israel.

SBC 2008 56

