
Implementação de uma Heurística de Coleta de Lixo na
Máquina Virtual Java

Héberte Fernandes de Moraes1, Luciano J. Chaves2, Marcelo Lobosco3

1Programa de Engenharia de Sistemas e Computação – COPPE/UFRJ
Caixa Postal 68.511 – 21941­972 – Rio de Janeiro – RJ – Brasil

2Instituto de Computação – Universidade Estadual de Campinas
Caixa Postal 6176 – 13.084­971 – Campinas – SP – Brasil

3Departamento de Ciência da Computação – Universidade Federal de Juiz de Fora
Campus Universitário – 36.036­330 – Juiz de Fora – MG – Brasil

brebete@cos.ufrj.br, luciano.chaves@students.ic.unicamp.br,
marcelo.lobosco@ufjf.edu.br

Abstract. The Garbage Collector mechanism frees the programmer from
manually dealing with memory management. This is a standard feature of
several programming languages, such as Java, but imposes an additional cost
on program execution. An attempt to minimize this cost is to increase the size
available for allocations, but memory can be wasted. If too little memory is
available for allocation, the number of garbage collections increases, which
in turn impacts negatively the computation time. In this work we present,
implement and evaluate a new heuristic that aims to adjust automatically the
total amount of memory available for allocation. The heuristic was
implemented in the Java Virtual Machine.

Resumo. O mecanismo de coleta automática de lixo (garbage collection),
presente em diversas linguagens de programação, como Java, por um lado
libera o programador da tarefa de gerenciar as regiões de memória que sua
aplicação não mais utiliza, e por outro adiciona um custo ao tempo total de
execução da aplicação. Uma tentativa de minimizar este custo consiste em
aumentar o tamanho do espaço disponível para o aplicativo realizar
alocações, o que por sua vez pode acarretar em um desperdício de memória.
Sob outra perspectiva, a restrição demasiada do espaço disponível para
alocação pode causar muitas coletas, conseqüentemente aumentando o tempo
total de execução da aplicação. Neste trabalho propomos, implementamos e
avaliamos uma nova heurística para adequar automaticamente a quantidade
de memória disponível para alocação pelas aplicações que executam na
Máquina Virtual Java.

1. Introdução

O coletor de lixo (Garbage Collector) foi desenvolvido com o intuito de auxiliar o
programador no desenvolvimento de suas aplicações. Em um primeiro momento, cabe
ao coletor a tarefa de vasculhar a memória, procurando por regiões alocadas que não
podem mais ser acessadas pela aplicação. Estas regiões são denominadas de lixo. Após

SBC 2008 57

essa fase inicial, o coletor deve liberar essas regiões de memória, permitindo assim o
reuso do espaço para novas alocações. Desta forma, o coletor gerencia automaticamente
a utilização da memória por parte do aplicativo. Em linguagens de programação que não
contam com este recurso, este papel é desempenhado pelo programador, que é obrigado
a especificar explicitamente quais regiões devem ser liberadas. É comum que os
programadores incorram em erros durante esse processo, que podem levar a erros fatais
na execução dos programas. Com o coletor, o programador fica livre dessa
responsabilidade, levando a um gerenciamento mais eficiente dos recursos de memória.

O emprego de coletores em linguagens de programação implica em um custo
adicional para a aplicação, já que parte do seu tempo de execução é gasto nos processos
de identificação e liberação de regiões de memória não mais alcançáveis pela aplicação.
Esse custo pode ser muito alto, dependendo das características do aplicativo e do coletor
utilizado. Uma forma de minorar ou mesmo eliminar este custo consiste do aumento da
quantidade de espaço para o aplicativo realizar alocações: com mais espaço disponível,
reduz­se a necessidade de liberar memória para o reuso da própria aplicação. Entretanto,
disponibilizar muita memória pode constituir­se em fonte de desperdício de recursos
computacionais. De forma análoga, restringir demais a quantidade de espaço disponível
pode levar a ocorrência de muitas coletas de lixo, conseqüentemente aumentando o
tempo total de execução da aplicação. Faz­se, portanto, necessário atingir um ponto de
equilíbrio na quantidade de memória disponibilizada para aplicação.

