SBC
2008

Anais do XXVIII Congresso da SBC
WSO - Workshop de Sistemas Operacionais

12 a 18 de julho
Belém do Para, PA

Geréncia de tempo no Sistema Operacional EPOS

Giovani Gracioli, Danillo Moura Santos, Roberto de Matos,
Lucas Francisco Wanner, Antonio Augusto Frohlich

Laboratério de Integragio Software e Hardware (LISHA)
Universidade Federal de Santa Catarina (UFSC)
Caixa Postal 476, 88049-900, Florian6polis, SC, Brasil

{giovani,danillo, roberto, lucas,guto}@lisha.ufsc.br

Resumo. Uma das tarefas de um sistema operacional é o tratamento de even-
tos de tempo. Tradicionalmente a geréncia de tempo é baseada em interrupgoes
periodicas de um dos relogios de hardware do sistema (ticks). Porém, esta abor-
dagem apresenta limitacoes, como falta de precisdo, maior custo computacional
e maior consumo de energia. Isso motivou a procura por novas solugoes, e o
emprego de técnicas de temporizadores ndo periodicos (ex.: one-shot timers)
tornou-se freqiiente, principalmente em sistemas operacionais de propdsito es-
pecifico, que possuem algum tipo de restricdo de tempo, energia ou processa-
mento (ex.: sistemas embarcados, de tempo real e multimidia). Este trabalho
faz uma comparacgdo entre as implementacoes de temporizadores de disparo
tinico e temporizadores periodicos na geréncia de tempo do sistema operaci-
onal EPOS. Sdo apresentados os impactos no tamanho de codigo do sistema
(Footprint), niimero de trocas de contextos, nimero de execugoes do tratador de
interrup¢do e tempo de computacdo em diferentes cendrios de execucdo.

Abstract. One of the tasks of an operating system is to handle time events. Tra-
ditionally, time management is based on periodical interrupts from one of the
system’s hardware timers (ticks). However, this approach presents limitations,
such as lack of precision, large overhead, and large power consumption. These
limitations have motivated the use of non-periodical timers (e.g. one-shot ti-
mers), specially in specific-purpose operating systems with timing restrictions,
such as embedded, real-time, and multimedia systems. This work presents a
comparison between single-shot and periodical timer implementations in the
time management abstractions in the EPOS operating system. We present the
impact of the different implementation in terms of memory footprint, number of
context switches, number of interrupt handler executions and run time in diffe-
rent execution scenarios.

1. Introducao

Tradicionalmente os sistemas operacionais de propdsito geral implementam tempori-
zacOes baseadas em interrupgdes periddicas de um dos relégios de hardware do sis-

tema (ticks).

Com a proliferacio dos sistemas computacionais e o emprego des-

ses nas mais diversas aplicacdes, foram revelados problemas nessas abordagens que
utilizam gerenciamento de tempo periddico [Tsafrir et al. 2005, Farines et al. 2000,
Aron and Druschel 2000], entre eles: a falta de precisdo, maior custo computacional e

SBC 2008

46

i :I.' Anais do XXVIII Congresso da SBC 12218 de julho
Q.I.I} WSO - Workshop de Sistemas Operacionais Belém do Pard, PA

maior consumo de energia. Isso motivou a procura por novas solugdes e o emprego da téc-
nica de temporizadores ndo periddicos, como por exemplo, os temporizadores de disparo
unico (one-shot timers). Estas técnicas passaram a ser empregadas em sistemas operacio-
nais de propdsito especifico, tais como sistemas embarcados, de tempo real e multimidia,
0s quais possuem algum tipo de restricao de tempo, energia ou processamento.

Os temporizadores periddicos sdo implementados baseados em interrup¢des de
um reldgio de hardware (ticks). A cada tick, o kernel executa tarefas administrativas como
verificacdo de alarmes a serem disparados, contagem de tempo da tarefa que estd execu-
tando no processador, andlise de escalonamento, preempcdes e outros servigos periddicos
do sistema. Esse tipo de abordagem revela vérios problemas [Tsafrir et al. 2005]: des-
perdicio de energia no caso de sistemas embarcados e mdveis, problemas de seguranga,
tarefas soft real-time e multimidia ficam sujeitas a precisao limitada do reldgio do sistema.

