On The Time-Interval Problem
Fabio Rodrigues de la Rocha

Santa Catarina State University
Electrical Engineering Department
Joinville, Brazil

Abstract. In this paper we present a modeling technique to capture the actual
interference among segments in the time-interval problem. Also, we explore the
subject of fixed priority assignment for segments through both optimal and sub-
optimal algorithms. As a result, we develop a less pessimistic offline feasibility
test which results in higher QoS values comparing to previous studies.

1. Introduction

The problem of scheduling tasks which must finish up to a deadline is an old issue in
real-time systems. The deadline for a task is a time-limit to conclude a computation. As
long the computation has been concluded before the deadline, the result is timely correct
and its finishing-time is not important. Although many applications can be represented by
that model, there are some situations in which tasks have special constraints unachieved
by periodic task models and mainly by the concept of deadline [Ravindran et al. 2005]. In
the time-interval model [de la Rocha and de Oliveira 2006] an earlier/later execution may
be useless for application constraints. In that task model, the start of the time-interval
is adjusted on-line. Inside this time-interval there is an ideal time-interval where the
execution results the highest benefit. The benefit decreases before and after the ideal
time-interval according to time-utility functions.

As an example, consider the logic diagram in Figure 1. A task must configure
an electronic device (segment A) and perform operations (read, write, etc.) (segment
B). However, after the configure process is finished it is necessary to wait for at least ¢,
clock pulses before perform operations on that device. The waiting-time is determined
online in each task activation and it is related to the operation to be performed on device
and in computations carried out in the configuration process. Also, the operations should
be performed no later than ¢, clock pulses. In case of sucess, the read/write operations
are performed inside a time-interval which results the maximum benefit for that task,
otherwise the benefit is lower or null.

In [de la Rocha and de Oliveira 2007] it was presented an offline feasibility test
based on response times which besides an accept/reject answer gives a minimum and
maximum expected benefit for tasks. Unfortunately, the pessimistic scheduling approach
and the simple priority assignment rule for segment 5 led to high interferences among
segments B resulting in high response-times and low benefits. In this paper we return
to that scheduling solution paying more attention to the actual interference among tasks
(priority assignmentfor subtasks). Using a more precise interference model, we reduce
the pessimism in the offline response-time test. Also, we explore the subject of fixed
priority assignment for segments B through an optimal and a suboptimal algorithms. As
a result we create a new offline feasibility test resulting in higher QoS values than the
previous approach.

clock

1 2 3 4 5 50 51 52 53 54
I A I I R I RS HININENEE
! ! time
execution of task 7;
S g
configure wait(t1) ; read/write
device ! data !
s, ‘e
‘ time

time-interval where

maximum time (¢s) benefit is maximum

Figure 1. Operations on device.

Organization

This paper is organized as follows. Section 2 presents a brief summary of the time-interval
model. Section 3 presents a summary of the scheduling approach and Section 4 presents
some experimental evaluations. Finally, we conclude our paper and give an outlook on
future work in Section 5.

2. Summary of the Time-Interval Model

The time-interval model is composed by tasks 7;, 7 € {1...n} which are described by a
worst-case execution time W;, period 7T}, a deadline D; (T; = D;). Task 7; is composed
by three segments named A;, B; and C;. The worst-case execution time of A; is Wy,,
of B; is Wp, and of C; is W(,. The execution of segments follows the order A;, B; and
C; and is subject to the deadline D;. Segment A; is responsible for performing some
computations and may require or not the execution of segment 3; which must perform
operations on devices. Segment B;; (where the index j is the activation or job of B;)
is subject to a time-interval [s; ;, e; ;] which is defined by segment A;; during run-time
and can change for each job 7; ;, i.e: segment B;; must execute inside this time-interval
to generate a positive benefit. The length of [s; ;, e; ;| is constant and named p;. Inside
the time-interval [s; ;, e; ;], there is an ideal time-interval [ds; ;, de; ;| (Figure 2) with
constant length named ¢); where the execution of segment B;; results in the highest benefit
to 7; (Wp, < < py).

X B 0, t<s;jort>e;;
11 ds;: de; J J
| £ Jykc(f - ﬁ(1, dsw <t< dgw.

