Implementacao de uma Heuristica de Coleta de Lixo na

Maquina Virtual Java

Héberte Fernandes de Moraes', Luciano J. Chaves?, Marcelo Lobosco®

'Programa de Engenharia de Sistemas e Computagdo — COPPE/UFRJ
Caixa Postal 68.511 —21941-972 — Rio de Janeiro — RJ — Brasil

“Instituto de Computa¢io — Universidade Estadual de Campinas
Caixa Postal 6176 — 13.084-971 — Campinas — SP — Brasil

‘Departamento de Ciéncia da Computagdo — Universidade Federal de Juiz de Fora

Campus Universitario — 36.036-330 — Juiz de Fora — MG — Brasil

brebete@cos.ufrj.br, luciano.chaves@students.ic.unicamp.br,
marcelo.lobosco@ufjf.edu.br

Abstract. The Garbage Collector mechanism frees the programmer from
manually dealing with memory management. This is a standard feature of
several programming languages, such as Java, but imposes an additional cost
on program execution. An attempt to minimize this cost is to increase the size
available for allocations, but memory can be wasted. If too little memory is
available for allocation, the number of garbage collections increases, which
in turn impacts negatively the computation time. In this work we present,
implement and evaluate a new heuristic that aims to adjust automatically the
total amount of memory available for allocation. The heuristic was
implemented in the Java Virtual Machine.

Resumo. O mecanismo de coleta automdtica de lixo (garbage collection),
presente em diversas linguagens de programagdo, como Java, por um lado
libera o programador da tarefa de gerenciar as regioes de memoria que sua
aplicacdo ndo mais utiliza, e por outro adiciona um custo ao tempo total de
execucdo da aplicacdo. Uma tentativa de minimizar este custo consiste em
aumentar o tamanho do espaco disponivel para o aplicativo realizar
alocagées, o que por sua vez pode acarretar em um desperdicio de memoria.
Sob outra perspectiva, a restricdo demasiada do espaco disponivel para
alocagdo pode causar muitas coletas, conseqiientemente aumentando o tempo
total de execugdo da aplicacdo. Neste trabalho propomos, implementamos e
avaliamos uma nova heuristica para adequar automaticamente a quantidade
de memoria disponivel para alocagdo pelas aplicacdes que executam na
Mdgquina Virtual Java.

1. Introducao

i de julho
0 Pard, PA

O coletor de lixo (Garbage Collector) foi desenvolvido com o intuito de auxiliar o
programador no desenvolvimento de suas aplicacdes. Em um primeiro momento, cabe
ao coletor a tarefa de vasculhar a memdria, procurando por regides alocadas que nio
podem mais ser acessadas pela aplicac@o. Estas regides sdo denominadas de lixo. Apds

SBC 2008

57

essa fase inicial, o coletor deve liberar essas regides de memoria, permitindo assim o
reuso do espacgo para novas alocacdes. Desta forma, o coletor gerencia automaticamente
a utilizacdo da memoria por parte do aplicativo. Em linguagens de programacao que nao
contam com este recurso, este papel é desempenhado pelo programador, que ¢ obrigado
a especificar explicitamente quais regides devem ser liberadas. E comum que os
programadores incorram em erros durante esse processo, que podem levar a erros fatais
na execucdo dos programas. Com o coletor, o programador fica livre dessa
responsabilidade, levando a um gerenciamento mais eficiente dos recursos de memdria.

O emprego de coletores em linguagens de programacdo implica em um custo
adicional para a aplicacdo, ja que parte do seu tempo de execucdo € gasto nos processos
de identificagdo e liberacdo de regides de memoria ndo mais alcangéveis pela aplicagdo.
Esse custo pode ser muito alto, dependendo das caracteristicas do aplicativo e do coletor
utilizado. Uma forma de minorar ou mesmo eliminar este custo consiste do aumento da
quantidade de espago para o aplicativo realizar alocagdes: com mais espaco disponivel,
reduz-se a necessidade de liberar memoria para o reuso da prépria aplicagio. Entretanto,
disponibilizar muita memoria pode constituir-se em fonte de desperdicio de recursos
computacionais. De forma andloga, restringir demais a quantidade de espacgo disponivel
pode levar a ocorréncia de muitas coletas de lixo, conseqiientemente aumentando o
tempo total de execugdo da aplicacdo. Faz-se, portanto, necessario atingir um ponto de
equilibrio na quantidade de memoria disponibilizada para aplicacao.

Neste trabalho estudamos esta questdo, propondo uma heuristica para realizar
automaticamente o aumento ou a redu¢do da quantidade de memoria disponibilizada
para a aplicacdo. Para avaliar nossa proposta, implementamos a heuristica na Maquina
Virtual Java (Java Virtual Machine — JVM) [Lindholm e Yellin 1999], comparando-a
com os coletores disponibilizados pela JVM. Os resultados preliminares demonstram
que, para algumas aplicacdes avaliadas, a heuristica foi efetiva em seu objetivo de
reduzir os custos associados a coleta de lixo.