Além desses problemas, a implementacdo de temporizadores periddicos pode
gerar erros grosseiros nos servicos de temporizacdo providos pelo SO as tare-
fas [Farines et al. 2000]. Por exemplo, no sistema operacional Linux, a resolu¢do do
temporizador € de 10ms. Suponha que uma aplicacdo solicite uma temporizagao de 15ms
logo apds o retorno de interrup¢ao do temporizador. Nesse cendrio, a tarefa deve esperar
até a proxima interrup¢do, onde o sistema comega a contagem do tempo e ainda esperar
20ms, duas interrupcdes de 10ms. Assim, uma tarefa que solicitou uma temporizacao de
15ms deveré esperar 30ms para ter sua temporizacdo atendida, o que para muitas aplica-
coes € inaceitavel.

Uma das alternativas para solucionar esses problemas € a utilizacdo da geréncia de
tempo ndo periddica, tendo como abordagem mais comum, os temporizadores de disparo
unico (one-shot timers), ou seja, a interrup¢cdo do temporizador acontecerd somente no
momento para o qual foi agendado. Esses temporizadores sdo diferentes dos temporiza-
dores periddicos, onde um temporizador é disparado com uma freqiiéncia predefinida e
a légica de controle de tempo ¢ feita em software. Temporizadores periddicos possuem
um periodo, tempo levado para um disparo, que é a unidade minima de temporizacio
do sistema que o utiliza. Por sua vez, temporizadores de disparo tnico sdo programados
em hardware, por isso a resolu¢cdo méaxima de tempo suportada é a resolu¢dao do proprio
temporizador em hardware.

Este trabalho faz uma andlise de duas implementa¢des de geréncia de tempo no
sistema operacional EPOS, uma baseada em temporizadores de disparo tnico e a outra
baseada em temporizadores periddicos. Sdo apresentados os impactos no tamanho de
codigo do sistema (Footprint), nimero de trocas de contextos, nimero de execugdes do
tratador de interrupcao, e no tempo de computacdo das Threads. Esta anélise visa discutir
0s pontos positivos e negativos da implementagdo baseada em temporizadores de disparo
unico em relacao a implementacdo baseada em temporizadores periddicos.

Esse artigo estd organizado da seguinte forma: na sec¢do 2 sdo apresentados os
trabalhos relacionados e as diferentes abordagens na geréncia de tempo em um SO en-
contradas na literatura; na secao 3 € descrita a geréncia de tempo do sistema operacional
EPOS ja existente e a abordagem baseada em (one-shot timers); a apresentacdo dos re-

sultados e sua andlise s@o feitas na se¢do 4 e as consideracdes finais aparecem na secao
5.

SBC 2008 47

i :I.' Anais do XXVIII Congresso da SBC 12218 de julho
Q.I.I} WSO - Workshop de Sistemas Operacionais Belém do Pard, PA

2. Trabalhos Relacionados

Em [Tsafrir et al. 2005] é apresentada uma andlise dos problemas da falta de precisdo,
da assincronicidade e consumo de energia na utilizagdo dos temporizadores periddicos
e propde uma solug¢do baseada em uma abordagem chamada Smart Timers. Os Smart
Timers sao definidos com trés caracteristicas basicas: 1) Temporizacdo precisa com limite
configurdvel da laténcia médxima; 2) Overhead reduzido agregando eventos proximos e 3)
Overhead reduzido evitando a sobrecarga desnecessaria de eventos periddicos.

Kohout [Kohout et al. 2003] apresenta estratégias utilizadas para suportar de ma-
neira eficiente sistemas operacionais de tempo real com alguns componentes implemen-
tados em hardware. O intuito é diminuir o impacto causado pelo sistema operacional
de tempo real na aplicagdo. Este impacto é medido em termos de tempo de resposta e
utilizacdo da CPU. Neste trabalho é proposto um gerenciador de tarefas Tempo Real (do
inglés Real Time Task Manager - RTM), que € uma espécie de banco de dados de tarefas
em hardware, sendo implementado como um periférico no mesmo chip do processador
(desde que o processador esteja em uma FPGA). O RTM suporta fungdes de nicleo, como
no caso do gerenciamento de tempo, causando uma reducdo de até 10% (com 24 tarefas)
na utilizacao do processador para tratamento de ticks do timer do sistema.

Soft Timer [Aron and Druschel 2000] € uma implementacdo de temporizadores
que ndo € vinculada somente as interrup¢des do relogio de hardware. Essa abordagem
aproveita o retorno de chamadas do sistema para verificar se existe alguma tarefa pendente
e assim liberd-la. Caracteristica que possibilita a diminuicdo do nimero das trocas de
contexto, do nimero e do overhead das interrupcdes do reldgio fisico, ja que as chamadas
ao sistema acontecem a uma taxa muito maior que as interrupgdes do relogio. Por outro
lado, como a freqiiéncia exata das chamadas ao sistema € imprevisivel, ndo existe uma
garantia de precisdo e a estrutura de temporizadores periddicos tradicionais sao utilizados
para certificar o funcionamento minimo do sistema.