Neste trabalho estudamos esta questão, propondo uma heurística para realizar
automaticamente o aumento ou a redução da quantidade de memória disponibilizada
para a aplicação. Para avaliar nossa proposta, implementamos a heurística na Máquina
Virtual Java (Java Virtual Machine – JVM) [Lindholm e Yellin 1999], comparando­a
com os coletores disponibilizados pela JVM. Os resultados preliminares demonstram
que, para algumas aplicações avaliadas, a heurística foi efetiva em seu objetivo de
reduzir os custos associados à coleta de lixo.

O restante deste trabalho está organizado da seguinte forma: a seção 2 apresenta
os mecanismos de coleta de lixo disponibilizados na JVM; a seção 3 apresenta nossa
heurística; na seção 4 são apresentados alguns aspectos de sua implementação na JVM;
a seção 5 apresenta alguns resultados preliminares da heurística ora proposta; a seção 6
apresenta algumas idéias para trabalhos futuros; enquanto a seção 7 conclui o trabalho.

2. Coleta de Lixo na JVM

Existem diversos tipos de algoritmos para coleta de lixo. Segundo Bacon et. al. (2004),
os algoritmos existentes podem ser divididos basicamente em dois grandes grupos: a)
algoritmos de contagem de referências e b) algoritmos de rastreamento. Os algoritmos
de contagem de referências armazenam, para cada objeto, um contador de referência.
Esse contador é incrementado sempre que uma nova referência a este objeto é feita.
Esse contador é decrementado caso uma dessas referências deixe de existir. Quando o
valor do contador chega a zero, o objeto é considerado lixo e é reciclado. Já os
algoritmos de rastreamento percorrem todas as referências de memória a partir de um
conjunto inicial de referências, denominado conjunto raiz. Todos os objetos direta ou
indiretamente alcançáveis a partir do conjunto raiz são mantidos em memória, enquanto
os demais são reciclados.

SBC 2008 58

Para a gerência de memória a JVM utiliza um mecanismo de rastreamento
baseado em gerações. Esse mecanismo consiste do agrupamento dos objetos vivos em
três distintas regiões de memória: a) geração jovem, b) geração antiga ou estável e c) a
geração permanente. Esta divisão parte do pressuposto de que a maioria dos objetos
vive por um período muito curto, enquanto uma pequena porcentagem deles vive por
muito tempo [Ungar 1984]. Assim pode­se realizar operações de coleta mais constantes
apenas na região de memória que abriga os objetos alocados mais recentemente, que
ficam localizados na geração jovem. Após um determinado número de coletas, os
objetos sobreviventes são promovidos para a geração antiga, conforme ilustrado na
Figura 1. Nesta região de memória as coletas não precisam ser tão freqüentes quanto na
geração anterior, visto que a chance dos objetos serem referenciados por muito tempo é
maior. Na geração permanente são alocados meta­dados, como descritores de classes e
métodos. As coletas na geração jovem são conhecidas por coletas menores. Quando as
gerações antigas e permanente ficam sem espaço, ocorrem as coletas maiores. Uma
vantagem deste modelo de coleta baseado em gerações é a possibilidade de utilizar
técnicas de coleta de lixo distintas para cada uma das gerações, de acordo com as suas
particularidades.

Figura 1. Fluxo de movimentação dos objetos

A geração jovem na JVM é ainda dividida em três sub­regiões: Éden, espaço de
sobreviventes de origem e espaço de sobreviventes de destino, conforme ilustra a figura
2. Todas as novas alocações são feitas no Éden. Objetos que sobrevivem a primeira
coleta no Éden são copiados para o espaço de sobreviventes de origem. Quando coletas
precisam ser realizadas neste espaço, os objetos ainda vivos são copiados para o espaço
de sobreviventes de destino. No final da cópia, os espaços de sobreviventes trocam de
nomes.

Figura 2. Modelo da geração jovem da JVM

SBC 2008 59

3. Heurística Proposta

O coletor de lixo é considerado um custo adicional na execução dos aplicativos. Para
reduzir este custo deve­se reduzir o tempo e / ou o número de execuções do coletor, já
que quanto menor for o tempo gasto com coletas, menor será o tempo total de execução
do aplicativo.

Para reduzir o tempo de execução de um coletor devemos levantar seus custos
de execução. Baseados nessa informação, procuram­se alternativas de implementação
para reduzir os custos das funções que demandam maiores tempos de execução. Por
exemplo, no caso do coletor da geração jovem, o maior custo está relacionado às
operações de cópia dos objetos vivos.