O restante deste trabalho estd organizado da seguinte forma: a secao 2 apresenta
os mecanismos de coleta de lixo disponibilizados na JVM; a se¢ao 3 apresenta nossa
heuristica; na se¢do 4 sdo apresentados alguns aspectos de sua implementacido na JVM;
a secdo 5 apresenta alguns resultados preliminares da heuristica ora proposta; a secdo 6
apresenta algumas idéias para trabalhos futuros; enquanto a se¢ao 7 conclui o trabalho.

2. Coleta de Lixo na JVM

Existem diversos tipos de algoritmos para coleta de lixo. Segundo Bacon et. al. (2004),
os algoritmos existentes podem ser divididos basicamente em dois grandes grupos: a)
algoritmos de contagem de referéncias e b) algoritmos de rastreamento. Os algoritmos
de contagem de referéncias armazenam, para cada objeto, um contador de referéncia.
Esse contador € incrementado sempre que uma nova referéncia a este objeto € feita.
Esse contador é decrementado caso uma dessas referéncias deixe de existir. Quando o
valor do contador chega a zero, o objeto € considerado lixo e € reciclado. Ja os
algoritmos de rastreamento percorrem todas as referéncias de memdria a partir de um
conjunto inicial de referéncias, denominado conjunto raiz. Todos os objetos direta ou
indiretamente alcangéveis a partir do conjunto raiz sdo mantidos em memoria, enquanto
os demais sdo reciclados.

SBC 2008

i de julho
0 Pard, PA

58

SBC
008

i de julho
0 Pard, PA

Para a geréncia de memoria a JVM utiliza um mecanismo de rastreamento
baseado em geracdes. Esse mecanismo consiste do agrupamento dos objetos vivos em
trés distintas regides de memoria: a) geragdo jovem, b) geracdo antiga ou estdvel e ¢) a
geracdo permanente. Esta divisdo parte do pressuposto de que a maioria dos objetos
vive por um periodo muito curto, enquanto uma pequena porcentagem deles vive por
muito tempo [Ungar 1984]. Assim pode-se realizar operacdes de coleta mais constantes
apenas na regido de memoria que abriga os objetos alocados mais recentemente, que
ficam localizados na geracdo jovem. Apdés um determinado nimero de coletas, os
objetos sobreviventes sdo promovidos para a gera¢do antiga, conforme ilustrado na
Figura 1. Nesta regido de memoria as coletas ndo precisam ser tao freqiientes quanto na
geracdo anterior, visto que a chance dos objetos serem referenciados por muito tempo €
maior. Na geracdo permanente sao alocados meta-dados, como descritores de classes e
métodos. As coletas na geracdo jovem sdo conhecidas por coletas menores. Quando as
geracdes antigas e permanente ficam sem espago, ocorrem as coletas maiores. Uma
vantagem deste modelo de coleta baseado em geracdes é a possibilidade de utilizar
técnicas de coleta de lixo distintas para cada uma das geragdes, de acordo com as suas

particularidades.
@
; Geracio de objetos
JUOE0E
Novos

Fromogio

[] [J [J [Livre] Gera?i?]tt:goosbjetos

Figura 1. Fluxo de movimentacao dos objetos

A geracio jovem na JVM é ainda dividida em trés sub-regies: Eden, espaco de
sobreviventes de origem e espago de sobreviventes de destino, conforme ilustra a figura
2. Todas as novas alocagdes sio feitas no Eden. Objetos que sobrevivem a primeira
coleta no Eden sdo copiados para o espaco de sobreviventes de origem. Quando coletas
precisam ser realizadas neste espaco, os objetos ainda vivos sdo copiados para o espaco
de sobreviventes de destino. No final da cdpia, os espagcos de sobreviventes trocam de
nomes.

Geracao Jovem

(OCD0OC OO0)| tten

Origem Destino
OO0C_) o
(Vazio) .
Sobreviventes

Figura 2. Modelo da geracao jovem da JVM

SBC 2008

59

3. Heuristica Proposta

O coletor de lixo é considerado um custo adicional na execugdo dos aplicativos. Para
reduzir este custo deve-se reduzir o tempo e / ou o nimero de execugdes do coletor, ja
que quanto menor for o tempo gasto com coletas, menor serd o tempo total de execugdo
do aplicativo.

Para reduzir o tempo de execucdo de um coletor devemos levantar seus custos
de execugdo. Baseados nessa informagdo, procuram-se alternativas de implementacdo
para reduzir os custos das fun¢des que demandam maiores tempos de execucdo. Por
exemplo, no caso do coletor da geracdo jovem, o maior custo estd relacionado as
operacgdes de copia dos objetos vivos.

