i :I.' Anais do XXVIII Congresso da SBC 12 a 18 de julho
Q'I.I:‘ WSO - Workshop de Sistemas Operacionais Belém do Pard, PA

Infra-estrutura de Sistema Operacional para Atualizacao de
Cadigo
Giovani Gracioli e Antonio Augusto Frohlich

Laboratério de Integragdo Software e Hardware (LISHA)
Universidade Federal de Santa Catarina (UFSC)
Caixa Postal 476, 88049-900, Florianépolis, SC, Brasil

{giovani,guto}@lisha.ufsc.br

Resumo. Diversos sistemas embarcados apresentam sérias limitacoes de pro-
cessamento, memoria e energia. Para permitir correcoes de bugs ou adig¢do
de novas funcionalidades, o software que executa sob esses sistemas deve ser
capaz de prover um mecanismo de atualizagdo de codigo que use o minimo de
recursos possiveis e ndo influencie nos servigos disponibilizados pelo sistema.
Neste artigo é apresentada uma infra-estrutura de sistema operacional, ainda
em desenvolvimento, para atualizagdo de codigo. Os resultados preliminares
mostram que essa infra-estrutura tem um baixo consumo de memdria e adici-
ona pouco overhead para a aplicagdo.

Abstract. Several embedded systems present serious power processing, memory
and energy limitations. In order to allow bug corrections or addition of new
functionalities, the software that runs in these systems must provide a code up-
date mechanism that uses the minimum available resources and does not in-
fluence the services provided by the system. This work presents an operating
system infrastructure for remote code update. The preliminary results show that
this infrastructure has low memory consumption and added little overhead to
application.

1. Introducao

Sistemas embarcados sdo projetados para executar um determinado conjunto de tarefas
especificas com severas restricdes computacionais, como processamento, memaoria e con-
sumo de energia. Devido a correc@o de bugs, adicdo/remocao ou melhoramento de fun-
cionalidades, extensdes e mudancas no ambiente, o software que executa sob essas plata-
formas deve ser capaz de fornecer meios para atualiza¢do do cédigo.

E importante que o préprio mecanismo de atualizacdo de software use o mi-
nimo de recursos possiveis e nao influencie nos servigos disponibilizados pelo sistema
[Felser et al. 2007]. Um exemplo tipico sd@o as Redes de Sensores Sem Fio (RSSF) que
sdo formadas por pequenos sensores capazes de monitorar algum fendmeno fisico e que
apresentam baixo poder de processamento e pouca memoria disponivel. Tais RSSF sdo
compostas por milhares de sensores, muitas vezes instalados em lugares indspitos e de
dificil acesso, onde a Unica forma de atualizar o software nos sensores € através de um
mecanismo de atualiza¢do remota. Portanto, uma boa infra-estrutura para atualizacdo de
software em sistemas embarcados onde as restri¢des do sistema sejam atendidas € dese-
javel.

SBC 2008 81

i :I.' Anais do XXVIII Congresso da SBC 12218 de julho
Q.I.I} WSO - Workshop de Sistemas Operacionais Belém do Pard, PA

Esse artigo apresenta uma infra-estrutura, ainda em desenvolvimento, para atua-
lizagdo de codigo em sistemas embarcados que adiciona pouco consumo de memoria e
sobrecusto a aplicacdo. A infra-estrutura € criada no EPOS (Embedded Parallel Opera-
ting System) [Frohlich 2001], um sistema operacional orientado a aplicacdo e construido
seguindo os conceitos da AOSD (Application-Oriented System Design) [Frohlich 2001].

O restante deste artigo € organizado como segue. A se¢do 2 discute os trabalhos
relacionados. Secdo 3 apresenta a infra-estrutura para atualizacdo de codigo. Secdo 4
mostra os resultados preliminares. Finalmente, conclusdes e trabalhos futuros sdo apre-
sentados na se¢do 5.

2. Trabalhos Relacionados

Dynamic C++ Classes [Hjalmtysson and Gray 1998] permitem que novo c6digo seja adi-
cionado em nivel de classe em um programa em execucdo desenvolvido em linguagem
C++. Essa técnica usa uma classe Proxy que suporta atualizacdo de versdes e adi¢do de
novas classes. Para cada classe, o Proxy mantém uma lista de versdo, um ponteiro para a
versao ativa e um sincronizador. Isso aumenta o espaco de memdria utilizado para cada
classe, tornando a abordagem dificil de ser praticavel em sistemas embarcados devido as
restricdes de memoria.

