
On The Time-Interval Problem
Fábio Rodrigues de la Rocha

1Santa Catarina State University
Electrical Engineering Department

Joinville, Brazil

Abstract. In this paper we present a modeling technique to capture the actual
interference among segments in the time-interval problem. Also, we explore the
subject of fixed priority assignment for segments through both optimal and sub-
optimal algorithms. As a result, we develop a less pessimistic offline feasibility
test which results in higher QoS values comparing to previous studies.

1. Introduction
The problem of scheduling tasks which must finish up to a deadline is an old issue in
real-time systems. The deadline for a task is a time-limit to conclude a computation. As
long the computation has been concluded before the deadline, the result is timely correct
and its finishing-time is not important. Although many applications can be represented by
that model, there are some situations in which tasks have special constraints unachieved
by periodic task models and mainly by the concept of deadline [Ravindran et al. 2005]. In
the time-interval model [de la Rocha and de Oliveira 2006] an earlier/later execution may
be useless for application constraints. In that task model, the start of the time-interval
is adjusted on-line. Inside this time-interval there is an ideal time-interval where the
execution results the highest benefit. The benefit decreases before and after the ideal
time-interval according to time-utility functions.

As an example, consider the logic diagram in Figure 1. A task must configure
an electronic device (segment A) and perform operations (read, write, etc.) (segment
B). However, after the configure process is finished it is necessary to wait for at least t1
clock pulses before perform operations on that device. The waiting-time is determined
online in each task activation and it is related to the operation to be performed on device
and in computations carried out in the configuration process. Also, the operations should
be performed no later than t2 clock pulses. In case of sucess, the read/write operations
are performed inside a time-interval which results the maximum benefit for that task,
otherwise the benefit is lower or null.

In [de la Rocha and de Oliveira 2007] it was presented an offline feasibility test
based on response times which besides an accept/reject answer gives a minimum and
maximum expected benefit for tasks. Unfortunately, the pessimistic scheduling approach
and the simple priority assignment rule for segment B led to high interferences among
segments B resulting in high response-times and low benefits. In this paper we return
to that scheduling solution paying more attention to the actual interference among tasks
(priority assignmentfor subtasks B). Using a more precise interference model, we reduce
the pessimism in the offline response-time test. Also, we explore the subject of fixed
priority assignment for segments B through an optimal and a suboptimal algorithms. As
a result we create a new offline feasibility test resulting in higher QoS values than the
previous approach.

data
read/write

time
time−interval where
benefit is maximum

.

time

clock
1 2 3 4 5 50 51 52 53 54

configure

device

A B

es

maximum time (t2)

wait(t1)

execution of task τi

Figure 1. Operations on device.

Organization

This paper is organized as follows. Section 2 presents a brief summary of the time-interval
model. Section 3 presents a summary of the scheduling approach and Section 4 presents
some experimental evaluations. Finally, we conclude our paper and give an outlook on
future work in Section 5.

2. Summary of the Time-Interval Model

The time-interval model is composed by tasks τi, i ∈ {1 . . . n} which are described by a
worst-case execution time Wi, period Ti, a deadline Di (Ti = Di). Task τi is composed
by three segments named Ai, Bi and Ci. The worst-case execution time of Ai is WAi

,
of Bi is WBi

and of Ci is WCi
. The execution of segments follows the order Ai, Bi and

Ci and is subject to the deadline Di. Segment Ai is responsible for performing some
computations and may require or not the execution of segment Bi which must perform
operations on devices. Segment Bij (where the index j is the activation or job of Bi)
is subject to a time-interval [si,j, ei,j] which is defined by segment Aij during run-time
and can change for each job τi,j , i.e: segment Bij must execute inside this time-interval
to generate a positive benefit. The length of [si,j, ei,j] is constant and named ρi. Inside
the time-interval [si,j, ei,j], there is an ideal time-interval [dsi,j, dei,j] (Figure 2) with
constant length named ψi where the execution of segmentBij results in the highest benefit
to τi (WBi

≤ ψi ≤ ρi).