Outra forma de reduzir o tempo total de execucdo do aplicativo é diminuir a
quantidade de coletas. Uma das formas de se fazer isto é aumentando a memoria
disponivel para alocagdo. Entretanto, estaremos desperdicando memoria caso uma
quantidade excessiva desta seja disponibilizada para a aplicacdo. Ficamos, assim, com
um dilema: caso uma quantidade insuficiente de memoria seja disponibilizada, teremos
uma grande quantidade de coletas, aumentando o tempo total de execucdo dos
aplicativos. Disponibilizar muita memoria, por outro lado, pode constituir-se em

desperdicio de recursos computacionais.

Neste trabalho propomos uma heuristica com o intuito de ajustar
automaticamente o tamanho do Eden de acordo com as caracteristicas de consumo de
memoria do aplicativo em execugdo. A heuristica consiste em verificar o tempo entre
certa quantidade de coletas. Se este tempo for relativamente pequeno, o tamanho do
Eden é aumentado; se o tempo for relativamente grande, o tamanho do Eden é reduzido;
caso contrdrio mantém-se o tamanho atual. A heuristica se baseia no pressuposto de que
se o tempo entre as coletas for relativamente pequeno, entdo muitas alocagdes estdo
ocorrendo na aplicacdo. O aumento do Eden é entdo realizado na tentativa de suprir
essas alocacdes com mais memoria, sem que sejam necessarias operacdes de coleta para
disponibilizi-la. Por outro lado, se o tempo entre as coletas for relativamente grande,
entdo poucas alocacdes estdo ocorrendo, ou seja, ndo hd a necessidade de haver tanta
meméria disponivel para alocacdes. Neste caso reduzimos o tamanho do Eden com o
intuito de economizar memoria.

Nossa heuristica inspeciona particularmente o Eden por esta ser a regido onde a
maior parte das coletas ocorre, as coletas menores, mas nada impede que a técnica seja
empregada nas demais regides de memoria para diminuir o nimero de coletas maiores.

4. Aspectos de Implementacao da Heuristica na JVM

A implementacdo da heuristica proposta foi realizada no Hotspot JVM, uma
implementagdo da especificacio da mdquina virtual Java desenvolvida pela Sun
Microsystem.

Uma das dificuldades que encontramos para implementar nossa heuristica na
Hotspot JVM foi o fato desta ndo permitir a alteracdo, em tempo de execucdo, do
tamanho da heap. Como nossa heuristica exige a alteracio do tamanho do Eden durante
a execuc¢do da aplicacdo, procuramos alternativas para sua implementacdo na Hotspot

SBC 2008

i de julho
0 Pard, PA

60

SB ¢ i de julho
00 : 0 Pard, PA

JVM. Nossa solu¢do foi definir, no inicio da execu¢do da HotSpot JVM, o tamanho
maximo do Eden. A partir daf, o tamanho inicialmente disponibilizado para a aplicac¢io
foi definido como metade deste tamanho maximo. O Eden, neste caso, pode expandir-se
até este tamanho maximo previamente definido.

O processo de aumento e reducio do Eden é feito na classe EdenSpace do
DefNewGeneration. Em sua implementagdo original, esta classe cont¢ém o limite
inferior e o superior do espaco delimitado para o Eden. Os campos bottom, top e end
(figura 3) sdo usados para delimitar o Eden, sendo bottom e end fixos durante toda a
execu¢do da maquina virtual. O campo top indica o ponto no qual um novo objeto pode
ser alocado; todo o espaco a esquerda deste ponto contém objetos recém alocados.
Quando valor do campo top alcancga o valor do end, uma coleta € executada e todos os

objetos vivos sdo retirados deste espaco, e valor do top € substituido pelo valor do
bottom.

Limites do Eden

Bottom Top End

| !
JOOCO)

Figura 3. Limites do Eden

b

Para que o ajuste de tamanho do Eden funcionasse, modificamos a classe
EdenSpace para criar um novo campo chamado hardEnd (figura 4). Esse campo tem
por finalidade armazenar o limite superior do Eden. Com isso, o valor do campo end
pode variar entre o hardEnd (seu valor maximo), € a metade do espaco delimitado por
bottom e hardEnd (seu valor minimo). Na inicializacdo do EdenSpace, os valores dos
campos end e hardEnd sao definidos como a figura 4 ilustra, sendo o valor do hardEnd
igual ao final do espaco e o valor do end, o meio do espago.

Novo Limite para o Eden

Bottom Top End HardEnd

: v !

U0

Figura 4. Novo Limite para o Eden

A alteracio do tamanho do Eden s6 é feita apds a execugdo de uma coleta de
lixo, j4 que neste ponto o coletor j4 moveu todos 0s objetos vivos para outro espaco.
Sendo assim, pode-se alterar o campo end para qualquer posi¢ao no intervalo definido.