Outra forma de reduzir o tempo total de execução do aplicativo é diminuir a
quantidade de coletas. Uma das formas de se fazer isto é aumentando a memória
disponível para alocação. Entretanto, estaremos desperdiçando memória caso uma
quantidade excessiva desta seja disponibilizada para a aplicação. Ficamos, assim, com
um dilema: caso uma quantidade insuficiente de memória seja disponibilizada, teremos
uma grande quantidade de coletas, aumentando o tempo total de execução dos
aplicativos. Disponibilizar muita memória, por outro lado, pode constituir­se em
desperdício de recursos computacionais.

Neste trabalho propomos uma heurística com o intuito de ajustar
automaticamente o tamanho do Éden de acordo com as características de consumo de
memória do aplicativo em execução. A heurística consiste em verificar o tempo entre
certa quantidade de coletas. Se este tempo for relativamente pequeno, o tamanho do
Éden é aumentado; se o tempo for relativamente grande, o tamanho do Éden é reduzido;
caso contrário mantém­se o tamanho atual. A heurística se baseia no pressuposto de que
se o tempo entre as coletas for relativamente pequeno, então muitas alocações estão
ocorrendo na aplicação. O aumento do Éden é então realizado na tentativa de suprir
essas alocações com mais memória, sem que sejam necessárias operações de coleta para
disponibilizá­la. Por outro lado, se o tempo entre as coletas for relativamente grande,
então poucas alocações estão ocorrendo, ou seja, não há a necessidade de haver tanta
memória disponível para alocações. Neste caso reduzimos o tamanho do Éden com o
intuito de economizar memória.

Nossa heurística inspeciona particularmente o Éden por esta ser a região onde a
maior parte das coletas ocorre, as coletas menores, mas nada impede que a técnica seja
empregada nas demais regiões de memória para diminuir o número de coletas maiores.

4. Aspectos de Implementação da Heurística na JVM

A implementação da heurística proposta foi realizada no Hotspot JVM, uma
implementação da especificação da máquina virtual Java desenvolvida pela Sun
Microsystem.

Uma das dificuldades que encontramos para implementar nossa heurística na
Hotspot JVM foi o fato desta não permitir a alteração, em tempo de execução, do
tamanho da heap. Como nossa heurística exige a alteração do tamanho do Éden durante
a execução da aplicação, procuramos alternativas para sua implementação na Hotspot

SBC 2008 60

JVM. Nossa solução foi definir, no início da execução da HotSpot JVM, o tamanho
máximo do Éden. A partir daí, o tamanho inicialmente disponibilizado para a aplicação
foi definido como metade deste tamanho máximo. O Éden, neste caso, pode expandir­se
até este tamanho máximo previamente definido.

O processo de aumento e redução do Éden é feito na classe EdenSpace do
DefNewGeneration. Em sua implementação original, esta classe contém o limite
inferior e o superior do espaço delimitado para o Éden. Os campos bottom, top e end
(figura 3) são usados para delimitar o Éden, sendo bottom e end fixos durante toda a
execução da máquina virtual. O campo top indica o ponto no qual um novo objeto pode
ser alocado; todo o espaço à esquerda deste ponto contém objetos recém alocados.
Quando valor do campo top alcança o valor do end, uma coleta é executada e todos os
objetos vivos são retirados deste espaço, e valor do top é substituído pelo valor do
bottom.

Figura 3. Limites do Éden

Para que o ajuste de tamanho do Éden funcionasse, modificamos a classe
EdenSpace para criar um novo campo chamado hardEnd (figura 4). Esse campo tem
por finalidade armazenar o limite superior do Éden. Com isso, o valor do campo end
pode variar entre o hardEnd (seu valor máximo), e a metade do espaço delimitado por
bottom e hardEnd (seu valor mínimo). Na inicialização do EdenSpace, os valores dos
campos end e hardEnd são definidos como a figura 4 ilustra, sendo o valor do hardEnd
igual ao final do espaço e o valor do end, o meio do espaço.

Figura 4. Novo Limite para o Éden

A alteração do tamanho do Éden só é feita após a execução de uma coleta de
lixo, já que neste ponto o coletor já moveu todos os objetos vivos para outro espaço.
Sendo assim, pode­se alterar o campo end para qualquer posição no intervalo definido.

Em nossa primeira tentativa de implementação, definimos que o Éden se
expande a uma taxa igual à metade do espaço total ainda disponível, ou seja:

end=end+
hardEnd−end

2
=
hardEnd+end

2

SBC 2008 61

Enquanto houver espaço disponível para realizar o aumento do Éden, o campo é
alterado. Deve­se salientar que essa alteração só ocorre caso muitas coletas sejam
executadas em um intervalo de tempo relativamente curto.