Cummulative

Strict

dsi,j dei,j

0

1

si,j = dsi,jsi,j ei,j
startbi,j

endbi,j

v

t

ei,j = dei,j

v (t) =

{ −∞, t < si,j or t > ei,j

1, si,j ≤ t ≤ ei,j

Bi

CBi

dei

0

1 dsi,j

ei,jsi,j
startbi,j endbi,j t

v (t) =



0, t < si,j or t > ei,j

1, dsi,j ≤ t ≤ dei,j

1−
(

dsi,j−t

dsi,j−si,j

)
, si,j ≤ t < dsi,j

1−
(

t−dei,j

ei,j−dei,j

)
, dei,j < t ≤ ei,j

v Bi

CBi

Figure 2. Segment Bi executing inside the ideal time-interval.

We assume two kinds of QoS metrics: Strict and Cumulative (Figure 2). By strict the
segment Bi must execute inside the ideal time-interval [dsi,j, dei,j], otherwise the benefit
v is−∞, meaning a catastrophic consequence. By cumulative, the benefit decreases from
maximum (inside the ideal time-interval) to zero at the time-interval limits. In equation 1
the QoS is shown as the cumulative benefit by the execution of segment Bij inside the
time-interval. The choice of a particular metric for a task is an application constraint
which also determines the values of si,j ,ei,j ,dsi,j and dei,j .

QoS(Bi,j , startBi,j , endBi,j) =

∫ endBi,j

startBi,j
v (t) dt

endBi,j − startBi,j

· 100 (1)

3. Summary of the Scheduling Approach
For implementation purposes it is useful to map all the segments of task τi into subtasks
keeping the same names Ai, Bi and Ci. Subtasks Ai and Ci are scheduled using a pre-
emptive EDF(Earliest Deadline First) [Layland and Liu 1973] scheduler by its capacity
to exploit full processor bandwidth [Buttazzo 2005]. A distinction is made to subtask Bi,
which is non-preemptive and scheduled in a fixed priority fashion, higher than Aj and Cj .
In a broad sense, when a task τi is divided into subtasks each subtask possesses its own
deadline and the last subtask has to respect the task’s deadline, in this case an end-to-end
deadline Di. Even though the task τi has a deadline equal to period (Di = Ti), the sub-
tasks require inner deadlines, which must be assigned using a deadline partition rule. In
a simple approach, this rule is determined using the problem constraints. It is assumed a
lower bound and an upper bound for the release time of segment Bi [Bmini, Bmaxi] and
set the deadline DAi

= Bmini and DBi
= Bmaxi + ρBi

as in Figure 3. The time interval
in which the segment Bi can be active is [Bmini, DBi

] and named time-window.

Bmaxi

interval to release Bi

DCi

Bmini

Ai

Ci

DBi
Bi

strict benefit

Bi

Figure 3. Limits to Release Bi.

3.1. Offline Feasibility Test
The schedulability of a task set τ is verified by splitting the problem in two parts as shown
in Figure 4. In the first part we test the schedulability of subtasksAi and Ci in face of non-
preemptive interferences by subtasks Bi. A negative answer (reject) means that all task
set is unfeasible. In contrast, a positive answer (accept) means that all subtasks Ai and Ci

will finish up to their deadlines even suffering interference by non-preemptive subtasks.

The next part applies a second test based on a response-time to verify if the strict
subtasks Bi are schedulable. A negative answer means that all task set is unfeasible.
Otherwise, all strict subtasks Bi will execute inside their ideal time-intervals and receive
the maximum QoS. Using the same response-time test, we determine offline the minimum
and maximum QoS which can be achieved by all cumulative subtasks.

Accept

RejectReject

Accept

Test 1

Test 2

were guaranteed

-strict subtasks
were guaranteed

cumulative subtasks
-QoS range for-subtasks Ai,Ci

Figure 4. Feasibility Tests.