Em nossa primeira tentativa de implementacdo, definimos que o Eden se
expande a uma taxa igual a metade do espaco total ainda disponivel, ou seja:

UundEnd—end):lundEnd+end

end=end+ > >

SBC 2008 61

Enquanto houver espago disponivel para realizar o aumento do Eden, o campo é
alterado. Deve-se salientar que essa alteracdo sé ocorre caso muitas coletas sejam
executadas em um intervalo de tempo relativamente curto.

Definimos também que a taxa de reducio do Eden é igual ao espaco ainda
disponivel para expansao, ou seja:

end=end—(hardEnd —end)=2end —hardEnd

A férmula acima € vélida caso o espaco ainda disponivel para alocacdo seja
menor que a metade do espaco total do Eden. Caso contrério, a operacdo de redugio
tornaria o espago para alocagdo igual a zero, o que causaria uma falha na proxima
tentativa de alocacdo de memoria na JVM.

Devemos também chamar a atencdo para outro ponto ligado a reducio do Eden:
como definimos que a sua taxa de reducdo € igual ao espaco ainda disponivel para
expansao, nao teriamos qualquer reducdo caso nao existisse mais espaco disponivel para
o aumento do Eden. Neste caso, definimos que a redugdo serd igual a 1/4 de seu
tamanho total, ou seja, 25% de (hardEnd — bottom).

O pseudo-cddigo abaixo ilustra a implementacdo de nossa heuristica na JVM.
Ele é sempre chamado apds as operacdes de coleta de lixo, j4 que nesse ponto da
execucdo o Eden ndo contém qualquer objeto, assim ndo hd problemas na alteracio de
seu tamanho.

ColetaDados () ;
SE (NumeroColetas >= 30) E (TempoEntreColetas <= 300) ENTAO
End := ARREDONDA ((HardEnd + End)/2);
SENAO
SE (NumeroColetas < 30) E (TempoEntreColetas > 300) ENTAO
SE End = HardEnd ENTAO
End := End - ARREDONDA ((HardEnd - Bottom) /4);
SENAO
End := 2*End - HardEnd;

Devemos salientar que o método ColetaDados(), como o préprio nome indica,
coleta os dados necessdrio para a realizac@o dos testes da heuristica, como a quantidade
de coletas realizadas e o tempo decorrido entre elas.

5. Resultados Preliminares

Utilizamos um conjunto de aplicativos com o prop0sito de avaliar o desempenho da
heuristica implementada no coletor serial da geracdo jovem. Os aplicativos sdo: GCOIld
[Detlefs 2005], GCBench [Boehm], JGFCreateBench, JGFSerialBench, e
JGFSORBench, estes ultimos parte do suite de aplicativos do Java Grande Férum [Bull
et alli 2000].

GCOId ¢ um benchmark sintético que modela aplicacdes onde os dados mais
antigos sd3o mais propensos a se tornarem lixo. GCBench também ¢ um benchmark
sintético que divide a sua execu¢@o em duas fases distintas: a) a expansao da heap e b) a
alocacdo e liberagdo de grandes por¢des de memoria. JGFCreateBench aloca, durante a
sua execu¢do, inimeros tipos de objetos, sem utiliza-los em processamentos posteriores.
Como resultado, os objetos alocados tém uma vida extremamente curta, nao

sobrevivendo a uma primeira limpeza da memoria. JGFSerialBench realiza operagdes
de serializagdo em diversos objetos, ou seja, armazena em disco o estado dos objetos,
recuperando-os posteriormente. Sao construidas durante a sua execucao estruturas como
arvores, LinkedLists, Arrays e Vectors que sdo gravados em arquivos e depois
carregados novamente em memoria. Para cada estrutura sdo realizadas 4000 iteragdes de
gravacdo e leitura de arquivos. O consumo de memoria nesta aplicagdo ¢
aproximadamente constante para cada tipo de estrutura de dados. JGFSORBench realiza
centenas de iteragdes do algoritmo Successive Over Relaxation em uma matriz de
tamanho NxN. A caracteristica basica deste algoritmo, em termos de uso de memoria, ¢
realizar toda a alocag@o de objetos no inicio do processamento.

Os testes foram realizados em uma méquina com processador AMD Sempron
2800+, 32 bits, com clock de 1.6 Ghz, 128KB de cache L1 e 256KB de cache L2. A
mdaquina em questdo tem 1 GB de memodria principal e executa Linux Kubuntu 7.10
com kernel 2.6.22.4-386. Testamos duas versdes do jrel.6.0 (Java Runtime Machine)
compiladas na propria miquina, senda uma das versdes sem alteracdo de seu cddigo
fonte e a outra com a implementacao da heuristica. Os principais fatores avaliados em
nossos testes foram o tempo de execugdo do aplicativo, o tempo total de pausa, o tempo
médio de execucdo das coletas, a taxa de throughput e o footprint. O throughput
representa nesse contexto o percentual de tempo que a JVM ndo executa coleta de lixo,
tendo como referéncia o tempo total de execu¢do do aplicativo. O footprint é o uso
maximo de memoria do aplicativo.

