
Infra-estrutura de Sistema Operacional para Atualização de
Código

Giovani Gracioli e Antônio Augusto Fröhlich

1Laboratório de Integração Software e Hardware (LISHA)
Universidade Federal de Santa Catarina (UFSC)

Caixa Postal 476, 88049-900, Florianópolis, SC, Brasil

{giovani,guto}@lisha.ufsc.br

Resumo. Diversos sistemas embarcados apresentam sérias limitações de pro-
cessamento, memória e energia. Para permitir correções de bugs ou adição
de novas funcionalidades, o software que executa sob esses sistemas deve ser
capaz de prover um mecanismo de atualização de código que use o mínimo de
recursos possíveis e não influencie nos serviços disponibilizados pelo sistema.
Neste artigo é apresentada uma infra-estrutura de sistema operacional, ainda
em desenvolvimento, para atualização de código. Os resultados preliminares
mostram que essa infra-estrutura tem um baixo consumo de memória e adici-
ona pouco overhead para a aplicação.

Abstract. Several embedded systems present serious power processing, memory
and energy limitations. In order to allow bug corrections or addition of new
functionalities, the software that runs in these systems must provide a code up-
date mechanism that uses the minimum available resources and does not in-
fluence the services provided by the system. This work presents an operating
system infrastructure for remote code update. The preliminary results show that
this infrastructure has low memory consumption and added little overhead to
application.

1. Introdução
Sistemas embarcados são projetados para executar um determinado conjunto de tarefas
específicas com severas restrições computacionais, como processamento, memória e con-
sumo de energia. Devido a correção de bugs, adição/remoção ou melhoramento de fun-
cionalidades, extensões e mudanças no ambiente, o software que executa sob essas plata-
formas deve ser capaz de fornecer meios para atualização do código.

É importante que o próprio mecanismo de atualização de software use o mí-
nimo de recursos possíveis e não influencie nos serviços disponibilizados pelo sistema
[Felser et al. 2007]. Um exemplo típico são as Redes de Sensores Sem Fio (RSSF) que
são formadas por pequenos sensores capazes de monitorar algum fenômeno físico e que
apresentam baixo poder de processamento e pouca memória disponível. Tais RSSF são
compostas por milhares de sensores, muitas vezes instalados em lugares inóspitos e de
difícil acesso, onde a única forma de atualizar o software nos sensores é através de um
mecanismo de atualização remota. Portanto, uma boa infra-estrutura para atualização de
software em sistemas embarcados onde as restrições do sistema sejam atendidas é dese-
jável.

SBC 2008 81



Esse artigo apresenta uma infra-estrutura, ainda em desenvolvimento, para atua-
lização de código em sistemas embarcados que adiciona pouco consumo de memória e
sobrecusto à aplicação. A infra-estrutura é criada no EPOS (Embedded Parallel Opera-
ting System) [Fröhlich 2001], um sistema operacional orientado à aplicação e construído
seguindo os conceitos da AOSD (Application-Oriented System Design) [Fröhlich 2001].

O restante deste artigo é organizado como segue. A seção 2 discute os trabalhos
relacionados. Seção 3 apresenta a infra-estrutura para atualização de código. Seção 4
mostra os resultados preliminares. Finalmente, conclusões e trabalhos futuros são apre-
sentados na seção 5.

2. Trabalhos Relacionados

Dynamic C++ Classes [Hjalmtysson and Gray 1998] permitem que novo código seja adi-
cionado em nível de classe em um programa em execução desenvolvido em linguagem
C++. Essa técnica usa uma classe Proxy que suporta atualização de versões e adição de
novas classes. Para cada classe, o Proxy mantém uma lista de versão, um ponteiro para a
versão ativa e um sincronizador. Isso aumenta o espaço de memória utilizado para cada
classe, tornando a abordagem difícil de ser praticável em sistemas embarcados devido às
restrições de memória.