/ C(4) — .
/ ’—% \ v (f) i ﬁ]) , Sig St < d?,J

0 Si4 Ve i /L,]v

starty, ; endy, ; t .) s dei‘j <t<e;
Cummulative
v B;
—00, t<s;jort>e;;
1 ‘déir} _ _dey; v(t) = { Lo- <l]t o
Cly |) Sijg S 1S €
I f 4 y
0 si; lei Sij = ASij €ij = Q€
starty, ; endp, ; t
Strict

Figure 2. Segment B, executing inside the ideal time-interval.

We assume two kinds of QoS metrics: Strict and Cumulative (Figure 2). By strict the
segment B; must execute inside the ideal time-interval [ds; ;, de; ;|, otherwise the benefit
v 1S —00, meaning a catastrophic consequence. By cumulative, the benefit decreases from
maximum (inside the ideal time-interval) to zero at the time-interval limits. In equation 1
the QoS is shown as the cumulative benefit by the execution of segment 5;; inside the
time-interval. The choice of a particular metric for a task is an application constraint
which also determines the values of s; j,.e; j,ds; ; and de; ;.

endpg. .
[otarti v (t) dt

tartBi J

QoS(B; j, startp, ,,endp, ;) = -100 (1)

endp, ; — startp, ;

3. Summary of the Scheduling Approach

For implementation purposes it is useful to map all the segments of task 7; into subtasks
keeping the same names A;, B; and C;. Subtasks A; and C; are scheduled using a pre-
emptive EDF(Earliest Deadline First) [Layland and Liu 1973] scheduler by its capacity
to exploit full processor bandwidth [Buttazzo 2005]. A distinction is made to subtask B5;,
which is non-preemptive and scheduled in a fixed priority fashion, higher than A; and C).
In a broad sense, when a task 7; is divided into subtasks each subtask possesses its own
deadline and the last subtask has to respect the task’s deadline, in this case an end-to-end
deadline D;. Even though the task 7; has a deadline equal to period (D; = T}), the sub-
tasks require inner deadlines, which must be assigned using a deadline partition rule. In
a simple approach, this rule is determined using the problem constraints. It is assumed a
lower bound and an upper bound for the release time of segment B; [Bmin;, Bmax;| and
set the deadline D 4, = Bmin,; and Dp, = Bmax; + pp, as in Figure 3. The time interval
in which the segment B; can be active is [Bmin;, Dpg,] and named time-window.

interval to release B;

Bmax;

BT”Z”? strict benefit — "L _ o

Figure 3. Limits to Release B;.

3.1. Offline Feasibility Test

The schedulability of a task set 7 is verified by splitting the problem in two parts as shown
in Figure 4. In the first part we test the schedulability of subtasks A; and C; in face of non-
preemptive interferences by subtasks B;. A negative answer (reject) means that all task
set is unfeasible. In contrast, a positive answer (accept) means that all subtasks A; and C;
will finish up to their deadlines even suffering interference by non-preemptive subtasks.

The next part applies a second test based on a response-time to verify if the strict
subtasks B; are schedulable. A negative answer means that all task set is unfeasible.
Otherwise, all strict subtasks B; will execute inside their ideal time-intervals and receive
the maximum QoS. Using the same response-time test, we determine offline the minimum
and maximum QoS which can be achieved by all cumulative subtasks.

Accept
Accept — > Test 2 -strict subtasks

were guaranteed
-subtasks A;,C; -QoS range for
Test 1 were guaranteed cumulative subtasks

Reject Reject

Figure 4. Feasibility Tests.

3.1.1. Feasibility Test for Subtasks A and C

The feasibility of test of subtasks A and C' is performed using the processor demand
approach [k. Baruah et al. 1990]. The processor demand of a task in a time-interval
[t1,1s] is the cumulative time necessary to process all k task instances which were re-
leased and must be finished inside this time-interval. The schedulability of an asyn-
chronous task set with deadline less than or equal to period can be verified by Vi,
g(ti,t2) < (t2 — t1). In asynchronous task sets the schedule must be verified up to
2H + & [Leung and Merill 1980] where H is the hyper-period (H =lcm/(1},...,1},)) and
® is the largest offset among tasks (P=maz(®P;,...,P,)). Hence, the schedulability test
must check all busy periods in [0,2H + ®], which has an exponential time complexity
O(H?) [Goossens 1999].