Para avaliar os resultados obtidos, geramos o log da coleta de lixo para cada uma
das aplicagcdes. O aplicativo GCViewer [Tagtraum industries 2005] foi utilizado para
visualizar estes arquivos.

Cada aplicativo foi executado no minimo trés vezes de forma exclusiva, e a
partir dos resultados foi computada uma média dos valores obtidos. O desvio padrdo
dos tempos de execucdo foi desprezivel.

A JVM tem duas versdes distintas: cliente e servidor. Essencialmente tratam-se
de dois compiladores distintos que possuem uma interface comum com o sistema de
execu¢do da JVM. A versdo cliente tem seu compilador ajustado para executar
aplicacdes que necessitam de a) um tempo de iniciagdo rdpido ou b) pequenos
footprints. J4 a versdo servidor tem o compilador ajustado para aplicacdes onde o
desempenho global é o ponto mais importante. Nosso trabalho avaliou o impacto de
nossa heuristica nas duas versdes, mas, por falta de espaco, neste trabalho reportamos
apenas os resultados com a versao cliente.

Os testes foram realizados usando duas maquinas Java distintas. A primeira
maquina € a HotSpot JVM padrao, executando em sua versao cliente, com tamanho total
da heap igual a 256 MB. Para esta maquina padrdo variamos o tamanho da geracdo
jovem de trés formas distintas: 1) nesta configuracdo a geragdo jovem tem um tamanho
fixo igual a 32 MB, 2) nesta configuracdo seu tamanho varia entre 32 MB e 64 MB, e 3)
nesta configuracdo seu tamanho € fixo em 64 MB. Por fim, a segunda maquina Java
consiste da HotSpot JVM modificada pela implementacdo de nossa heuristica (4), com
heap de 256 MB e a geracao jovem variando entre 32 MB e 64 MB .

SBC 2008

63

A diferenca entre nossa heuristica e a implementa¢do da JVM que expande a
geracdo jovem (versdo 2) é a forma como as expansdes se ddo. Na implementacdo
nativa da JVM, quando nao h4 mais espaco disponivel na geracdo jovem, a JVM tenta
primeiro expandir o seu tamanho até que o limite especificado seja atingido. Caso seja
possivel realizar a expansdo, a alocacio € feita sem que sejam necessdrias coletas de
lixo. Caso ndo seja possivel, ou seja, caso o limite superior ja tenha sido atingido em
operagdes de expansdo anteriores, realiza-se a coleta de lixo para liberar espaco nesta
geracdo. Logo, na versdo 2 avaliada, a expansdo da memdria € realizada antes que
ocorra uma coleta. No caso da nossa heuristica, vérias coletas ocorrem antes que o
tamanho da geracdo seja modificado. Nossa heuristica utiliza justamente as informagdes
das coletas para saber se estdo ocorrendo muitas alocacdes, optando pelo aumento da
geracdo jovem apenas quando este quadro se confirma, enquanto que na implementagao
nativa da JVM o objetivo € evitar que ocorra uma coleta. Além do mais, podemos
reduzir, em tempo de execu¢do, o tamanho da geracdo quando o espaco adicional de
memoria ndo mais se faz necessario.

Para a JVM alterada com a heuristica proposta neste trabalho, utilizamos a
politica de aumentar o tamanho do Eden apds 30 coletas menores seguidas executadas
em intervalo de tempo de 100 milissegundos. A redugio do tamanho do Eden se dé
sempre que o tempo entre duas coletas consecutivas torna-se relativamente grande; no
caso deste trabalho isto ocorre quando o intervalo entre duas coletas torna-se superior a
3 segundos.

Os resultados obtidos sdo apresentados em tabelas, onde as linhas representam
as quatro configuragdes testadas e as colunas apresentam os resultados das métricas
avaliadas. As configuracdes 1 a 3 foram executadas na maquina HotSpot JVM padrao,
sem qualquer modificagdo, enquanto na versio 4 a mdaquina HotSpot JVM foi
modificada pela implementagdo de nossa heuristica.

5.1. GCOld

Este aplicativo cria muitos objetos grandes que sdao mantidos alocados na memoria
durante muito tempo. Assim a geracdo antiga € muito utilizada, o que faz com que
coletas maiores sejam realizadas com mais freqiiéncia. Como nossa heuristica tenta
reduzir a quantidade de coletas menores, esperdvamos ndo ter qualquer ganho neste
benchmark. Neste caso, nosso objetivo primdrio foi verificar se algum overhead seria
adicionado para aplicativos com esta caracteristica de uso de memoria.