Firm Timer [Goel et al. 2002] combina trés abordagens diferentes: temporizado-
res de disparo unico, soft timers, [Aron and Druschel 2000] e temporizadores periddicos
para prover um mecanismo eficiente de alta resolugdo e baixo overhead. Essa combinacgdo
permite reduzir a necessidade de interrupg¢des, atenuando o risco de overheads excessivos.

A base da maioria desses trabalhos € evitar as intervencdes desnecessdrias do sis-
tema operacional causadas pelo tratamento de interrup¢des do temporizador, onde na
maior parte do tempo a unica acdo € incrementar o contador de ticks do sistema. Com
a abordagem dos temporizadores de disparo Unico a interrup¢ao acontecerd somente no
momento para o qual foi agendado, evitando o overhead do tratamento de interrupgdes
periddicas. Mesmo com o tratamento dessa interrup¢do de agendamento sendo mais com-
plexo, devido a necessidade de re-programacdo do temporizador para a proxima tarefa da
fila, na maioria dos casos, onde o intervalo entre acordar as tarefas € maior que o de um
tick do sistema, os temporizadores de disparo tnico possuem melhor desempenho. Nas
proximas secoes serdo apresentadas as duas implementacdes da geréncia de tempo (perio-
dica e one-shot timer) no sistema operacional EPOS e os impactos causados no sistema.
Na proxima se¢do sao apresentados os resultados comparativos da nova implementacao.

SBC 2008 48

i :I.' Anais do XXVIII Congresso da SBC 12218 de julho
Q.I.I} WSO - Workshop de Sistemas Operacionais Belém do Pard, PA

3. Geréncia de Tempo no EPOS

O EPOS (Embedded Parallel Operating System) € um sistema operacional para sistemas
embarcados desenvolvido seguindo a AOSD [Frohlich 2001] (Application-Oriented Sys-
tem Design), que faz uso da Engenharia de Dominio para definir componentes que repre-
sentam entidade significantes de um dominio. O sistema operacional EPOS ainda com-
bina conceitos de FBD (Family-Based Design), AOP (Aspect-Oriented Programming),
Orientacdo a Objetos e Meta-Programacao Estdtica na qual permite a organizagcdo de
familias de componentes independentes de cendrio. Através de um metaprograma que
utiliza regras de composi¢do, o EPOS possui um framework de componentes que permite
a geracdo de sistemas adaptados a aplicacdo. As abstracdes do sistema sdo adaptadas
aos cendrios de execucdo utilizando-se técnicas de orientagdo a aspectos, aplicadas com
Adaptadores de cendrios [Frohlich and Schroder-Preikschat 2000]. Regras coordenam as
operacoes realizadas pelo metaprograma, especificando restricdes e dependéncias para a
composi¢do das abstragdes do sistema. Cada aspecto pode ser aplicado individualmente
a cada abstracdo do sistema, por exemplo, a aplicacdo do aspecto concorréncia em um
componente faz com que este tenha seus métodos de acesso guardados por um Mutex ou
Semaforo. O uso de metaprogramacgdo para a composicao das abstragdes do sistema ndo
adiciona overhead em tempo de execucgao.

O uso de mediadores de hardware [Polpeta and Frohlich 2004] ainda permi-
tem que o mesmo sistema suporte arquiteturas distintas (ex. HS, AVR, POWERPC,
SPARCVSE, 1A32) mantendo uma mesma interface com a aplicacdo. Basicamente os
mediadores de hardware sdo construgdes que encapsulam dependéncias arquiteturais em
sistemas projetados seguindo AOSD, dando aos componentes de hardware como CPU,
FPU, barramentos entre outros, interfaces comuns de Sistema Operacional. Por exemplo,
no caso da geréncia de tempo, os temporizadores em hardware apresentam diversas fun-
coes distintas, e podem ser configurados de diversas formas diferentes. Um temporizador
pode atuar como um modulador de largura de pulsos controlando um circuito analégico,
como Watchdog, como temporizador de intervalo programdavel ou um simples temporiza-
dor de intervalo fixo. Cada um desses possiveis tipos de temporizadores possuem as suas
peculiaridades de configuracgao.