Maté [Levis and Culler 2002] é uma máquina virtual que executa sob o sistema
operacional TINYOS [Hill et al. 2000]. A máquina virtual disponibiliza 8 instruções (by-
tecodes) que são interpretados. Os bytecodes limitam o número de aplicações que podem
ser construídas [Boulis et al. 2003] e possuem um tamanho menor do que o código nativo,
diminuindo o consumo de energia na transferência dos dados. Entretanto, para aplicações
que executam por um longo período a energia gasta para interpretar o código supera essa
vantagem [Levis and Culler 2002]. Uma instrução forw é utilizada para enviar (broad-
cast) o código a ser instalado para a vizinhança do nodo. SensorWare [Boulis et al. 2003]
provê uma máquina virtual na qual suporta a programação dos nodos através de uma lin-
guagem de script para sensores com maior poder de processamento e memória. Existem
comandos para replicar ou migrar o código e dados para outros nodos sensores da rede.
As principais limitações no uso de máquinas virtuais em sistemas profundamente embar-
cados estão no sobrecusto introduzido pelo interpretador e na dependência das instruções
com a plataforma alvo [Koshy and Pandey 2005].

MOAP [Stathopoulos et al. 2003] e Deluge [Hui and Culler 2004] são mecanis-
mos de distribuição de código implementados no TINYOS e que enviam toda a nova ima-
gem pela rede. São utilizadas técnicas para retransmissão de pacotes perdidos, multicast
e confiabilidade com o intuito de garantir a entrega do novo código para todos os nodos
da rede. FlexCUP [Marrón et al. 2006] é um sistema de atualização para o TinyCubus
[Marrón et al. 2005]. São gerados meta-dados em tempo de compilação que descrevem
os componentes compilados com informações, como a tabela de símbolos e relocação.
Desta forma, FlexCUP deve estar envolvido no processo de compilação do código na es-
tação base, tornando-se dependente das mudanças nas versões do compilador. Um ligador
em cada nodo é responsável por unir o novo código e gerar a imagem final. O sistema
é reiniciado após a atualização. Em [Felser et al. 2007] são usadas informações geradas
pelo compilador na estação base para identificar situações onde é possível uma atualiza-
ção com segurança. Quando é constatado uma atualização insegura, o sistema pergunta

SBC 2008 82



ao administrador se a atualização pode ou não ser realizada, com isso pode-se preservar
o estado do sistema. Koshy e Pandey [Koshy and Pandey 2005] tentam reduzir o sobre-
custo e a computação particionando a atualização entre os nodos e uma estação base com
maior poder de processamento. É usado um ligador incremental (incremental linker) que
é capaz de controlar as posições das funções modificadas no nodo.

SOS [Han et al. 2005] é um sistema operacional para nodos sensores construído
em módulos que podem ser atualizados e removidos em tempo de execução. Com o
uso de jumps relativos, o código de cada módulo torna-se independente de posição. Por
outro lado, limita o tamanho em bytes de cada módulo e a distância máxima (em termos
da posição de memória) de jumps relativos na arquitetura alvo. Referências de funções
e dados fora do módulo são implementados através de uma tabela de indireção ou não
são permitidos. Esta solução é similar a proposta neste artigo, porém, a infra-estrutura
apresentada na próxima seção ocupa menos espaço em memória e tem um sobrecusto em
tempo de execução menor, além de não limitar a posição de memória.

3. Infra-estrutura pra Atualização de Código
EPOS (Embedded Parallel Operating System) [Fröhlich 2001] é um sistema operacional
para sistemas embarcados desenvolvido seguindo os conceitos da AOSD (Application-
Oriented System Design) [Fröhlich 2001]. Embora nenhuma infra-estrutura pra atuali-
zação de código exista, o EPOS apresenta um framework metaprogramado que permite
invocação remota de métodos. Neste framework, características como confinamento e
isolação são encontradas. Confinamento é importante para encapsular os componentes
do sistema e isolação é importante para criar um nível de indireção entre as chamadas
de métodos. Com base nessas duas características presentes no framework, foi possível
criar uma infra-estrutura para atualização de código no EPOS. Nas próximas subseções
o framework metaprogramado para invocação remota de métodos e a infra-estrutura para
atualização remota de código são apresentados.