Tabela 1 - Resultados do aplicativo GCOId

Exeaucdo realizada comheap total de 256 mb Tempos (seg)
Coletor e opgdes ﬂra_y'pu'(% Footprint (MB) | Aaxmulado | Médiapausa| Beaugo
1 |dient-32mb 29,35 103,12 11,450 0,18467 16,00
2 |Qient-32->64 mb 28,77 102,88 11,440 0,18457 16,00
3 |Qient-64 mb 31,85 1415 10,420 0,33611 15,00
4 |Qient- Comheuristica 26,82 119,781 11,920 0,23367 16,00

Observando os resultados da tabela 1 percebemos que a heuristica obteve uma
taxa de throughput um pouco menor do que as obtidas por outras configuragdes.

SBC 2008

64

Comparado com a configuracdo 3, a heuristica conseguiu reduzir significantemente o
desperdicio de memoria. Apesar da heuristica ter obtido o pior tempo acumulado de
coletas, o tempo médio de cada uma das pausas foi bem inferior ao da pior configuracao
e o tempo total da execucdo da aplicagdo ficou dentro da média das demais
configuragdes.

5.2. GCBench

Essa aplicacdo tem como caracteristica principal criar uma grande quantidade de objetos
com tempo de vida curto, fazendo uma grande quantidade de alocagdes em toda a sua
execug¢do, o que provoca vdrias coletas menores.

Observando os dados coletados da execucdo do aplicativo (tabela 2), pode-se
perceber que quanto maior a quantidade de memoria disponibilizada para o aplicativo,
menor € o tempo acumulado de coletas, resultando em uma reducido no tempo total de
execugao do aplicativo.

Tabela 2 - Resultados do aplicativo GCBench

Execucao realizada comheap total de256 mb Tempos (seg)
Compilador - tamanho ﬂrougptt(%) Footprint (MB) | Aaxmulado | Médiapausa | Bxeaucio
1|dient-32 b 36,19 145,55 3,687 0,05263 5,00
2 |Qient-32->64 mb 36,17 145,55 3,690 0,05276 5,00
3 |dient-64 b 73,94 130,78 0,750 0,02151 2,00
4 |dient - Comheuristica 43,31 163,344 2,570 0,04585 4,00

A configuragdo 1 representa a pior execucdo, considerando o tempo como
variavel de comparagdo; do tempo total da execucdo do aplicativo aproximadamente
36% foram gastos com a execucdo do aplicativo, ou seja, o custo da execucdo dos
coletores foi muito maior do que o da execucdo do aplicativo. A configuracdo 3, que
executa o aplicativo com 64 MB para a geracdo jovem, obteve o melhor tempo de
execugdo. Isso ocorreu devido a quantidade de coletas realizadas ser bem menor, o que
tomou cerca de 26% do tempo total de execucao.

Com relagdo a heuristica, observamos uma redu¢do no tempo total de execugao
do aplicativo em comparacdo as configuragdes 1 e 2, mas ndo tdo bom quanto a obtida
pela configuragdo 3. O aumento do tamanho do Eden, neste caso, foi responsével pela
reducdo no numero de coletas, o que em ultima instancia reduz o tempo de execucdo do
aplicativo. A versdo da JVM com a heuristica reduziu o tempo de execucdo do
aplicativo em 20%, mas com um custo na utilizacdo de memoria: na tentativa de adaptar
o tamanho do Eden foi necessirio utilizar 12% a mais de meméria do que as
configuragdes 1 e 2.

5.3. JGFCreateBench

Esse aplicativo tem a mesma caracteristica do GCBench, com a diferenca de que a
quantidade de objetos que se tornam lixo mais cedo € maior. Nesse aplicativo espera-se
que uma grande quantidade de coletas menores seja feita. Assim, a expectativa € que os
resultados sejam semelhantes aos do GCBench.

SBC 2008

65

Os resultados obtidos sdo apresentados na tabela 3. Pode-se perceber que, de
forma geral, os resultados para execu¢des com o tamanho da geragdo jovem fixo foram
piores do que com o tamanho varidvel. Neste caso, o uso da heuristica reduziu o tempo
total de execucdo em 7%, mas o tempo acumulado gasto com coletas foi ligeiramente
maior do que o das demais configuragdes. A média de pausa foi também ligeiramente
pior. Esses dois resultados nos levam a concluir que a heuristica conseguiu reduzir a
quantidade total de coletas na geracdo jovem, o que levou a reducio no tempo total de
execu¢do da aplicacdo, mesmo tendo uma taxa de throughput um pouco mais baixa.
Isso pode ter ocorrido pelo fato da heuristica disponibilizar ao aplicativo espaco em
momentos criticos de alocag@o, o que ndo ocorre nas execucdes com o tamanho fixo.