No nivel mais alto do sistema EPOS o tempo € manipulado pela familia de abstra-
coes denominada Timepiece, composta pelas abstracdes Clock, Alarm e Chronometer.
Cada abstracdo possui uma fungio especifica no sistema, a abstracdo Clock é responsa-
vel por armazenar o tempo corrente e estd disponivel apenas em sistemas que possuem
dispositivos de relégios de tempo-real (RTC); a abstracdo Chronometer ¢ utilizada para
realizar medicdes de tempo com alta precisdo; e a abstracdo Alarm pode ser utilizada para
gerar eventos, para acordar uma Tarefa/Thread ou chamar uma fungao. Essa familia € su-
portada pelos mediadores de hardware Timer, TimeStamp Counters (TSC) e Real-Time
Clocks. [Marcondes et al. 20006]

A periodicidade do sistema € caracterizada na abstragdo Alarm, que por sua vez,
¢ suportada pelo mediador Timer que configura o temporizador de hardware para ge-
rar interrupgdes a uma freqiiéncia determinada. No atendimento dessas interrupgdes sao
contabilizados os ticks e executada uma rotina para verificacdo e liberagdo de eventos
agendados. Além do overhead causado pelo atendimento periddico das interrupgdes, se
um evento for agendado para um tempo menor ou nao multiplo que o periodo do sistema,

SBC 2008 49

Q'I.I:‘ WSO - Workshop de Sistemas Operacionais Belém do Pard, PA

i :I.' Anais do XXVIII Congresso da SBC 12 a 18 de julho

a invocacao da tarefa agendada pode ser atrasada por erros de arredondamento inerentes a
granularidade dos ticks. A Figura (1) apresenta o diagrama de classes das duas principais
abstracdes que compde o gerenciamento de tempo do sistema EPOS para a arquitetura
AVR. A Abstracdo Alarm utiliza dois Timers em Hardware disponiveis na arquitetura
AVR. Um destes Timers, o ATMegal28_Timer_3, ¢ utilizado para controlar a fila de re-
quisicdes do Alarm, este ¢ um Timer de 16 bits, o que permite o agendamento de Alarmes
de até aproximadamente 9 segundos com o Clock do sistema em ~ 7.2MHz e PRESCALE
de 1024 no Clock do Timer. O outro Timer, ATMegal28_Timer_1, gera interrupgdes pe-
riddicas que acionam o escalonador do sistema, estas interrup¢des acontecem somente no
momento em que o escalonador deve executar e o tempo destas € configurado baseado no
QUANTUM do sistema.

Alarm

- timer: Timer

- master timer: Timer
- reqguests: Queus

-_link: Queue::Element + tsc: TSC
-_handler: Handler *

Chronometer

+_start: Time Stampo

-_times: int + stop: Time Stamp
-_interval: Microsscond +start()
+Alarmltime, handler, times) +stopl)
+oelayltime: Microsecondl: void treset()
+read(): Microsecond
Timer Timer TSC
AVR_Timer AVR_Timer
AVRE TSC
+time_stamp(): Time_Stamp
+freguency(). Hertz
ATMegal28 Timer 3 ATMegal28 Timer_1
+frequency_in_us{time: Microsecond) +frequency_in usitime:Microsecond)
+read_us(): Microsecond +read us(): Microsecond
+reset() +reset{)
+enablel) +enablel)
+disablel) +disablel)

Figura 1. Diagrama de classes de Abstracoes e Mediadores de Hardware (Timers)
do sistema EPOS com disparo Unico

O tratamento de uma interrup¢ao no gerenciamento de tempo periddico, além de
contabilizar os ticks e liberar eventos agendados, também é responsdvel por chamar o
tratamento de tempo do escalonador (master_handler). Esta rotina decrementa o conta-
dor de ticks e verifica se este contador € menor ou igual a zero, chamando a rotina de
escalonamento de threads em caso positivo.

As modificacdes para eliminar as interrupgdes periddicas programadas no tempo-
rizador (contagem dos ticks) e para criar a estrutura de temporizacdo baseada na técnica
de disparo tnico se concentraram na abstracdo Alarm. Com a mudanga do conceito de

SBC 2008

50

i :I" Anais do XXVIII Congresso da SBC 12 a 18 de julho
PI0[0}e] Wso - Workshop de Sistemas Operacionais Belém do Pard, PA

interrupg¢do periddica para intervalo varidvel do préximo disparo, o tratador de interrup-
coes do Alarm foi implementado como mostra o diagrama de sequéncia na Figura 2.
Diferente da abordagem periddica, onde a cada tick o tratador da interrupcdo chamava
o master_handler, a nova implementac¢do utiliza dois temporizadores em hardware inde-
pendentes. Um relativo as requisi¢cdes dos alarmes (fila _requests), ou seja, € programado
para disparar no exato momento em que foi agendado para acordar uma tarefa e outro
ligado ao escalonamento do sistema, programado para disparar a cada QUANTUM de
escalonamento, como supracitado.