3.1. Invocação Remota no EPOS

Uma visão geral do framework metaprogramado para invocação remota de métodos é
apresentada na figura 1. A classe parametrizada Handle recebe uma abstração do sistema
como parâmetro. O Handle verifica se o objeto foi corretamente criado e repassa as
invocações de métodos ao elemento Stub.

O elemento Stub é uma classe parametrizada que é responsável por verificar se o
aspecto de invocação remota está ativo para abstração ou não. O aspecto de invocação
remota é selecionado por uma abstração através da sua classe Traits [Stroustrup 1997].
Se o aspecto não estiver ativo, o Stub herdará o adaptador de cenário da abstra-
ção. Caso contrário, uma especialização do Stub (Stub<Abstraction, true>), herdará o
Proxy da abstração. Consequentemente, quando Traits<Abstraction>::remote = false
implica que o Handle seja implementado como adaptador de cenário, enquanto que
Traits<Abstraction>::remote = true implica que o Handle seja um Proxy.

Proxy é responsável por enviar mensagens com a invocação de métodos para o
Agent. Cada mensagem é composta pelos identificadores (IDs) do objeto, método e classe
que são usados pelo Agent para invocar o método correto, associando os IDs com uma
tabela de métodos. O ID do objeto é usado para recuperar o objeto correto antes da

SBC 2008 83



Figura 1. Framework metaprogramado do EPOS para invocação remota de mé-
todos [Fröhlich 2001].

chamada do método. O Agent recebe a mensagem e invoca o método através do adaptador
de cenário (Adapter) [Fröhlich and Schröder-Preikschat 2000].

A função da classe Adapter é aplicar os aspecto suportados pelo Scenario antes e
depois da chamada real do método. Cada instância da classe Scenario consulta o Traits
da abstração para verificar quais aspectos estão habilitados para aquela abstração, agre-
gando o aspecto de cenário correspondente. Quando um aspecto não é selecionado para a
abstração, uma implementação vazia é utilizada. Neste caso, nenhum código é gerado na
imagem final do sistema.

Esta estrutura de Proxy e Agent descrita cria duas importantes características: o
confinamento e a isolação dos componentes do sistema. Isso é conseguido pois toda
chamada de método de um componente configurado com o aspecto de invocação remota
passa pelo Proxy, criando um nível de indireção entre as chamadas de método e tor-
nando o componente independente de posição na memória. Essas duas características
encontradas no framework metaprogramado do EPOS são importantes para a criação da
infra-estrutura de atualização remota de código, na qual é descrita abaixo.

3.2. Suporte para Atualização de Código

A estrutura de invocação remota do EPOS foi estendida conforme a figura 2. A invocação
de um método de um componente da aplicação cliente com suporte a atualização remota1

passa pelo Proxy que envia uma mensagem para o Agent. Esta mensagem é armazenada
em uma "box" do sistema operacional. O Agent então lê a chamada de método da "SO
Box" e invoca o método. Após a execução do método, uma mensagem com o valor
de retorno é enviada para a aplicação. A "SO Box" controla o acesso aos métodos do
componente através de um sincronizador (semáforo), somente permitindo a chamada de
métodos do componente que não está sendo atualizado no momento. Com esta estrutura,
é criado um nível de indireção entre as chamadas de métodos da aplicação, tornando os
componentes independentes de posição na memória do sistema, sendo que somente o
Agent possui ciência desta posição.

Uma Thread criada na inicialização do sistema é responsável por receber uma
mensagem de solicitação de atualização. Esta mensagem é repassada para o Agent e

1O suporte a atualização remota de um componente é configurado através do seu Traits
(Traits<Component>::remote_update = true).