3.1.1. Feasibility Test for Subtasks A and C

The feasibility of test of subtasks A and C is performed using the processor demand
approach [k. Baruah et al. 1990]. The processor demand of a task in a time-interval
[t1, t2] is the cumulative time necessary to process all k task instances which were re-
leased and must be finished inside this time-interval. The schedulability of an asyn-
chronous task set with deadline less than or equal to period can be verified by ∀t1, t2
g(t1, t2) ≤ (t2 − t1). In asynchronous task sets the schedule must be verified up to
2H + Φ [Leung and Merill 1980] where H is the hyper-period (H =lcm(T1,. . .,Tn)) and
Φ is the largest offset among tasks (Φ=max(Φ1,. . .,Φn)). Hence, the schedulability test
must check all busy periods in [0, 2H + Φ], which has an exponential time complexity
O(H2) [Goossens 1999].

Accounting the Interference of Subtasks B

In [Jeffay and Stone 1993] the authors have shown a schedulability condition to ensure
the schedulability of EDF in the presence of interrupts. Basically, they assume interrupts
as higher priority tasks which preempt every application task. Therefore, they model the
interrupt handler interference as a time that is stolen from the application tasks. So, if
tasks can finish before their deadlines even suffering the interference from the interrupt
handler, the task set is schedulable. The task set is composed by n application tasks and
m interrupt handlers. Interrupts are described by a computation time CH and a minimum
time between jobs TH . The least upper bound on the amount of time spent executing
interrupt handlers in any interval of length L is f(L). Using this method, subtask Bi is
modeled as an interrupt handler, subtasks Ai and Ci are implemented as EDF subtasks.

3.1.2. Feasibility Test Based on Response-Time

The scheduling approach assigns a priority to each subtask Bi according to some fixed
priority assignment algorithm. It is assumed pk priority levels (1, 2, . . . , pk), where pk

is the lowerest priority. The schedulability of Bi is verified by computing its response-
time (rt), assuming that all subtasks Bi are always released at dsj as shown in Figure 5.
In the same figure, we use β to describe the time-interval between the release at dsj up
to ej . In subtasks with cumulative criticality it is possible to finish after the ideal time-
interval, resulting in a lower QoS. In contrast, subtasks with a strict criticality demand the
execution inside the ideal time-interval i.e: it is necessary to verify if in the worst possible
scenario rt(Bi) ≤ ψ. Note that in a strict subtask Bi, sj = dsj , dej = ej .

β

DBi

Response-Time rt(Bi)

WBi

sj ej

dsj

ψ

dej

rt(Bi) QoS

rt ≤ ψ 100%
rt ≥ β +WBi

0%
ψ < rt < β +WBi

QoS(Bi, rt(Bi)−WBi
, rt(Bi))%

Figure 5. QoS According to the rt.

The response-time can be divided into worst-case response-time (wcrt) and best-
case response-time (bcrt). Thewcrt provides the worst possible scenario for the execution
of Bi and in this sense the QoS is the minimum possible. On the other hand, the bcrt
provides the best possible scenario for Bi resulting in the maximum QoS.

Computing the wcrt and the bcrt of subtask Bi makes it possible to obtain a QoS
as shown in Figure 5. Therefore, applying the wcrt of a subtask Bi as a response-time in
Figure 5 results in the minimum possible QoS. In contrast, applying the bcrt as a response-
time results in the maximum possible QoS. The first line in the table inside Figure 5 covers
the case where all Bi runs inside the ideal time-interval [dsj, dej]. The second line covers
the case where the execution takes place outside the time-interval [dsj, ej] (remember that
we are now considering all subtasks Bi released at dsj) and the third line covers the case
where part of Bi runs inside the time-interval [dsj, ej]. In case Bi represents a subtask
with strict criticality, rt(Bi) must be ≤ ψ, otherwise the task set is rejected.