Alarm CPU requests: Queues timer handler:Handler

IRQ_TIMER3
— int_disable() [B B B

disable()

remaovel)
—

e Alarm
e o e - - - - -

je-:—_times ' INFINITE

e-=>_times-
e-= times =|0

insert(e)
] _insert(e >

int_handler empty()

= = == F====== 4
head()

- ---4t--===-
frequency_ih_bis(next-=interval)

enablel)

vy

int_enablel}

-=_handl
e->_han ern)

= L

Figura 2. Diagrama de seqiiéncia do tratamento da interrupcao do temporizador
de disparo unico no EPOS

Com essa modificagdo, o temporizador relacionado ao escalonamento € configu-
rado na inicializacdo do sistema e ao ser disparado simplesmente chama a rotina de es-
calonamento. Isto deixa o tratamento da interrupc¢ao simples e rapido, pois nao necessita
fazer o controle do nimero de ticks a cada interrup¢do e também diminui a influéncia do
escalonador no sistema. J4 o temporizador ligado aos alarmes s6 € inicializado na criag@o
de um Alarm. Ao ser criado, o Alarm € inserido em uma lista ordenada e relativa, de
forma que o valor inserido seja exatamente o valor necessdrio para a programacao do tem-
porizador. Quando chega uma interrupc¢ao, o tratador retira o Alarm que estd na primeira
posicdo da fila, verifica se ainda existem Alarms na fila e se caso exista, reprograma o
temporizador com o valor do proximo. Este tratador de interrupcio € executado muito
menos vezes que o tratador periddico, pois s6 € chamado quando existe um evento de

SBC 2008

51

i :I.' Anais do XXVIII Congresso da SBC 12218 de julho
Q.I.I} WSO - Workshop de Sistemas Operacionais Belém do Pard, PA

tempo a ser gerenciado. Podemos ver os impactos nestes nimeros na préxima secao.

4. Analise dos Resultados

Com o intuito de avaliar o impacto da implementacao da abordagem de temporizadores
de disparo tnico no sistema operacional EPOS foi utilizada uma aplicagdo que é uma
implementagdo do problema Jantar dos Filésofos [Tanenbaum 2001], na qual 5 Threads
(fil6sofos) alternam dois comportamentos: pensar e comer. Para comer, o fildsofo neces-
sita de dois garfos (pois o prato € macarrdo) e existem na mesa 5 garfos, portanto, dois
filésofos nao adjascentes podem comer ao mesmo tempo. Nesta implementacdo, um fi-
16sofo "pensa" (faz um pedido de delay ao Alarm de tempo varidvel e ao acordar, adquiri
dois garfos (semaforo p()) e "janta". Quando o fil6sofo reassume o controle, os semaforos
sdo liberados ((v()). Cada thread é executada 10 vezes.

A aplicagdo teste foi implementada utilizando um microcontrolador Atmel AT-
Megal28 de 8 bits com Clock de aproximadamente 7.2 MHz, 4 KB de memoéria RAM,
128 KB de memoria flash de programa, 2 temporizadores de 8 bits e 1 temporizador de
16 bits. Como ja explicado no quarto pardgrafo da secao 3 um temporizador de 8 bits foi
utilizado para o disparo do escalonador do sistema e o outro de 16 bits para gerenciamento
da fila do Alarm. Nesta analise, 4 caracteristicas foram avaliadas:

1. Consumo de Memoria: sistemas embarcados sdo caracterizados pela falta de re-
cursos de processamento, memoria e energia. Um sistema operacional para um
sistema embarcado deve economizar 0 maximo de recursos possiveis. Neste con-
texto, esta métrica avalia e compara o consumo de memoria utilizado pela imple-
mentacao da aplicagdo teste usando uma versdao do EPOS com temporizacdo de
disparo tnico e outra com temporiza¢do periddica.

2. Tempo de Computagdo: o tempo de computacio de uma thread € o tempo transcor-
rido entre o inicio e o término da sua execucdo. O tempo de computacao pode ser
influenciado pela interferéncia sofrida por tarefas de maior prioridade no sistema,
ou seja, a tarefa que estd em execucgdo € preemptada e a mais prioritaria ganha
o direito de ser executada. Além disso, na solu¢cdo de temporizacdo periddica,
a tarefa que estd em execucdo também sofre uma interferéncia a cada interrup-
cdo do temporizador, pois na implementacdo existente o tratador de interrup¢ao
tem maior prioridade. Na temporiza¢do nao-periddica, o tratador da interrupg¢ao
sO serd executado quando uma tarefa, como a liberacdo de alarmes, precisar ser
realizada.