SBC 2008 84



ProxyCall

Request

Reply

Agent

EPOS

Call

Return

Abs

S
O

 B
o

x

Client Application

M
es

sa
g

e

Figura 2. Cenário de invocação de métodos com suporte para atualização remota
de código.

contém, além dos identificadores (IDs) da classe, método e objeto, o novo código do
componente a ser atualizado, os novos endereços relativos dos métodos dentro do arquivo
objeto e o tamanho do código. O Agent possui um array com as posições dos métodos
referentes àquele componente (arquivo objeto). As referências externas utilizadas nesse
novo componente são resolvidas efetuando a ligação do novo componente com o sistema
antigo, que não sofreu mudanças. A unidade de atualização da estrutura é um componente
e as assinaturas dos métodos deste componente devem ser a mesma nas duas versões.

No cenário de atualização remota, o ID do método é referente ao método Update.
Dentro deste método, o Agent aloca memória para o novo código, copia o código recebido
para esta nova posição, atualiza os novos endereços dos métodos recebidos na tabela
daquele componente, destrói o objeto antigo, cria um objeto novo e adiciona este novo
objeto na tabela de objetos.

A infra-estrutura do framework e o sistema de atualização são transparentes para
a aplicação. Por outro lado, a cada adição de um novo componente ao sistema necessita
que seus métodos sejam colocados na estrutura do framework para permitir o suporte a
este novo componente. Com o suporte de atualização habilitado no sistema, as chamadas
de métodos em cada componente sofrem um sobrecusto, devido ao nível de indireção,
e também há um consumo de memória extra devido ao código e dados utilizados pelo
framework. Estes dois parâmetros são analisados a seguir.

4. Resultados Preliminares

Com a finalidade de comprovar a aplicabilidade da infra-estrutura descrita, foi utilizada
uma aplicação teste do jantar dos filósofos, na arquitetura IA-32. A partir desta apli-
cação de teste, foram avaliadas duas métricas: quantidade de memória necessária pelo
framework e a perda de desempenho gerado pelo nível de indireção. A tabela 1 apresenta
o consumo de memória obtidos através do compilador g++ na versão 4.0.2. O framework
adiciona 1476 bytes para a aplicação, destes, 1008 são adicionados na seção .text devido
as instruções necessárias ao framework, 404 na seção .data devido a ponteiros e tabelas
usados pelo framework e finalmente 64 bytes na seção .bss devido a dados adicionais não
inicializados. Quando um novo componente é selecionado para suportar a atualização, o
espaço de memória adicionado é dependente do número de métodos desse novo compo-
nente, pois cada método deverá ter seu endereço armazenado, aumentando o tamanho da
tabela que guarda estes endereços e também a quantidade de código do framework.

A tabela 2 mostra o sobrecusto gerado pela infra-estrutura de suporte a atualiza-
ção quando um método é invocado. Estes valores foram medidos utilizando a abstração
Chronometer do sistema. Os resultados são a representação da média de valores obtidos
em 10 (dez) execuções, desconsiderando os maiores e menores valores encontrados. O

SBC 2008 85



Tabela 1. Consumo de memória do suporte para atualização no componente
Thread na aplicação teste.

Seção Sem Suporte (bytes) Com Suporte (bytes) Adicionado (bytes)
.text 26896 27904 1008
.data 36 440 404
.bss 500 564 64
TOTAL 27432 28872 1476

tempo do construtor da Thread apresentou um sobrecusto de 156%, devido a maior pas-
sagem de parâmetros dentro do framework até a criação da Thread. Conforme o aumento
do tempo de computação do método, a influência da infra-estrutura de atualização acaba
sendo minimizada, o que pode ser notado na invocação do método da Thread Pass.

Tabela 2. Tempo para invocar um método com e sem suporte a atualização.
Método Sem Suporte (us) Com Suporte (us) Sobrecusto(%)
Construtor 66.75 171.125 156%
Resume 27.85 41.125 47.66%
Pass 282.625 309.875 9.6%

5. Conclusões e Trabalhos Futuros
Este artigo apresentou uma infra-estrutura para atualização de código no sistema opera-
cional EPOS. A infra-estrutura é composta por um framework metaprogramado, na qual
possibilita o confinamento e isolação dos componentes do sistema, tornando-os indepen-
dentes de posição na memória.