Maté [Levis and Culler 2002] € uma mdquina virtual que executa sob o sistema
operacional TINYOS [Hill et al. 2000]. A méquina virtual disponibiliza 8 instrugdes (by-
tecodes) que sdo interpretados. Os bytecodes limitam o nimero de aplicacdes que podem
ser construidas [Boulis et al. 2003] e possuem um tamanho menor do que o c4digo nativo,
diminuindo o consumo de energia na transferéncia dos dados. Entretanto, para aplicacdes
que executam por um longo periodo a energia gasta para interpretar o cédigo supera essa
vantagem [Levis and Culler 2002]. Uma instru¢do forw € utilizada para enviar (broad-
cast) o c6digo a ser instalado para a vizinhanca do nodo. SensorWare [Boulis et al. 2003]
prové uma maquina virtual na qual suporta a programac¢do dos nodos através de uma lin-
guagem de script para sensores com maior poder de processamento ¢ memoria. Existem
comandos para replicar ou migrar o cédigo e dados para outros nodos sensores da rede.
As principais limitagdes no uso de maquinas virtuais em sistemas profundamente embar-
cados estdo no sobrecusto introduzido pelo interpretador e na dependéncia das instrucdes
com a plataforma alvo [Koshy and Pandey 2005].

MOAP [Stathopoulos et al. 2003] e Deluge [Hui and Culler 2004] sdo mecanis-
mos de distribui¢cdo de cédigo implementados no TINYOS e que enviam toda a nova ima-
gem pela rede. Sdo utilizadas técnicas para retransmissao de pacotes perdidos, multicast
e confiabilidade com o intuito de garantir a entrega do novo cédigo para todos os nodos
da rede. FlexCUP [Marr6n et al. 2006] € um sistema de atualizacdo para o TinyCubus
[Marrén et al. 2005]. Sdo gerados meta-dados em tempo de compilacdo que descrevem
os componentes compilados com informacdes, como a tabela de simbolos e relocagdo.
Desta forma, FlexCUP deve estar envolvido no processo de compila¢do do c6digo na es-
tacdo base, tornando-se dependente das mudancgas nas versdoes do compilador. Um ligador
em cada nodo € responsavel por unir o novo cédigo e gerar a imagem final. O sistema
¢ reiniciado apds a atualizacdo. Em [Felser et al. 2007] s@o usadas informagdes geradas
pelo compilador na estacio base para identificar situagdes onde € possivel uma atualiza-
cdo com seguranga. Quando € constatado uma atualizacdo insegura, o sistema pergunta

SBC 2008 82

i :I.' Anais do XXVIII Congresso da SBC 12218 de julho
Q.I.I} WSO - Workshop de Sistemas Operacionais Belém do Pard, PA

ao administrador se a atualizagdo pode ou ndo ser realizada, com isso pode-se preservar
o estado do sistema. Koshy e Pandey [Koshy and Pandey 2005] tentam reduzir o sobre-
custo e a computacao particionando a atualizacdo entre os nodos e uma esta¢do base com
maior poder de processamento. E usado um ligador incremental (incremental linker) que
¢ capaz de controlar as posi¢des das funcdes modificadas no nodo.

SOS [Han et al. 2005] € um sistema operacional para nodos sensores construido
em modulos que podem ser atualizados e removidos em tempo de execugdo. Com o
uso de jumps relativos, o c6digo de cada médulo torna-se independente de posi¢dao. Por
outro lado, limita o tamanho em bytes de cada médulo e a distincia mdxima (em termos
da posicdo de memoria) de jumps relativos na arquitetura alvo. Referéncias de funcdes
e dados fora do mddulo sdo implementados através de uma tabela de indire¢do ou ndo
sdo permitidos. Esta solucdo € similar a proposta neste artigo, porém, a infra-estrutura
apresentada na proxima se¢ao ocupa menos espaco em memoria e tem um sobrecusto em
tempo de execug@o menor, além de ndo limitar a posi¢cdo de memdria.

3. Infra-estrutura pra Atualizacio de Codigo

EPOS (Embedded Parallel Operating System) [Frohlich 2001] € um sistema operacional
para sistemas embarcados desenvolvido seguindo os conceitos da AOSD (Application-
Oriented System Design) [Frohlich 2001]. Embora nenhuma infra-estrutura pra atuali-
zacdo de codigo exista, o EPOS apresenta um framework metaprogramado que permite
invocacdo remota de métodos. Neste framework, caracteristicas como confinamento e
isolagdo sdo encontradas. Confinamento € importante para encapsular os componentes
do sistema e isolacdo é importante para criar um nivel de indire¢do entre as chamadas
de métodos. Com base nessas duas caracteristicas presentes no framework, foi possivel
criar uma infra-estrutura para atualizacdo de c6digo no EPOS. Nas proximas subsecoes
o framework metaprogramado para invoca¢do remota de métodos e a infra-estrutura para
atualizacdo remota de c6digo sdo apresentados.