Accounting the Interference of Subtasks B

In [Jeffay and Stone 1993] the authors have shown a schedulability condition to ensure
the schedulability of EDF in the presence of interrupts. Basically, they assume interrupts
as higher priority tasks which preempt every application task. Therefore, they model the
interrupt handler interference as a time that is stolen from the application tasks. So, if
tasks can finish before their deadlines even suffering the interference from the interrupt
handler, the task set is schedulable. The task set is composed by n application tasks and
m interrupt handlers. Interrupts are described by a computation time C'H and a minimum
time between jobs T'H. The least upper bound on the amount of time spent executing
interrupt handlers in any interval of length L is f(L). Using this method, subtask B; is
modeled as an interrupt handler, subtasks A; and C; are implemented as EDF' subtasks.

3.1.2. Feasibility Test Based on Response-Time

The scheduling approach assigns a priority to each subtask B; according to some fixed
priority assignment algorithm. It is assumed pk priority levels (1,2, ..., pk), where pk

is the lowerest priority. The schedulability of B; is verified by computing its response-
time (r?), assuming that all subtasks B; are always released at ds; as shown in Figure 5.
In the same figure, we use 3 to describe the time-interval between the release at ds; up
to e;. In subtasks with cumulative criticality it is possible to finish after the ideal time-
interval, resulting in a lower QoS. In contrast, subtasks with a strict criticality demand the
execution inside the ideal time-interval i.e: it is necessary to verify if in the worst possible
scenario 7t(B;) < 1. Note that in a strict subtask B;, s; = ds;, de; = e

ﬁ 1

. :

% dﬁﬂw s

775 Dp,
S Response-Time rt(B;)%
[rt(B:) ‘ QoS |

rt < 100%
rt > B+ Wp, 0%
<1t <f+Wpg, | QoS(B;,rt(B;) — Wg,,1t(B;))%

Figure 5. QoS According to the 1.

The response-time can be divided into worst-case response-time (wcrt) and best-
case response-time (bert). The wert provides the worst possible scenario for the execution
of B; and in this sense the QoS is the minimum possible. On the other hand, the bert
provides the best possible scenario for B; resulting in the maximum QoS.

Computing the wert and the bert of subtask B; makes it possible to obtain a QoS
as shown in Figure 5. Therefore, applying the wert of a subtask B; as a response-time in
Figure 5 results in the minimum possible QoS. In contrast, applying the bcrt as a response-
time results in the maximum possible QoS. The first line in the table inside Figure 5 covers
the case where all B; runs inside the ideal time-interval [ds;, de;|. The second line covers
the case where the execution takes place outside the time-interval [ds;, e;| (remember that
we are now considering all subtasks B; released at ds;) and the third line covers the case
where part of B; runs inside the time-interval [ds;, e;]. In case B; represents a subtask
with strict criticality, 7t(B;) must be < 1, otherwise the task set is rejected.

Computing the Response-Time

The best-case response time of non-preemptive sporadic subtasks B; occurs when B; does
not suffer any interference from other subtasks B;. As a result, bertp, = Wp,. On the
other hand, the worst-case response time can be determined by the sum of three terms.

wertg, = Wp, + max (WB)+ Z Wh,)

Ip(
J€lp(i) iehn(i)

The first term in equation 2 is the worst-case execution time of subtask 5B;. The
second term is the maximum blocking time due to subtasks running at moment B; is
released. We account this value as the maximum execution time among the subtasks B;
with a lower priority (Ip) than B;, leaving the interference of higher priority (hp) subtasks

for the next term. The last term is the maximum blocking time due to subtasks 5; with
higher priorities. This value adds all subtasks 5; with higher priorities than B;.