Computing the Response-Time

The best-case response time of non-preemptive sporadic subtasksBi occurs whenBi does
not suffer any interference from other subtasks Bj . As a result, bcrtBi

= WBi
. On the

other hand, the worst-case response time can be determined by the sum of three terms.

wcrtBi
= WBi

+ max
j∈lp(i)

(WBj
) +

∑
j∈hp(i)

WBj
(2)

The first term in equation 2 is the worst-case execution time of subtask Bi. The
second term is the maximum blocking time due to subtasks running at moment Bi is
released. We account this value as the maximum execution time among the subtasks Bj

with a lower priority (lp) than Bi, leaving the interference of higher priority (hp) subtasks

for the next term. The last term is the maximum blocking time due to subtasks Bj with
higher priorities. This value adds all subtasks Bj with higher priorities than Bi.

Unfortunately, in some situations the time-windows, in which Bi and Bj can be
activate may not overlap. In this case, it is impossible for Bj to produce interference upon
Bi, even though it has a higher priority. For instance in :

subtask W T Bmin Bmax D Prio

Bi 2 50 10 20 30 1
Bj 5 50 35 45 55 2

The time-windows do not overlap, so there is no interference between Bj and
Bi as shown in Figure 6 item a). However, if we change BminBj

= 15, BmaxBj
=

35, DBj
= 45 the time-windows overlap and there is interference between Bi and Bj to

account as shown in Figure 6 item b). We extend the equation 2 to take into account only

a) no interference

BminBj
BmaxBj

DBj

b) interference

Bi

BmaxBi
BminBi

DBi

Ω

BminBj
BmaxBj

DBi
BminBi

Bi

BmaxBi

Ω DBj

Figure 6. Interference of Bj upon Bi.

the subtasks which produce interference upon Bi(equation 3 and Algorithm 1). The Ω
in equation 4 gives the smallest time-length between the earliest release time of Bi and
Bj . If Ω is smaller than the interval [DBi

, BminBi
], the time-windows overlap resulting

in interference accounted as the worst-case execution time of Bj . Although equation 3
results in a smaller wcrt comparing to equation 2, it is still pessimistic in the sense the
interference upon Bi is computed assuming that the time-length between Bi and Bj is
always the smallest possible.

wcrtBi = WBi + max
j∈lp(i)

(I(Bj ,Bi)) +
∑

j∈hp(i)

I(Bj ,Bi) (3)

Ω = BminBj −BminBi +
⌈
BminBi −BminBj

gcd(TBi , TBj)

⌉
· gcd(TBi , TBj) (4)

Priority Assignment for Subtasks B

For fixed priorities systems, Rate Monotonic RM [Layland and Liu 1973] and Deadline
Monotonic DM [Leung and Whitehead 1982] are optimal in the sense that no other fixed-
priority algorithms can schedule a task set that cannot be scheduled by RM and DM.
The optimality criterion assumes all tasks are synchronous and preemptive. When these
assumptions are removed, the RM and DM are no longer optimal [Audsley 1991].

Algorithm 1 Compute Interference.
1. Procedure I(Bi, Bj)
2. {Compute the interference caused by i upon j.}
3. interference← 0
4. d← Ω(Bj, Bi)
5. if d < DBj

then
6. if (d < Bmaxj)or((prio(i) < prio(j))and (d ≥ Bmaxj)) then
7. {prio(i) < prio(j) In the sense than i has a higher

priority than j.}
8. interference← WBi

9. end if
10. end if
11. d← Ω(Bi, Bj)
12. if d < DBi

then
13. interference← WBi

14. end if
15. return interference
16. end procedure

Optimal Priority Assignment

In [Audsley 1991] it shows an algorithm with complexity O(n2) (where n is the number
of tasks) to find an optimal priority assignment for a task set. In each step, the algorithm
chooses a task to possess the lower priority available and test if the task is schedulable.
In case it is not schedulable, it chooses another task and test again. After the algorithm
finds a schedulable task, the process is repeated. In that case, an optimal assignment is
a priority assignment among tasks which results in a task set where all tasks finish up to
their deadlines. Different priority assignments may result in different schedulable task
sets. Moreover, as the only concern is the schedulability, different priority assignments
may result in optimal assignments.