Os resultados preliminares mostram que a infra-estrutura adiciona pouca memó-
ria aos componentes configurados com suporte a atualização e o sobrecusto criado pelo
nível de indireção na invocação do método não compromete os serviços disponibilizados
pela aplicação. O baixo consumo de memória e sobrecusto são alcançados devido a me-
taprogramação estática, na qual todas as dependências entre os componentes do sistema e
aplicação são resolvidas em tempo de compilação, não gerando código desnecessário na
imagem final do sistema.

Como trabalhos futuros, o mecanismo de atualização de código será ampliado para
suportar distribuição de código pela rede e somente enviar as mudanças entre o código an-
tigo e o novo, melhorando assim sua aplicação em sistemas profundamente embarcados.

Referências
Boulis, A., Han, C.-C., and Srivastava, M. B. (2003). Design and implementation of a

framework for efficient and programmable sensor networks. In MobiSys ’03: Procee-
dings of the 1st international conference on Mobile systems, applications and services,
pages 187–200, New York, NY, USA. ACM Press.

Felser, M., Kapitza, R., Kleinöder, J., and Schröder-Preikschat, W. (2007). Dynamic soft-
ware update of resource-constrained distributed embedded systems. In International
Embedded Systems Symposium 2007 (IESS ’07).

SBC 2008 86



Fröhlich, A. A. (2001). Application-Oriented Operating Systems. Number 17 in GMD
Research Series. GMD - Forschungszentrum Informationstechnik, Sankt Augustin.

Fröhlich, A. A. and Schröder-Preikschat, W. (2000). Scenario Adapters: Efficiently Adap-
ting Components. In Proceedings of the 4th World Multiconference on Systemics, Cy-
bernetics and Informatics, Orlando, U.S.A.

Han, C.-C., Kumar, R., Shea, R., Kohler, E., and Srivastava, M. (2005). A dynamic ope-
rating system for sensor nodes. In MobiSys ’05: Proceedings of the 3rd international
conference on Mobile systems, applications, and services, pages 163–176, New York,
NY, USA. ACM.

Hill, J., Szewczyk, R., Woo, A., Hollar, S., Culler, D. E., and Pister, K. S. J. (2000).
System architecture directions for networked sensors. In Architectural Support for
Programming Languages and Operating Systems, pages 93–104.

Hjalmtysson, G. and Gray, R. (1998). Dynamic C++ classes—A lightweight mechanism
to update code in a running program. In USENIX Annual Technical Conf., pages 65–76.

Hui, J. W. and Culler, D. (2004). The dynamic behavior of a data dissemination protocol
for network programming at scale. In SenSys ’04: Proceedings of the 2nd international
conference on Embedded networked sensor systems, pages 81–94, New York, NY,
USA. ACM.

Koshy, J. and Pandey, R. (2005). Remote incremental linking for energy-efficient repro-
gramming of sensor networks. In Proceedings of the second European Workshop on
Wireless Sensor Networks (EWSN 2005), pages 354–365.

Levis, P. and Culler, D. (2002). Mate: A tiny virtual machine for sensor networks. In
International Conference on Architectural Support for Programming Languages and
Operating Systems, San Jose, CA, USA.

Marrón, P. J., Lachenmann, A., Minder, D., Hähner, J., Sauter, R., and Rothermel, K.
(2005). TinyCubus: A flexible and adaptive framework for sensor networks. In Proce-
edings of the Second European Workshop on Wireless Sensor Networks (EWSN 2005),
pages 278–289.

Marrón, P. J., Gauger, M., Lachenmann, A., Minder, D., Saukh, O., and Rothermel, K.
(2006). Flexcup: A flexible and efficient code update mechanism for sensor networks.
In Proceedings of the Third European Workshop on Wireless Sensor Networks (EWSN
2006), pages 212–227.

Stathopoulos, T., Heidemann, J., and Estrin, D. (2003). A remote code update mechanism
for wireless sensor networks. Technical report, Los Angeles, CA, USA.

Stroustrup, B. (1997). The C++ Programming Language. Addison-Wesley, 3 edition.

SBC 2008 87