3. Niumero de Trocas de Contexto: uma troca ou chaveamento de contexto se refere
a troca de uma tarefa/Thread que estd sendo processada por outra, podendo a
primeira néo ter sido concluida. E garantido que quando o contexto anterior ar-
mazenado seja restaurado, o ponto de execucdo (contexto de software) volte ao
mesmo estado anterior.

4. Nimero de Execugoes do Tratador de Interrupcoes: esta métrica visa comprovar
o real ganho de processamento através do menor nimero de execugdes do tratador
de interrupcdo do temporizador. Usando um temporizador de disparo unico, o nu-
mero de execucdes do tratador tende a diminuir, pois ele somente ird ser chamado
quando alguma acdo na geréncia de tempo deve ser realmente efetuada.

A Tabela 1 apresenta o consumo de memoria da aplicagdo teste das duas versoes
do EPOS, com temporizador de disparo unico e periddico. A versdo de disparo unico

SBC 2008 52

i :I.' Anais do XXVIII Congresso da SBC 12218 de julho
Q.I.I} WSO - Workshop de Sistemas Operacionais Belém do Pard, PA

Tabela 1. Consumo de memoria da aplicacao teste com e sem o uso do tempori-
zador de disparo unico no EPOS.

Temporizagdo Periddica (bytes) Disparo Unico (bytes) Diferenca (bytes)
32000 32504 504

consumiu 504 bytes a mais do que a versdo periddica. Isso ocorreu devido ao uso de 2
temporizadores, um relacionado ao escalonador e outro para a geréncia de eventos.

Os testes a seguir foram realizados em trés cendrios. Estes cendrios sao descritos
abaixo, mostrando o tempo que cada Filésofo (Thread) passa pensando e depois comendo
a cada execugdo:

e Cenario 1: Pensa por 1000000 ps € come por 5000000 ps
e Cenadrio 2: Pensa por 100000 us e come por 500000 s
e Cendrio 3: Pensa por 25000 us e come por 125000 us

Estes cendrios foram criados para avaliar o impacto do uso de temporizadores de
disparo Unico em aplica¢des que passam a maior parte do tempo aguardando eventos do
timer, como serd mostrado nas tabelas e gréficos a seguir.

Tabela 2. Numero de execucbdes do tratador de interrupgao. Temporizacao perio-
dica X Disparo Unico.

Cendrio Tratador Temporizacdo Periddica Disparo Unico Diferenca
Cenario 1 int_handler 26005 100 25905
Cendrio 1 master_handler 26415 3559 22856
Cenario 2 int_handler 9843 100 9743
Cenario 2 master_handler 10252 320 9932
Cenario 3 int_handler 3079 100 2979
Cenario 3 master_handler 3239 68 3171

A Tabela 2 apresenta o nimero de execugdes do tratador de interrupcdo do tem-
porizador. Obviamente, o tratador de interrup¢cdo na temporizagdo periddica executa de
Tick em Tick (~ 1,38 ms), mesmo que nenhum evento esteja pronto para ser atendido. Di-
ferentemente, o tratador do temporizador de disparo tnico somente € executado quando
algum evento deve ser gerenciado, obtendo até 25905 execucdes a menos(Cenario 1). A
cada tick, o tratador periédico chama o tratador do master_handler (escalonador), para
que este seja executado sempre, mesmo que outro alarme seja disparado no mesmo tick,
sendo que na versdo com temporizador de disparo Unico o master_handler somente é
acionado quando o QUANTUM ¢ alcangado.

Tabela 3. Numero de trocas de contexto entre as threads para os 3 cenarios.
Cendrio Temporizacdo Periodica Disparo Unico Diferenca

Cenario 1 616 344 272
Cenario 2 615 360 255
Cenario 3 617 317 300

Na Tabela 3 € mostrado o niimero de trocas de contexto das duas versdes do EPOS
com a aplicacgdo teste. E como esperado a versao com temporizador de disparo unico ob-

SBC 2008 53

12 a 18 de julho

Belém do Para, PA

WSO - Workshop de Sistemas Operacionais

I" Anais do XXVIII Congresso da SBC

]

4

P

teve até 300 trocas de contexto a menos(Cenério 3), que é um reflexo do nimero de exe-

do o QUANTUM efetivo da Thread.