3.1. Invocacdao Remota no EPOS

Uma visdo geral do framework metaprogramado para invocag¢do remota de métodos é
apresentada na figura 1. A classe parametrizada Handle recebe uma abstragdo do sistema
como parametro. O Handle verifica se o objeto foi corretamente criado e repassa as
invocagdes de métodos ao elemento Stub.

O elemento Stub € uma classe parametrizada que € responsdvel por verificar se o
aspecto de invocacdo remota estd ativo para abstragdo ou ndo. O aspecto de invocagdo
remota € selecionado por uma abstracdo através da sua classe Traits [Stroustrup 1997].
Se o aspecto ndo estiver ativo, o Stub herdard o adaptador de cendrio da abstra-
cdo. Caso contrdrio, uma especializacao do Stub (Stub<Abstraction, true>), herdara o
Proxy da abstracdo. Consequentemente, quando Traits<Abstraction>::remote = false
implica que o Handle seja implementado como adaptador de cendrio, enquanto que
Traits<Abstraction>::remote = true implica que o Handle seja um Proxy.

Proxy € responsdvel por enviar mensagens com a invocacdo de métodos para o
Agent. Cada mensagem € composta pelos identificadores (IDs) do objeto, método e classe
que sdo usados pelo Agent para invocar o método correto, associando os IDs com uma
tabela de métodos. O ID do objeto € usado para recuperar o objeto correto antes da

SBC 2008

83

i :I.' Anais do XXVIII Congresso da SBC 12 a 18 de julho
Q'I.I:‘ WSO - Workshop de Sistemas Operacionais Belém do Pard, PA

TTen T

8 O aps
r-{ Abstraction | ‘ Scenario
v Abs Abs
Interface () <F----- { Adapter |- Agent

1' ’|/' <<msg>>
| Client [—»| Har;dle% Stub @D-‘ Proxy@

Figura 1. Framework metaprogramado do EPOS para invocag¢ao remota de mé-
todos [Frohlich 2001].

chamada do método. O Agent recebe a mensagem e invoca o método através do adaptador
de cendrio (Adapter) [Frohlich and Schroder-Preikschat 2000].

A funcdo da classe Adapter € aplicar os aspecto suportados pelo Scenario antes e
depois da chamada real do método. Cada instancia da classe Scenario consulta o Traits
da abstracdo para verificar quais aspectos estdo habilitados para aquela abstracdo, agre-
gando o aspecto de cendrio correspondente. Quando um aspecto ndo é selecionado para a
abstracdo, uma implementacao vazia € utilizada. Neste caso, nenhum cédigo € gerado na
imagem final do sistema.

Esta estrutura de Proxy e Agent descrita cria duas importantes caracteristicas: o
confinamento e a isolacdo dos componentes do sistema. Isso é conseguido pois toda
chamada de método de um componente configurado com o aspecto de invocagdo remota
passa pelo Proxy, criando um nivel de indire¢do entre as chamadas de método e tor-
nando o componente independente de posi¢cdo na memoria. Essas duas caracteristicas
encontradas no framework metaprogramado do EPOS sao importantes para a criacao da
infra-estrutura de atualizac@o remota de c6digo, na qual é descrita abaixo.

3.2. Suporte para Atualizacao de Cédigo

A estrutura de invocacao remota do EPOS foi estendida conforme a figura 2. A invocagao
de um método de um componente da aplicacio cliente com suporte a atualiza¢do remota’
passa pelo Proxy que envia uma mensagem para o Agent. Esta mensagem € armazenada
em uma "box" do sistema operacional. O Agent entdo 1€ a chamada de método da "SO
Box" e invoca o método. Apds a execug¢do do método, uma mensagem com o valor
de retorno € enviada para a aplicacdo. A "SO Box" controla o acesso aos métodos do
componente através de um sincronizador (seméforo), somente permitindo a chamada de
métodos do componente que ndo estd sendo atualizado no momento. Com esta estrutura,
€ criado um nivel de indirecdo entre as chamadas de métodos da aplicacdo, tornando os
componentes independentes de posi¢do na memoria do sistema, sendo que somente o
Agent possui ciéncia desta posi¢ao.

Uma Thread criada na inicializacdo do sistema é responsdvel por receber uma
mensagem de solicitacdo de atualizacdo. Esta mensagem € repassada para o Agent e

'O suporte a atualizagio remota de um componente é configurado através do seu Traits
(Traits<Component>::remote_update = true).