Definimos também que a taxa de redução do Éden é igual ao espaço ainda
disponível para expansão, ou seja:

end=end−hardEnd−end =2end−hardEnd

A fórmula acima é válida caso o espaço ainda disponível para alocação seja
menor que a metade do espaço total do Éden. Caso contrário, a operação de redução
tornaria o espaço para alocação igual à zero, o que causaria uma falha na próxima
tentativa de alocação de memória na JVM.

Devemos também chamar a atenção para outro ponto ligado à redução do Éden:
como definimos que a sua taxa de redução é igual ao espaço ainda disponível para
expansão, não teríamos qualquer redução caso não existisse mais espaço disponível para
o aumento do Éden. Neste caso, definimos que a redução será igual à 1/4 de seu
tamanho total, ou seja, 25% de (hardEnd – bottom).

O pseudo­código abaixo ilustra a implementação de nossa heurística na JVM.
Ele é sempre chamado após as operações de coleta de lixo, já que nesse ponto da
execução o Éden não contém qualquer objeto, assim não há problemas na alteração de
seu tamanho.

�

ColetaDados();
SE (NumeroColetas >= 30) E (TempoEntreColetas <= 300) ENTÃO

End := ARREDONDA((HardEnd + End)/2);
SENÃO

SE (NumeroColetas < 30) E (TempoEntreColetas > 300) ENTÃO
SE End = HardEnd ENTÃO

End := End - ARREDONDA((HardEnd – Bottom)/4);
SENÃO

End := 2*End – HardEnd;

Devemos salientar que o método ColetaDados(), como o próprio nome indica,
coleta os dados necessário para a realização dos testes da heurística, como a quantidade
de coletas realizadas e o tempo decorrido entre elas.

5. Resultados Preliminares

Utilizamos um conjunto de aplicativos com o propósito de avaliar o desempenho da
heurística implementada no coletor serial da geração jovem. Os aplicativos são: GCOld
[Detlefs 2005], GCBench [Boehm], JGFCreateBench, JGFSerialBench, e
JGFSORBench, estes últimos parte do suite de aplicativos do Java Grande Fórum [Bull
et alli 2000].

GCOld é um benchmark sintético que modela aplicações onde os dados mais
antigos são mais propensos a se tornarem lixo. GCBench também é um benchmark
sintético que divide a sua execução em duas fases distintas: a) a expansão da heap e b) a
alocação e liberação de grandes porções de memória. JGFCreateBench aloca, durante a
sua execução, inúmeros tipos de objetos, sem utilizá-los em processamentos posteriores.
Como resultado, os objetos alocados têm uma vida extremamente curta, não

sobrevivendo a uma primeira limpeza da memória. JGFSerialBench realiza operações
de serialização em diversos objetos, ou seja, armazena em disco o estado dos objetos,
recuperando-os posteriormente. São construídas durante a sua execução estruturas como
árvores, LinkedLists, Arrays e Vectors que são gravados em arquivos e depois
carregados novamente em memória. Para cada estrutura são realizadas 4000 iterações de
gravação e leitura de arquivos. O consumo de memória nesta aplicação é
aproximadamente constante para cada tipo de estrutura de dados. JGFSORBench realiza
centenas de iterações do algoritmo Successive Over Relaxation em uma matriz de
tamanho NxN. A característica básica deste algoritmo, em termos de uso de memória, é
realizar toda a alocação de objetos no início do processamento.

Os testes foram realizados em uma máquina com processador AMD Sempron
2800+, 32 bits, com clock de 1.6 Ghz, 128KB de cache L1 e 256KB de cache L2. A
máquina em questão tem 1 GB de memória principal e executa Linux Kubuntu 7.10
com kernel 2.6.22.4­386. Testamos duas versões do jre1.6.0 (Java Runtime Machine)
compiladas na própria máquina, senda uma das versões sem alteração de seu código
fonte e a outra com a implementação da heurística. Os principais fatores avaliados em
nossos testes foram o tempo de execução do aplicativo, o tempo total de pausa, o tempo
médio de execução das coletas, a taxa de throughput e o footprint. O throughput
representa nesse contexto o percentual de tempo que a JVM não executa coleta de lixo,
tendo como referência o tempo total de execução do aplicativo. O footprint é o uso
máximo de memória do aplicativo.