Unfortunately, in some situations the time-windows, in which B; and B; can be
activate may not overlap. In this case, it is impossible for 5; to produce interference upon
B;, even though it has a higher priority. For instance in :

subtask W T Bmin Bmax D Prio

B; 2 50 10 20 30 1
B; 5 50 35 45 55 2

The time-windows do not overlap, so there is no interference between B; and
B, as shown in Figure 6 item a). However, if we change Bming, = 15, Bmaxp, =
35, Dp, = 45 the time-windows overlap and there is interference between B; and B; to
account as shown in Figure 6 item b). We extend the equation 2 to take into account only

Bming, BmaxpDsp,

| =
Q Bming, Bmazxp, Dp

a) no interference

J

Bming, BmaxgDsp,

B;
1 -
<—”—;>Bmm]37 Bmazp, Dpg

J
| | |
[I |

b) interference

Figure 6. Interference of B; upon B;.

the subtasks which produce interference upon B;(equation 3 and Algorithm 1). The (2
in equation 4 gives the smallest time-length between the earliest release time of B; and
B;. If €2 is smaller than the interval [Dp,, Bming,]|, the time-windows overlap resulting
in interference accounted as the worst-case execution time of B;. Although equation 3
results in a smaller wert comparing to equation 2, it is still pessimistic in the sense the
interference upon B; is computed assuming that the time-length between B; and B; is
always the smallest possible.

wertp, = Wa, + max (Iip, 5)) + > Iin,m) 3)
J€hp(4)

Bminpg, — BminBj
ng(TBi) TBj)

Q = Bming; — Bminp, + [-‘ - ged(Tp,, Tp;) @

Priority Assignment for Subtasks B

For fixed priorities systems, Rate Monotonic RM [Layland and Liu 1973] and Deadline
Monotonic DM [Leung and Whitehead 1982] are optimal in the sense that no other fixed-
priority algorithms can schedule a task set that cannot be scheduled by RM and DM.
The optimality criterion assumes all tasks are synchronous and preemptive. When these
assumptions are removed, the RM and DM are no longer optimal [Audsley 1991].

Algorithm 1 Compute Interference.
1. Procedure /(B;, B;)

2. {Compute the interference caused by i upon j.}
3. inter ference «— 0
5. if d < Dp, then
6. if (d < Bmazx;)or((prio(i) < prio(j))and (d > Bmax;)) then
7. {prio(i) < prio(j) In the sense than i has a higher
priority than j.}
. inter ference < Wp,
9. endif
10. end if

12. if d < Dp, then

13. inter ference < Wp,
14. end if

15. return inter ference
16. end procedure

Optimal Priority Assignment

In [Audsley 1991] it shows an algorithm with complexity O(n?) (where n is the number
of tasks) to find an optimal priority assignment for a task set. In each step, the algorithm
chooses a task to possess the lower priority available and test if the task is schedulable.
In case it is not schedulable, it chooses another task and test again. After the algorithm
finds a schedulable task, the process is repeated. In that case, an optimal assignment is
a priority assignment among tasks which results in a task set where all tasks finish up to
their deadlines. Different priority assignments may result in different schedulable task
sets. Moreover, as the only concern is the schedulability, different priority assignments
may result in optimal assignments.

Differently from [Audsley 1991] where the optimal criterion is the feasibility and
priority assignments can result in feasible/unfeasible, in the time-interval problem the
optimal criterion is connected to the QoS metric. Every priority assignment can result in a
different solution and in such case, the only way to find an optimal priority assignment is
to enumerate all n! possible priority orderings and pick the one or ones which result in an
optimal solution. Unfortunately, to generate all possible priority assignments has O(n!)
complexity which is many cases is prohibitive for practical applications.

In the time-interval problem, the minimum release times B; { Bminy,- - - ,Bmin,, }
characterize the B; scheduling as an asynchronous system. Subtasks B; have QoS values
and in this case, an optimal priority assignment would assign priorities to optimize the
global QoS. A metric H,,;, must be used to select among all task sets, the one which is
considered probably the best according to some criteria.

A possible criteria is to select the task set with the priority assignment » where the
average QoS T,s, 1s high and the QoS of all subtasks present a small dispersion (standard

deviation) sq,s, from the average (equations 5,6).

1 n
TQos, = Z QoS(B;) (5)
=1
1 n
$Qos, = J - > (QoS(Bi) — Tqos,)” ©)
i=1

In this particular metric, H,.;o(r) > Hprio(s) (in the sense H,,;, for an priority
assignment 7 is a better solution than f,,;, for a priority assignment s) if and only if:

EQOS,« Z EQOSS and

(7

T
((5Qos, < 5Qos.) OF (5Qos, < fQOST $Qos.))

Equation 7 compares the average QoS values in both priority assignments r and s.
Also, it verifies if the dispersion decreased in r comparing to s or at most increased pro-
portionally to the variation in the average QoS. Algorithm 2 presents the optimal solution.