Tabela 3 — Resultados do aplicativo JGFCreateBench

Exeaucdo realizada comheap total de 256 mb Tempos (seg
Coletoreopgdes |Throughput (99| Footprint (MB) | Acumulado | Média pausa| Bxecugio
1|Qient- 32 mb 98,26 32,812 0,9600 0,00056 55,00
2|dient-32->64 mb 98,12 32,812 0,9600 0,00056 51,00
3|dient- 64 mb 98,27 61,625 0,9600 0,00111 55,00
4 |dient - Comheuristica 97,9 61,6 1,0700 0,01170 51,00

Outro ponto que pode ser observado nestes resultados € que, apesar das
configuracdes 4 (heuristica) e 2 (heap variando de 32 a 64 MB) terem obtido 0s mesmos
tempos de execucdo, a configuragdo 2 consumiu menos memoria que a configuragdo 4.
Isso ocorreu porque o objetivo primario da heuristica era reduzir a quantidade de
coletas; o que acaba fazendo com que uma quantidade maior de lixo seja mantida na
memoria por mais tempo, 0 que nao ocorre com a configuragao 2.

5.4. JGFSerialBench

A heuristica proposta obteve, para este aplicativo, 6timos resultados. A reducdo do
tempo total de execucdo ficou cerca de 11% abaixo da média dos tempos das demais
configuragdes. Isso aconteceu pelo fato deste aplicativo apresentar justamente as
caracteristicas que desejdvamos atender com nossa heuristica: alocacdes de grandes
quantidades de memoria de maneira relativamente constante ao longo de toda a
execucao.

Tabela 4 — Resultados do aplicativo JGFSerialBench

Exeaucdo realizada comheap total de 256 mb Tempos (seg
Coletor eopgoes |Throughput (99| Footprint (MB) | Acumulado | Média pausa| Bxecugio
1]dient- 32 mb 95,92 108,084 3,1200 0,14851 76,00
2|dient-32->64 mb 96,05 108,086 3,1000 0,14784 78,00
3]dient- 64 mb 97,15 130,055 2,1700 0,21711 75,00
4|dient - Comheuristica 96,09 94,969 2,7200 0,12930 69,00

Deve-se chamar a atencdo para outro aspecto interessante: o uso total de
memoria (footprint) foi menor na heuristica do que nas outras configuragdes. Isso
ocorreu basicamente porque os objetos alocados tornaram-se lixo ainda na geragao
jovem, quando a heuristica ja havia disponibilizado todo o espago possivel para

SBC 2008

66

alocacdo. Acreditamos que isso evitou operagdes de cOpia destes objetos para outros
espagos de memoria, o que por fim reduziu o tempo médio de cada operagdo de coleta e
o tempo total de execugdo do programa.

5.5. JGFSORBench

Esse aplicativo realiza muito processamento, alocando os dados necessarios no inicio da
execucdo. Espera-se que poucas coletas sejam realizadas e, assim como GCOIld, nossa
heuristica ndo traga grandes ganhos para a sua execucdo. Esperamos entdo repetir os
resultados de GCOId, nao adicionando grandes overheads para a execucao da aplicacao.

A configuracio 3 obteve os melhores resultados, mas a diferenca em
comparagdo as demais configuracdes ¢ minima. Como era desejavel, em aplicativos que
realizam poucas operacdes de coleta de lixo na geracdo jovem, o uso da heuristica ndo
adicionou overheads, o que demonstra que a heuristica ndo possui grandes custos
adicionais de implementacdo. De fato, podemos até observar pequenas vantagens em
sua utilizacdo, j4 que o footprint foi menor com a nossa heuristica do que as
configuracdes que utilizam a mesma quantidade de memoria (32 MB).

Tabela 5 — Resultados do aplicativo JGFSORBench

Exeaucdo realizada com heap total de 256 mb Tempos (seg)

Coletor eopgdes |Throughput (99| Footprint (MB) | Aaimulado | Média pausa| Brecugio
1ldient- 32 mb 98,97 65,684 0,0800 0,03769 7,00
2|dient-32->64 mb 98,97 65,684 0,0800 0,03774 7,00
3|dient- 64 mb 99,86 61,625 0,0100 0,01003 7,00
4|dient - Comheuristica 98,93 63,656 0,0800 0,03924 7,00