Para avaliar os resultados obtidos, geramos o log da coleta de lixo para cada uma
das aplicações. O aplicativo GCViewer [Tagtraum industries 2005] foi utilizado para
visualizar estes arquivos.

Cada aplicativo foi executado no mínimo três vezes de forma exclusiva, e a
partir dos resultados foi computada uma média dos valores obtidos. O desvio padrão
dos tempos de execução foi desprezível.

A JVM tem duas versões distintas: cliente e servidor. Essencialmente tratam­se
de dois compiladores distintos que possuem uma interface comum com o sistema de
execução da JVM. A versão cliente tem seu compilador ajustado para executar
aplicações que necessitam de a) um tempo de iniciação rápido ou b) pequenos
footprints. Já a versão servidor tem o compilador ajustado para aplicações onde o
desempenho global é o ponto mais importante. Nosso trabalho avaliou o impacto de
nossa heurística nas duas versões, mas, por falta de espaço, neste trabalho reportamos
apenas os resultados com a versão cliente.

Os testes foram realizados usando duas máquinas Java distintas. A primeira
máquina é a HotSpot JVM padrão, executando em sua versão cliente, com tamanho total
da heap igual à 256 MB. Para esta máquina padrão variamos o tamanho da geração
jovem de três formas distintas: 1) nesta configuração a geração jovem tem um tamanho
fixo igual à 32 MB, 2) nesta configuração seu tamanho varia entre 32 MB e 64 MB, e 3)
nesta configuração seu tamanho é fixo em 64 MB. Por fim, a segunda máquina Java
consiste da HotSpot JVM modificada pela implementação de nossa heurística (4), com
heap de 256 MB e a geração jovem variando entre 32 MB e 64 MB .

SBC 2008 63

A diferença entre nossa heurística e a implementação da JVM que expande a
geração jovem (versão 2) é a forma como as expansões se dão. Na implementação
nativa da JVM, quando não há mais espaço disponível na geração jovem, a JVM tenta
primeiro expandir o seu tamanho até que o limite especificado seja atingido. Caso seja
possível realizar a expansão, a alocação é feita sem que sejam necessárias coletas de
lixo. Caso não seja possível, ou seja, caso o limite superior já tenha sido atingido em
operações de expansão anteriores, realiza­se a coleta de lixo para liberar espaço nesta
geração. Logo, na versão 2 avaliada, a expansão da memória é realizada antes que
ocorra uma coleta. No caso da nossa heurística, várias coletas ocorrem antes que o
tamanho da geração seja modificado. Nossa heurística utiliza justamente as informações
das coletas para saber se estão ocorrendo muitas alocações, optando pelo aumento da
geração jovem apenas quando este quadro se confirma, enquanto que na implementação
nativa da JVM o objetivo é evitar que ocorra uma coleta. Além do mais, podemos
reduzir, em tempo de execução, o tamanho da geração quando o espaço adicional de
memória não mais se faz necessário.

Para a JVM alterada com a heurística proposta neste trabalho, utilizamos a
política de aumentar o tamanho do Éden após 30 coletas menores seguidas executadas
em intervalo de tempo de 100 milissegundos. A redução do tamanho do Éden se dá
sempre que o tempo entre duas coletas consecutivas torna­se relativamente grande; no
caso deste trabalho isto ocorre quando o intervalo entre duas coletas torna­se superior à
3 segundos.

Os resultados obtidos são apresentados em tabelas, onde as linhas representam
as quatro configurações testadas e as colunas apresentam os resultados das métricas
avaliadas. As configurações 1 a 3 foram executadas na máquina HotSpot JVM padrão,
sem qualquer modificação, enquanto na versão 4 a máquina HotSpot JVM foi
modificada pela implementação de nossa heurística.

5.1. GCOld

Este aplicativo cria muitos objetos grandes que são mantidos alocados na memória
durante muito tempo. Assim a geração antiga é muito utilizada, o que faz com que
coletas maiores sejam realizadas com mais freqüência. Como nossa heurística tenta
reduzir a quantidade de coletas menores, esperávamos não ter qualquer ganho neste
benchmark. Neste caso, nosso objetivo primário foi verificar se algum overhead seria
adicionado para aplicativos com esta característica de uso de memória.