Algorithm 2 Optimal Priority Assignment.
1. {S} < all permutations with n priorities

2. 1 « take one priority assignment from {S}

3. {S} «—{S}—r

4. while {S} is not empty do

5. s « take one priority assignment from {S'}
6. {S}={S}-s

7. if Hprio(r) < Hprio(s) then

8. T8

9. endif
10. end while
11. return r

Suboptimal Priority Assignment

Algorithm 3 is a greedy algorithm with complexity O(n?) to assign priorities to subtasks
B;. The algorithm is suboptimal in the sense it is not guaranteed if it gives the best priority
assignment. The algorithm finds a solution picking a subtask ¢ (line 5) with the highest
QoS (assuming all subtasks in S have higher priorities) to receive the lowerest priority
available. Every time a new subtask B; (q) is chosen, the interferences by higher and
lower priorities for all remaining subtasks which receive interference by ¢ are recomputed.
The process is repeated until all subtasks have priorities assigned. Subtasks with strict
criticality only can be chosen (line 5) when their QoS is 100%.

Algorithm 3 Suboptimal Priority Assignment Algorithm.
1. {S} < all subtasks B; Vi € {1...n}
2. p—n {Lowerest priority.}
3. Compute all interferences(B;) Vi € {1...n}
4. while {S} is not empty do

5. g < choose a subtask B; with the highest QoS in {S}

6. in such way, all B; have higher priorities

7. prio(qg) =p

8. {Assigns the lowerest priority available.}
9. p«—p-1

10. {S}—{S}—¢q

11. for all subtasks B; in {5} which interfere with ¢ do
12. recompute interferences(5;)

13. end for

14. end while

4. Experimental Evaluation

This section illustrates the proposed feasibility test by comparing its result against a sim-
ulation performed on the same task set. In the experiment, the task-set I' is composed
by four tasks (71,72,73,74), each of them subdivided into three subtasks. The worst-case
execution times, periods, deadlines, offsets and criticality are presented in Table 1. Ta-
bles 2,3,4 and 5 present the steps to assign priorities to subtasks B using Algorithm 3
where max,» , min QoS and prio (priority) represent the maximum interference by lower
priority subtasks, the sum of interferences by all higher priority subtasks, the worst-case
response-time, the minimum expected QoS and the subtask’s priority.

Table 1. Example With Four Tasks.
’ T subtask ‘ W; ‘ D; ‘ T; ‘ P, ‘ criticality ‘

Aq 2 6| 40 0

m By 4| 20| 40 7 | cumulative
Ch 2| 40| 40| 20
Ay 3 9| 40 0

D) By 3 31 40 9 strict
Cy 2| 40| 40| 31
As 21 25| 80

T3 Bs 6 | 38| 80 | 28 | cumulative
Cs 1 80 | 80 | 38
Ay 31 231120 0

T4 By 6| 35| 120 | 23 | cumulative
Cy 31120 | 120 | 35

The specific parameters of subtasks B such as p, ¥, Bmin and Bmax are presented in
Table 6. The results of the offline test (using the priorities from Table 5) can be seen in
Table 7. The subtask B, (with strict criticality) always runs inside the ideal time-interval,
resulting in the maximum QoS. The other three subtasks have cumulative criticality and
present a minimum QoS of 87.5%, 11.11% and 16.66% respectively. Due to a pessimistic
offline test, the wert shown in Table 7 is an upper bound of the rt values. Therefore,

hooses Subtask B;.

Table 3. Chooses Subtask B,.

Table 2. C

B; | max | Y | wert | min | prio B; | max | > | wert | min | prio
QoS QoS
By 0 3 7 87.5 4 By 0 3 7 87.5 4
By 0 16 19 0.0 - By 4 12 19 0.0 -
Bs 0 9 15 11.1 - B3 0 9 15 11.1 -
By 0 9 15 16.6 - By 0 9 15 16.6 3
Table 4. Chooses Subtask Bs. Table 5. Chooses Subtask B;.
B; | maz | > | wert %zggz prio B; | mazx | > | wert 733? prio
B, 0 3 7 87.5 4 B 0 3 7 87.5 4
By 10 6 15 0.0 - B 6 0 9 100.0 1
Bs 6 3 15 11.1 2 B3 6 3 15 11.1 2
Ba 0 9 15 16.6 3 By 0 9 15 16.6 3

we should expect that the actual minimum QoS (obtained by simulation) might be higher
than (or equal to) the values given by the offline test. In the same way, the bcrt is a lower
bound for the rt and the actual maximum QoS might be lower than (or equal to) the values

given by the offline test.