1minuin

que acaba di

ao,

interrupg
icdo do overhead do

do tratador de

cugoes

0 QUANTUM de tempo dado as

1,

tema operaciona

Sis

iminu

Comad

54

=
®]
e
<
=
o
p—
<
O
)
()
o
o »
A o
] =
0 @
On T T T T T T T T T c
Q. B 5 B (]
m WN KoK c
i SRS
8 88 0 8s Biie . 88 . ©®
535
m 158 3 |58 B R g 1538 3 €N
°% £ °% RCHKEIKAL, 8 oG 3 o
© g9 = g% Lotetetstototeses Sototeses = g0 £ c
2 | s riiassa -
ag [=gd XXX XA K XK X [agsd
=) g g Sesie g 8
g < 8 gy
g g Shnian 3 2 3 g : s @
& M LSRR § -8 SOSSE R | - O o
e £ = R IIRBIEEIIIIIRILKILLR] & & RIS
o F 0L LRIIIIIIIIIILLRILNA - [RIIIIIIIIILRIIKIIIII] & =
S X (KK R RRRIIIILILLLRLRRKS]
fotetetetes fotetetetes [6%%% %% %%
m - ™ S S I fos e %
= 13 .9 St 9 5 .S o
= i SRS 8Tt RO SESRSSR E R L sanimsiiisiinanies 85
BIIIILRLLLIKRRIIN 1 [REXRRRHS SRR £
o) BRRXXXIRIIIIEIIILKIKK] £ 3 RERLRLRIRIIIBIIIILLLLCRNRY =\ s o
n Sasesesatatasatotototototososoreseses N = B KKEKKIIIIII = & S = 1©
%o tete oo totetetetete et e ek) RRSSRELLIKEK))
-~ R R R R R R s CURNACLCKAIAILRCILI ey | RRRRRIKRRRRIKICRR KK IKRR IR IKRRRIX KRR O
< 2 O S 8
~ -
3 | SR T 30 Seue e etete Bedene et SO =]
o RKLZEREILIIRKIIREN 8 L E = L] %M%?k%ﬁﬁi&i.ﬁéf%%oﬁ 2 g 2 o
B X RRRIBBIEIXLKLKS £ REXRLRES £
) R RERERREIRLKELKLAIRAI] = [900%6% £
BOSesesssssesesasesetototetetotes RRXKS =
= AR Jossosss o
o) R o] a0 o
= sesonssasts il - £
o L % IOPODSROROTORs I ° S (V]
« SIS £ I SEIEIBEIIEEIN § r KRR g o
PIRRXIEIIRNRKNA 1= ZIBEIXRRKIIIRIKLNA & CERIKKS RRRRRKRKS =
5 IRz I RIS = Q
0 e e catate e %0%%0%%%% %% % % % SRRLRRLRKRELRRLRLRLLLRELRLRKS m-
—
Q
L L L L (}]
m o o o o o =3 L L . = . L L L L =
8 8 8 8 8 8 8 3 8 8 8 8 8 o o o o o °
D) =3 =] =1 <1 S =1 =1 =} =] =1 o S =} S S S S 1=} =1 .
o a3 3 3 S = S S] 3 g S 4 Ei 3 B 5 8] E @
(]
~m= (sw) oednaaxa ap odwa] (sw) oedndaxa ap odwa (sw) oednoaxa ap odwa | m
3 2
o L.
»
()
<
=
<
a¥
%!
<
Y
O
=
<
-~

SBC 2008

i :I" Anais do XXVIII Congresso da SBC 12 a 18 de julho
PI0[0}e] Wso - Workshop de Sistemas Operacionais Belém do Pard, PA

Na Figura 3 € mostrado o tempo de computacdo de cada uma das Threads (Fi-
16sofos) nos 3 cendrios. Nos cendrios 1 e 2 vemos que o tempo de computacdo médio
das Threads € menor na implementagdo com gerenciador de tempo de disparo unico. Ja
no cendrio 3, onde os filésofos (Threads) passam tempos menores pensando e comendo,
vemos que a implementacdo baseada em ficks impacta menos no tempo de computacao.
Isso acontece pois os ticks processados pelo SO sdo muito préximos dos intervalos re-
quisitados pelas Threads, fazendo que cada tratador de interrupcao, praticamente, dispare
um alarme. Isso nos leva a concluir que os tempos de computacdo serdo quase 0s mesmos
nas duas implementacdes, para aplicagdes com intervalos pequenos (menores que 10000

14S).

180000 T T

T
Temporizag&o Perigdica

Disparo Unico -----—-

160000

140000

120000

100000

80000

60000

Tempo total de execugéo (ms)

40000

20000

O I 1 1
10 100 1000 10000 100000

Tempo de espera de cada Thread (ms)

Figura 4. Tempo total de execucao variando tempo de espera

Na Figura 4, uma nova série de testes mostra o comportamento do gerenciamento
de tempo periddico e baseado em disparo tnico, quando se varia o tempo total de espera de
cada Thread (Tempo de pensar e comer de cada filésofo). Esta figura mostra que quando a
aplicacao passa a maior parte do tempo aguardando eventos de temporizadores, o impacto
do sobrecusto no gerenciamento periddico € maior, resultando em maior tempo total de
execucdo. Quando o tempo de espera total € pequeno, hd pouca diferenca no desempenho
das duas alternativas, resultando em tempos de computagdo bastante parecidos.