6. Trabalhos Futuros

Nosso trabalho encontra-se em fase inicial de desenvolvimento, de forma que temos
varias propostas de trabalhos futuros. A primeira proposta consiste da avaliacdo dos
pardmetros que utilizamos para expandir e reduzir o tamanho do Eden. Acreditamos que
um ajuste nas taxas de expansdo e de reducdo do tamanho da heap, bem como nos
parametros que disparam estas acdes, podem melhorar o desempenho da heuristica.
Uma outra proposta consiste de ajustar dinamicamente estes parametros conforme o
comportamento da aplicagdo. Outra proposta consiste da aplicacdo de nossa heuristica
nas demais geragdes do coletor, ou mesmo da criacdo de uma heuristica especifica para
estas. Acreditamos que o emprego de uma heuristica para a geragdo antiga, por
exemplo, poderia impactar positivamente os resultados dos aplicativos que mantém
dados alocados por um periodo longo de tempo, como € o caso do GCOld. Gostariamos
também de avaliar o uso de nossa heuristica em outras aplicagdes, de forma a avaliar
melhor o impacto de nossa heuristica em suas execugdes. Pretendemos também
instrumentar a JVM para colher mais informagdes a respeito das coletas, de forma a
termos mais informagdes para fazermos nossas avaliagdes de desempenho. Por fim,
nossa ultima proposta consiste de um melhoramento nos algoritmos de coleta por copia
hoje implementados na HotSpot JVM. Gostariamos de avaliar o impacto do algoritmo
Mark Lazy-Sweep [Jones e Lins 1996] na geracdo jovem. Esse algoritmo consiste da

SBC 2008

67

marcacdo dos objetos vivos, assim como ocorre no algoritmo de cOpia. Entretanto, a
cada alocacdo de novos objetos, esse algoritmo procura na heap por espacos nao
marcados que sejam suficientemente grandes para comportar os novos objetos. Assim,
esse algoritmo reduz o tempo de pausa do coletor, transferindo seu custo para a fase de
alocacdo.

7. Conclusao

Neste trabalho, propomos, implementamos e avaliamos na HotSpot JVM uma nova
heuristica para realizar automaticamente o ajuste do tamanho da memoria de acordo
com as caracteristicas de consumo de memoria do aplicativo em execugao.

A heuristica proposta verifica o tempo decorrido dentre certas quantidades de
coletas de lixo. Dependendo do tempo decorrido, aumenta-se ou reduz-se a memoria
disponibilizada para armazenar os objetos recém-alocados. A heuristica baseia-se no
fato de que tempos curtos entre coletas apontam muitas alocagcdes ocorrendo na
aplicacdo. Aumentamos entdo a regido de memoria destinada a armazenar objetos recém
alocados na tentativa de suprir essas alocagcdes com mais memoria, sem que sejam
necessdrias operacdes de coleta para disponibilizd-la. Analogamente, se o tempo entre
as coletas for relativamente grande, concluimos que poucas alocag¢des estdo ocorrendo.
Neste caso reduzimos o tamanho da memoria com o intuito de economizé-la.

A heuristica mostrou-se uma boa alternativa para aplicativos que, ao longo de
sua execucdo, alocam grandes quantidades de objetos e os utilizam por pouco tempo,
sem acarretar em aumento de custos para aplicativos com caracteristicas distintas.

Referéncias

Lindholm, T.; Yellin, F. (1999) “The Java Virtual Machine Specification”, 2nd Edition,
Prentice Hall PTR.

Bacon, D.; Cheng, P.; Rajan, V. T. (2004) “A Unified Theory of Garbage Collection”.
In: ACM SIGPLAN Notices, Vol. 39, Issue 10, pp. 50-68. Nova lorque: ACM Press.

Ungar, D. M. (1984) “Generation scavenging: A non-disruptive high-performance
storage reclamation algorithm”. In: ACM SIGPLAN Notices, vol. 19, issue 5, pp.
157-167, ACM, 1984.

Boehm, H. “An Artificial Garbage Collection Benchmark”
http://www.hpl.hp.com/personal/Hans Boehm/gc/gc bench.html

Detlefs, D. (2005) “GCOId: a benchmark to stress old-generation collection”,
http://www.experimentalstuff.com/Technologies/GCold/index.html,id=7phrthka4sqp
s132dpihr2?template.fileName=admin/printing.template

Bull, J. M.; Smith, L. A.; Westhead, M. D.; Henty, D. S.; Davey, R. A.. (2000) “A
Benchmark Suite for High Performance Java”, In: Concurrency: Practice and
Experience, vol. 12, pp. 375-388, 2000.

Tagtraum industries, inc (2005) http://www.tagtraum.com.

Jones, Richard e Lins, Rafael. (1996). Garbage Collection: Algorithms for automatic
dynamic memory management. Publicado por John Wiley & Sons. 329p.

SBC 2008

68

	1. Introdução
	2. Coleta de Lixo na JVM
	3. Heurística Proposta
	4. Aspectos de Implementação da Heurística na JVM
	5. Resultados Preliminares
	5.1. GCOld
	5.2. GCBench
	5.3. JGFCreateBench
	5.4. JGFSerialBench
	5.5. JGFSORBench

	6. Trabalhos Futuros
	7. Conclusão
	Referências