The task set was simulated for 10.000 time units, assuming the release time uniformly
chosen between Bmin and Bmax (Table 8). It is assumed that subtasks B; and C; are
required in 90% of 7; activations. The simulation shows a consistent result where the
minimum QoS values are equal or higher than the values given by the offline test. Thus,
the offline test can guarantee that during its execution no task will ever obtain a lower QoS

than computed by the offline test.

Table 6. Parameters of Subtasks B.

5. Conclusions and Future Work

This paper makes two contributions to the time-interval problem. The first contribution
is an improvement on how interference among B segments are accounted. As a result,

]Bi\p\@/)\Bmin\Bmax‘

B |8 |6 6 13

By |9 |9 9 23

Bs | 14 | 8 25 27

By | 10| 10 23 27

Table 7. Offline Results. Table 8. Simulation Results.

B; | wert | bert | min | max B; | wert | bert | min | max
QoS QoS QoS QoS
By 7 4 87.5 | 100.0 B 7 4 87.5 | 100.0
B, 9 3 100.0 | 100.0 B, 6 3 100.0 | 100.0
Bs | 15 6 11.1 | 100.0 Bs | 11 6 75.0 | 100.0
By | 15 6 16.6 | 100.0 By | 12 6 66.6 | 100.0

we presented a new offline schedulability test which is less pessimistic than the previous
one. The second contribution is a study about priority assignment for B segments. We
presented an optimal and also a heuristic algorithm to assign priorities to subtasks B
which increases the global QoS. As a future work, we intend to extend our scheduling
approach to deal with preemptive B segments where in spite of its preemptive behavior
the access of devices must obey an exclusive access scheme to prevent inconsistences.

References

Audsley, N. (1991). Optimal priority assignment and feasibility of static priority tasks
with arbitrary start times - ycs164, dept. computer science, university.

Buttazzo, G. C. (2005). Rate Monotonic vs. EDF: Judgment Day. In Real-Time Systems,
pages 2-26.

de la Rocha, F. R. and de Oliveira, R. S. (2006). Time-Interval Scheduling and its Applica-
tions to Real-Time Systems. In Proceedings of the 27" Real-Time Systems Symposium-
WiP.

de la Rocha, F. R. and de Oliveira, R. S. (2007). Real-Time Scheduling Under Time-

Interval Constraints. In Embedded and Ubiquitous Computing - EUC 2007, pages
158-169. Lecture Notes in Computer Science.

Goossens, J. (1999). Scheduling of Hard Real-Time Periodic Systems with Various Kinds
of Deadline and Offset Constraints. PhD thesis, Université Libre de Bruxelles.

Jeffay, K. and Stone, D. L. (1993). Accounting for Interrupt Handling Costs in Dynamic
Priority Task Systems. In Proceedings of the 14" IEEE Symposium on Real-Time
Systems, pages 212-221.

k. Baruah, S., Howell, R. R., and Rosier, L. E. (1990). Algorithms and Complexity Con-
cerning the Preemptive Scheduling of Periodic, Real-Time Tasks on One Processor.
Real-Time Systems, 2:301-324.

Layland, J. and Liu, C. (1973). Scheduling Algorithms for Multiprogramming in a Hard-
Real-Time Environment. Journal of the ACM, 20(1):46-61.

Leung, J. and Merill, M. (1980). A Note on the Preemptive Scheduling of Periodic, Real-
Time Tasks. Information Processing Letters, 11(3):115-118.

Leung, J. Y. T. and Whitehead, J. (1982). On the Complexity of Fixed-Priority Scheduling
of Periodic, Real-Time Tasks. Performance Evaluation, 2:237-250.

Ravindran, B., Jensen, E. D., and Li, P. (2005). On Recent Advances In Time/Utility
Function Real-Time Scheduling And Resource Management. In 8 IEEE Interna-
tional Symposium on Object-Oriented Real-Time Distributed Computing, pages 55—
60.