5. Conclusoes

Este artigo apresentou uma comparagao entre as implementacdes de temporizadores de
disparo dnico e temporizadores periddicos na geréncia de tempo do sistema operacional
EPOS. Embora a abordagem de temporizagdo de disparo tnico ndo seja a mais eficiente
dentre os algoritmos de gerenciamento de tempo ndo-periddicos, esta implementacdo pos-
sibilitou uma primeira visao dos impactos positivos e negativos da classe de temporiza-
dores nao periédicos no EPOS.

Quatro métricas foram avaliadas com o intuito de medir os impactos da imple-
mentacao das abordagens de geréncia de tempo periddica e nao-periddica no EPOS. O

SBC 2008

55

i :I.' Anais do XXVIII Congresso da SBC 12 a 18 de julho
Q'I.I:‘ WSO - Workshop de Sistemas Operacionais Belém do Pard, PA

nimero de trocas de contexto e o nimero de execucdes do tratador de interrup¢do obti-
veram melhorias significativas no desempenho do sistema. E como esperado, o consumo
de memoria da implementagdo nao-periddica foi maior, devido ao uso de dois tempori-
zadores. J4 o tempo de computacdo das tarefas sofre menos impacto do gerenciamento
de tempo do sistema de disparo tnico quando a aplica¢do passa a maior parte do tempo
aguardando eventos de timer.

Apesar da melhoria do desempenho do sistema no caso médio, existem situagdes
onde a abordagem nao-periddica pode ndo se tornar uma boa alternativa, por exemplo,
quando a freqiiéncia do tratamento de interrup¢des do temporizador de disparo tinico
tende a freqiiéncia do nimero de ticks de um temporizador periédico. Com isso, o nu-
mero de chamadas ao tratador é semelhante. A implementacdo de outros algoritmos de
gerenciamento de tempo nao-periddicos mais eficientes, como smart timers, serd alvo de
trabalhos futuros.

Referéncias

Aron, M. and Druschel, P. (2000). Soft timers: efficient microsecond software timer
support for network processing. ACM Trans. Comput. Syst., 18(3):197-228.

Farines, J.-M., da Silva Fraga, J., and de Oliveira, R. S. (2000). Sistemas de Tempo Real.
Escola de Computacao: IME-USP, S ao Paulo, SP.

Frohlich, A. A. (2001). Application-Oriented Operating Systems. Number 17 in GMD
Research Series. GMD - Forschungszentrum Informationstechnik, Sankt Augustin.

Frohlich, A. A. and Schroder-Preikschat, W. (2000). Scenario Adapters: Efficiently Adap-
ting Components. In Proceedings of the 4th World Multiconference on Systemics, Cy-
bernetics and Informatics, Orlando, U.S.A.

Goel, A., Abeni, L., Krasic, C., Snow, J., and Walpole, J. (2002). Supporting time-
sensitive applications on a commodity os. In OSDI.

Kohout, P., Ganesh, B., and Jacob, B. (2003). Hardware support for real-time operating
systems. In CODES+ISSS ’03: Proceedings of the Ist IEEE/ACM/IFIP international
conference on Hardware/software codesign and system synthesis, pages 45-51, New
York, NY, USA. ACM.

Marcondes, H., Hoeller, A., Wanner, L., and Frohlich, A. (20-22 Sept. 2006). Operating
systems portability: 8 bits and beyond. Emerging Technologies and Factory Automa-
tion, 2006. ETFA °06. IEEE Conference on, pages 124—130.

Polpeta, F. V. and Frohlich, A. A. (2004). Hardware mediators: A portability artifact for
component-based systems. In Yang, L. T., Guo, M., Gao, G. R., and Jha, N. K., editors,
EUC, volume 3207 of Lecture Notes in Computer Science, pages 271-280. Springer.

Tanenbaum, A. S. (2001). Modern Operating Systems. Prentice Hall PTR, Upper Saddle
River, NJ, USA.

Tsafrir, D., Etsion, Y., and Feitelson, D. G. (2005). General purpose timing: the fai-
lure of periodic timers. Technical Report 2005-6, School of Computer Science and
Engineering, the Hebrew University, Jerusalem, Israel.

SBC 2008

56