Tabela 1 ­ Resultados do aplicativo GCOld

 Coletor e opções Throughput (%) Footprint (MB) Acumulado Média pausa Execução

1 Client - 32 mb 29,35 103,12 11,450 0,18467 16,00

2 Client - 32 -> 64 mb 28,77 102,88 11,440 0,18457 16,00

3 Client - 64 mb 31,85 141,5 10,420 0,33611 15,00

4 Client - Com heuristica 26,82 119,781 11,920 0,23367 16,00

Execução realizada com heap total de 256 mb Tempos (seg)

Observando os resultados da tabela 1 percebemos que a heurística obteve uma
taxa de throughput um pouco menor do que as obtidas por outras configurações.

SBC 2008 64

Comparado com a configuração 3, a heurística conseguiu reduzir significantemente o
desperdício de memória. Apesar da heurística ter obtido o pior tempo acumulado de
coletas, o tempo médio de cada uma das pausas foi bem inferior ao da pior configuração
e o tempo total da execução da aplicação ficou dentro da média das demais
configurações.

5.2. GCBench

Essa aplicação tem como característica principal criar uma grande quantidade de objetos
com tempo de vida curto, fazendo uma grande quantidade de alocações em toda a sua
execução, o que provoca várias coletas menores.

Observando os dados coletados da execução do aplicativo (tabela 2), pode­se
perceber que quanto maior a quantidade de memória disponibilizada para o aplicativo,
menor é o tempo acumulado de coletas, resultando em uma redução no tempo total de
execução do aplicativo.

Tabela 2 ­ Resultados do aplicativo GCBench

 Compilador - tamanho Throughput (%) Footprint (MB) Acumulado Média pausa Execução

1 Client - 32 mb 36,19 145,55 3,687 0,05263 5,00

2 Client - 32 -> 64 mb 36,17 145,55 3,690 0,05276 5,00

3 Client - 64 mb 73,94 130,78 0,750 0,02151 2,00

4 Client - Com heuristica 43,31 163,344 2,570 0,04585 4,00

Execução realizada com heap total de 256 mb Tempos (seg)

A configuração 1 representa a pior execução, considerando o tempo como
variável de comparação; do tempo total da execução do aplicativo aproximadamente
36% foram gastos com a execução do aplicativo, ou seja, o custo da execução dos
coletores foi muito maior do que o da execução do aplicativo. A configuração 3, que
executa o aplicativo com 64 MB para a geração jovem, obteve o melhor tempo de
execução. Isso ocorreu devido a quantidade de coletas realizadas ser bem menor, o que
tomou cerca de 26% do tempo total de execução.

Com relação à heurística, observamos uma redução no tempo total de execução
do aplicativo em comparação às configurações 1 e 2, mas não tão bom quanto a obtida
pela configuração 3. O aumento do tamanho do Éden, neste caso, foi responsável pela
redução no número de coletas, o que em última instância reduz o tempo de execução do
aplicativo. A versão da JVM com a heurística reduziu o tempo de execução do
aplicativo em 20%, mas com um custo na utilização de memória: na tentativa de adaptar
o tamanho do Éden foi necessário utilizar 12% a mais de memória do que as
configurações 1 e 2.

5.3. JGFCreateBench

Esse aplicativo tem a mesma característica do GCBench, com a diferença de que a
quantidade de objetos que se tornam lixo mais cedo é maior. Nesse aplicativo espera­se
que uma grande quantidade de coletas menores seja feita. Assim, a expectativa é que os
resultados sejam semelhantes aos do GCBench.

SBC 2008 65

Os resultados obtidos são apresentados na tabela 3. Pode­se perceber que, de
forma geral, os resultados para execuções com o tamanho da geração jovem fixo foram
piores do que com o tamanho variável. Neste caso, o uso da heurística reduziu o tempo
total de execução em 7%, mas o tempo acumulado gasto com coletas foi ligeiramente
maior do que o das demais configurações. A média de pausa foi também ligeiramente
pior. Esses dois resultados nos levam a concluir que a heurística conseguiu reduzir a
quantidade total de coletas na geração jovem, o que levou a redução no tempo total de
execução da aplicação, mesmo tendo uma taxa de throughput um pouco mais baixa.
Isso pode ter ocorrido pelo fato da heurística disponibilizar ao aplicativo espaço em
momentos críticos de alocação, o que não ocorre nas execuções com o tamanho fixo.