SBC 2008

84

i :I.' Anais do XXVIII Congresso da SBC 12218 de julho
Q.I.I} WSO - Workshop de Sistemas Operacionais Belém do Pard, PA

Client Application Request

Call

Return

Figura 2. Cenario de invocacao de métodos com suporte para atualizacdao remota
de cadigo.

contém, além dos identificadores (IDs) da classe, método e objeto, o novo cédigo do
componente a ser atualizado, os novos enderecos relativos dos métodos dentro do arquivo
objeto e o tamanho do c6digo. O Agent possui um array com as posicoes dos métodos
referentes aquele componente (arquivo objeto). As referéncias externas utilizadas nesse
novo componente sdo resolvidas efetuando a ligagdo do novo componente com o sistema
antigo, que nao sofreu mudancas. A unidade de atualizacdo da estrutura ¢ um componente
e as assinaturas dos métodos deste componente devem ser a mesma nas duas versoes.

No cendrio de atualizagao remota, o ID do método é referente ao método Update.
Dentro deste método, o Agent aloca memoria para o novo cédigo, copia o cédigo recebido
para esta nova posicdo, atualiza os novos enderecos dos métodos recebidos na tabela
daquele componente, destréi o objeto antigo, cria um objeto novo e adiciona este novo
objeto na tabela de objetos.

A infra-estrutura do framework e o sistema de atualizac@o sdo transparentes para
a aplicacdo. Por outro lado, a cada adi¢do de um novo componente ao sistema necessita
que seus métodos sejam colocados na estrutura do framework para permitir o suporte a
este novo componente. Com o suporte de atualizag¢do habilitado no sistema, as chamadas
de métodos em cada componente sofrem um sobrecusto, devido ao nivel de indirecao,
e também h4d um consumo de memoria extra devido ao cédigo e dados utilizados pelo
framework. Estes dois parametros sdo analisados a seguir.

4. Resultados Preliminares

Com a finalidade de comprovar a aplicabilidade da infra-estrutura descrita, foi utilizada
uma aplicacdo teste do jantar dos filésofos, na arquitetura IA-32. A partir desta apli-
cacdo de teste, foram avaliadas duas métricas: quantidade de memoria necessaria pelo
framework e a perda de desempenho gerado pelo nivel de indirecdo. A tabela 1 apresenta
o consumo de memoria obtidos através do compilador g++ na versao 4.0.2. O framework
adiciona 1476 bytes para a aplicacdo, destes, 1008 sdo adicionados na se¢do .text devido
as instrucdes necessdrias ao framework, 404 na se¢do .data devido a ponteiros e tabelas
usados pelo framework e finalmente 64 bytes na se¢do .bss devido a dados adicionais nao
inicializados. Quando um novo componente € selecionado para suportar a atualizacdo, o
espaco de memoria adicionado é dependente do nimero de métodos desse novo compo-
nente, pois cada método devera ter seu endereco armazenado, aumentando o tamanho da
tabela que guarda estes enderecos e também a quantidade de cédigo do framework.

A tabela 2 mostra o sobrecusto gerado pela infra-estrutura de suporte a atualiza-
cdo quando um método € invocado. Estes valores foram medidos utilizando a abstracao
Chronometer do sistema. Os resultados sdo a representagdo da média de valores obtidos
em 10 (dez) execugdes, desconsiderando os maiores € menores valores encontrados. O

SBC 2008

85

i :I.' Anais do XXVIII Congresso da SBC 12 a 18 de julho

Q.I.I} WSO - Workshop de Sistemas Operacionais Belém do Pard, PA

Tabela 1. Consumo de memdria do suporte para atualizacao no componente
Thread na aplicacao teste.

Secdo Sem Suporte (bytes) Com Suporte (bytes) Adicionado (bytes)

.text 26896 27904 1008
.data 36 440 404
.bss 500 564 64
TOTAL 27432 28872 1476

tempo do construtor da Thread apresentou um sobrecusto de 156%, devido a maior pas-
sagem de parametros dentro do framework até a criacdo da Thread. Conforme o aumento
do tempo de computacdo do método, a influéncia da infra-estrutura de atualizacao acaba
sendo minimizada, o que pode ser notado na invoca¢do do método da Thread Pass.

Tabela 2. Tempo para invocar um método com e sem suporte a atualizagao.
Método Sem Suporte (us) Com Suporte (us) Sobrecusto(%)

Construtor 66.75 171.125 156%
Resume 27.85 41.125 47.66%
Pass 282.625 309.875 9.6%

5. Conclusoes e Trabalhos Futuros

Este artigo apresentou uma infra-estrutura para atualiza¢do de c6digo no sistema opera-
cional EPOS. A infra-estrutura € composta por um framework metaprogramado, na qual
possibilita o confinamento e isolacdo dos componentes do sistema, tornando-os indepen-
dentes de posicao na memoria.