Tabela 3 – Resultados do aplicativo JGFCreateBench

 Coletor e opções Throughput (%) Footprint (MB) Acumulado Média pausa Execução

1 Client - 32 mb 98,26 32,812 0,9600 0,00056 55,00

2 Client - 32 -> 64 mb 98,12 32,812 0,9600 0,00056 51,00

3 Client - 64 mb 98,27 61,625 0,9600 0,00111 55,00

4 Client - Com heuristica 97,9 61,6 1,0700 0,01170 51,00

Execução realizada com heap total de 256 mb Tempos (seg)

Outro ponto que pode ser observado nestes resultados é que, apesar das
configurações 4 (heurística) e 2 (heap variando de 32 a 64 MB) terem obtido os mesmos
tempos de execução, a configuração 2 consumiu menos memória que a configuração 4.
Isso ocorreu porque o objetivo primário da heurística era reduzir a quantidade de
coletas; o que acaba fazendo com que uma quantidade maior de lixo seja mantida na
memória por mais tempo, o que não ocorre com a configuração 2.

5.4. JGFSerialBench

A heurística proposta obteve, para este aplicativo, ótimos resultados. A redução do
tempo total de execução ficou cerca de 11% abaixo da média dos tempos das demais
configurações. Isso aconteceu pelo fato deste aplicativo apresentar justamente as
características que desejávamos atender com nossa heurística: alocações de grandes
quantidades de memória de maneira relativamente constante ao longo de toda a
execução.

Tabela 4 – Resultados do aplicativo JGFSerialBench

 Coletor e opções Throughput (%) Footprint (MB) Acumulado Média pausa Execução

1 Client - 32 mb 95,92 108,084 3,1200 0,14851 76,00

2 Client - 32 -> 64 mb 96,05 108,086 3,1000 0,14784 78,00

3 Client - 64 mb 97,15 130,055 2,1700 0,21711 75,00

4 Client - Com heuristica 96,09 94,969 2,7200 0,12930 69,00

Execução realizada com heap total de 256 mb Tempos (seg)

Deve­se chamar a atenção para outro aspecto interessante: o uso total de
memória (footprint) foi menor na heurística do que nas outras configurações. Isso
ocorreu basicamente porque os objetos alocados tornaram­se lixo ainda na geração
jovem, quando a heurística já havia disponibilizado todo o espaço possível para

SBC 2008 66

alocação. Acreditamos que isso evitou operações de cópia destes objetos para outros
espaços de memória, o que por fim reduziu o tempo médio de cada operação de coleta e
o tempo total de execução do programa.

5.5. JGFSORBench

Esse aplicativo realiza muito processamento, alocando os dados necessários no início da
execução. Espera­se que poucas coletas sejam realizadas e, assim como GCOld, nossa
heurística não traga grandes ganhos para a sua execução. Esperamos então repetir os
resultados de GCOld, não adicionando grandes overheads para a execução da aplicação.

A configuração 3 obteve os melhores resultados, mas a diferença em
comparação as demais configurações é mínima. Como era desejável, em aplicativos que
realizam poucas operações de coleta de lixo na geração jovem, o uso da heurística não
adicionou overheads, o que demonstra que a heurística não possui grandes custos
adicionais de implementação. De fato, podemos até observar pequenas vantagens em
sua utilização, já que o footprint foi menor com a nossa heurística do que as
configurações que utilizam a mesma quantidade de memória (32 MB).

Tabela 5 – Resultados do aplicativo JGFSORBench

 Coletor e opções Throughput (%) Footprint (MB) Acumulado Média pausa Execução

1 Client - 32 mb 98,97 65,684 0,0800 0,03769 7,00

2 Client - 32 -> 64 mb 98,97 65,684 0,0800 0,03774 7,00

3 Client - 64 mb 99,86 61,625 0,0100 0,01003 7,00

4 Client - Com heuristica 98,93 63,656 0,0800 0,03924 7,00

Execução realizada com heap total de 256 mb Tempos (seg)

6. Trabalhos Futuros

Nosso trabalho encontra­se em fase inicial de desenvolvimento, de forma que temos
várias propostas de trabalhos futuros. A primeira proposta consiste da avaliação dos
parâmetros que utilizamos para expandir e reduzir o tamanho do Éden. Acreditamos que
um ajuste nas taxas de expansão e de redução do tamanho da heap, bem como nos
parâmetros que disparam estas ações, podem melhorar o desempenho da heurística.
Uma outra proposta consiste de ajustar dinamicamente estes parâmetros conforme o
comportamento da aplicação. Outra proposta consiste da aplicação de nossa heurística
nas demais gerações do coletor, ou mesmo da criação de uma heurística específica para
estas. Acreditamos que o emprego de uma heurística para a geração antiga, por
exemplo, poderia impactar positivamente os resultados dos aplicativos que mantém
dados alocados por um período longo de tempo, como é o caso do GCOld. Gostaríamos
também de avaliar o uso de nossa heurística em outras aplicações, de forma a avaliar
melhor o impacto de nossa heurística em suas execuções. Pretendemos também
instrumentar a JVM para colher mais informações a respeito das coletas, de forma a
termos mais informações para fazermos nossas avaliações de desempenho. Por fim,
nossa última proposta consiste de um melhoramento nos algoritmos de coleta por cópia
hoje implementados na HotSpot JVM. Gostaríamos de avaliar o impacto do algoritmo
Mark Lazy­Sweep [Jones e Lins 1996] na geração jovem. Esse algoritmo consiste da

SBC 2008 67

marcação dos objetos vivos, assim como ocorre no algoritmo de cópia. Entretanto, a
cada alocação de novos objetos, esse algoritmo procura na heap por espaços não
marcados que sejam suficientemente grandes para comportar os novos objetos. Assim,
esse algoritmo reduz o tempo de pausa do coletor, transferindo seu custo para a fase de
alocação.

7. Conclusão

Neste trabalho, propomos, implementamos e avaliamos na HotSpot JVM uma nova
heurística para realizar automaticamente o ajuste do tamanho da memória de acordo
com as características de consumo de memória do aplicativo em execução.

A heurística proposta verifica o tempo decorrido dentre certas quantidades de
coletas de lixo. Dependendo do tempo decorrido, aumenta­se ou reduz­se a memória
disponibilizada para armazenar os objetos recém­alocados. A heurística baseia­se no
fato de que tempos curtos entre coletas apontam muitas alocações ocorrendo na
aplicação. Aumentamos então a região de memória destinada a armazenar objetos recém
alocados na tentativa de suprir essas alocações com mais memória, sem que sejam
necessárias operações de coleta para disponibilizá­la. Analogamente, se o tempo entre
as coletas for relativamente grande, concluímos que poucas alocações estão ocorrendo.
Neste caso reduzimos o tamanho da memória com o intuito de economizá­la.

A heurística mostrou­se uma boa alternativa para aplicativos que, ao longo de
sua execução, alocam grandes quantidades de objetos e os utilizam por pouco tempo,
sem acarretar em aumento de custos para aplicativos com características distintas.

Referências

Lindholm, T.; Yellin, F. (1999) “The Java Virtual Machine Specification”, 2nd Edition,
Prentice Hall PTR.

Bacon, D.; Cheng, P.; Rajan, V. T. (2004) “A Unified Theory of Garbage Collection”.
In: ACM SIGPLAN Notices, Vol. 39, Issue 10, pp. 50-68. Nova Iorque: ACM Press.

Ungar, D. M. (1984) “Generation scavenging: A non-disruptive high-performance
storage reclamation algorithm”. In: ACM SIGPLAN Notices, vol. 19, issue 5, pp.
157-167, ACM, 1984.

Boehm, H. “An Artificial Garbage Collection Benchmark”
http://www.hpl.hp.com/personal/Hans_Boehm/gc/gc_bench.html

Detlefs, D. (2005) “GCOld: a benchmark to stress old-generation collection”,
http://www.experimentalstuff.com/Technologies/GCold/index.html,id=7phrthka4sqp
s132dpihr2?template.fileName=admin/printing.template

Bull, J. M.; Smith, L. A.; Westhead, M. D.; Henty, D. S.; Davey, R. A.. (2000) “A
Benchmark Suite for High Performance Java”, In: Concurrency: Practice and
Experience, vol. 12, pp. 375-388, 2000.

Tagtraum industries, inc (2005) http://www.tagtraum.com.

Jones, Richard e Lins, Rafael. (1996). Garbage Collection: Algorithms for automatic
dynamic memory management. Publicado por John Wiley & Sons. 329p.

SBC 2008 68

	1. Introdução
	2. Coleta de Lixo na JVM
	3. Heurística Proposta
	4. Aspectos de Implementação da Heurística na JVM
	5. Resultados Preliminares
	5.1. GCOld
	5.2. GCBench
	5.3. JGFCreateBench
	5.4. JGFSerialBench
	5.5. JGFSORBench

	6. Trabalhos Futuros
	7. Conclusão
	Referências