Os resultados preliminares mostram que a infra-estrutura adiciona pouca memo-
ria aos componentes configurados com suporte a atualizacdo e o sobrecusto criado pelo
nivel de indire¢do na invoca¢ao do método nao compromete os servigos disponibilizados
pela aplicacdo. O baixo consumo de memdria e sobrecusto sdo alcangados devido a me-
taprogramacao estdtica, na qual todas as dependéncias entre os componentes do sistema e
aplicacdo sdo resolvidas em tempo de compilacdo, ndo gerando cddigo desnecessario na
imagem final do sistema.

Como trabalhos futuros, o mecanismo de atualizac¢io de cédigo serd ampliado para
suportar distribui¢do de cddigo pela rede e somente enviar as mudangas entre o codigo an-
tigo e o novo, melhorando assim sua aplicagcdo em sistemas profundamente embarcados.

Referéncias

Boulis, A., Han, C.-C., and Srivastava, M. B. (2003). Design and implementation of a
framework for efficient and programmable sensor networks. In MobiSys ’03: Procee-

dings of the Ist international conference on Mobile systems, applications and services,
pages 187-200, New York, NY, USA. ACM Press.

Felser, M., Kapitza, R., Kleindder, J., and Schréder-Preikschat, W. (2007). Dynamic soft-
ware update of resource-constrained distributed embedded systems. In International
Embedded Systems Symposium 2007 (IESS "07).

SBC 2008 86

i :I.' Anais do XXVIII Congresso da SBC 12 a 18 de julho
Q'I.I:‘ WSO - Workshop de Sistemas Operacionais Belém do Pard, PA

Frohlich, A. A. (2001). Application-Oriented Operating Systems. Number 17 in GMD
Research Series. GMD - Forschungszentrum Informationstechnik, Sankt Augustin.

Frohlich, A. A. and Schroder-Preikschat, W. (2000). Scenario Adapters: Efficiently Adap-
ting Components. In Proceedings of the 4th World Multiconference on Systemics, Cy-
bernetics and Informatics, Orlando, U.S.A.

Han, C.-C., Kumar, R., Shea, R., Kohler, E., and Srivastava, M. (2005). A dynamic ope-
rating system for sensor nodes. In MobiSys '05: Proceedings of the 3rd international
conference on Mobile systems, applications, and services, pages 163—176, New York,
NY, USA. ACM.

Hill, J., Szewczyk, R., Woo, A., Hollar, S., Culler, D. E., and Pister, K. S. J. (2000).
System architecture directions for networked sensors. In Architectural Support for
Programming Languages and Operating Systems, pages 93—104.

Hjalmtysson, G. and Gray, R. (1998). Dynamic C++ classes—A lightweight mechanism
to update code in a running program. In USENIX Annual Technical Conf., pages 65-76.

Hui, J. W. and Culler, D. (2004). The dynamic behavior of a data dissemination protocol
for network programming at scale. In SenSys '04: Proceedings of the 2nd international
conference on Embedded networked sensor systems, pages 81-94, New York, NY,
USA. ACM.

Koshy, J. and Pandey, R. (2005). Remote incremental linking for energy-efficient repro-
gramming of sensor networks. In Proceedings of the second European Workshop on
Wireless Sensor Networks (EWSN 2005), pages 354-365.

Levis, P. and Culler, D. (2002). Mate: A tiny virtual machine for sensor networks. In
International Conference on Architectural Support for Programming Languages and
Operating Systems, San Jose, CA, USA.

Marrén, P. J., Lachenmann, A., Minder, D., Hihner, J., Sauter, R., and Rothermel, K.
(2005). TinyCubus: A flexible and adaptive framework for sensor networks. In Proce-
edings of the Second European Workshop on Wireless Sensor Networks (EWSN 2005),
pages 278-289.

Marrén, P. J., Gauger, M., Lachenmann, A., Minder, D., Saukh, O., and Rothermel, K.
(2006). Flexcup: A flexible and efficient code update mechanism for sensor networks.
In Proceedings of the Third European Workshop on Wireless Sensor Networks (EWSN
2006), pages 212-2217.

Stathopoulos, T., Heidemann, J., and Estrin, D. (2003). A remote code update mechanism
for wireless sensor networks. Technical report, Los Angeles, CA, USA.

Stroustrup, B. (1997). The C++ Programming Language. Addison-Wesley, 3 edition.

SBC 2008 87