Differently from [Audsley 1991] where the optimal criterion is the feasibility and
priority assignments can result in feasible/unfeasible, in the time-interval problem the
optimal criterion is connected to the QoS metric. Every priority assignment can result in a
different solution and in such case, the only way to find an optimal priority assignment is
to enumerate all n! possible priority orderings and pick the one or ones which result in an
optimal solution. Unfortunately, to generate all possible priority assignments has O(n!)
complexity which is many cases is prohibitive for practical applications.

In the time-interval problem, the minimum release timesBi {Bmin1,· · · ,Bminn}
characterize the Bi scheduling as an asynchronous system. Subtasks Bi have QoS values
and in this case, an optimal priority assignment would assign priorities to optimize the
global QoS. A metric Hprio must be used to select among all task sets, the one which is
considered probably the best according to some criteria.

A possible criteria is to select the task set with the priority assignment r where the
average QoS xQoSr is high and the QoS of all subtasks present a small dispersion (standard

deviation) sQoSr from the average (equations 5,6).

xQoSr =
1
n

n∑
i=1

QoS(Bi) (5)

sQoSr =

√√√√ 1
n

n∑
i=1

(QoS(Bi)− xQoSr)2 (6)

In this particular metric, Hprio(r) ≥ Hprio(s) (in the sense Hprio for an priority
assignment r is a better solution than Hprio for a priority assignment s) if and only if:

xQoSr ≥ xQoSs and

((sQoSr ≤ sQoSs) or (sQoSr ≤
xQoSr

xQoSs

sQoSs))
(7)

Equation 7 compares the average QoS values in both priority assignments r and s.
Also, it verifies if the dispersion decreased in r comparing to s or at most increased pro-
portionally to the variation in the average QoS. Algorithm 2 presents the optimal solution.

Algorithm 2 Optimal Priority Assignment.
1. {S} ← all permutations with n priorities
2. r ← take one priority assignment from {S}
3. {S} ← {S} − r
4. while {S} is not empty do
5. s← take one priority assignment from {S}
6. {S} = {S} − s
7. if Hprio(r) < Hprio(s) then
8. r ← s
9. end if

10. end while
11. return r

Suboptimal Priority Assignment

Algorithm 3 is a greedy algorithm with complexity O(n2) to assign priorities to subtasks
Bi. The algorithm is suboptimal in the sense it is not guaranteed if it gives the best priority
assignment. The algorithm finds a solution picking a subtask q (line 5) with the highest
QoS (assuming all subtasks in S have higher priorities) to receive the lowerest priority
available. Every time a new subtask Bi (q) is chosen, the interferences by higher and
lower priorities for all remaining subtasks which receive interference by q are recomputed.
The process is repeated until all subtasks have priorities assigned. Subtasks with strict
criticality only can be chosen (line 5) when their QoS is 100%.

Algorithm 3 Suboptimal Priority Assignment Algorithm.
1. {S} ← all subtasks Bi ∀i ∈ {1 . . . n}
2. p← n {Lowerest priority.}
3. Compute all interferences(Bi) ∀i ∈ {1 . . . n}
4. while {S} is not empty do
5. q ← choose a subtask Bi with the highest QoS in {S}
6. in such way, all Bj have higher priorities
7. prio(q) = p
8. {Assigns the lowerest priority available.}
9. p← p− 1

10. {S} ← {S} − q
11. for all subtasks Bi in {S} which interfere with q do
12. recompute interferences(Bi)
13. end for
14. end while

4. Experimental Evaluation
This section illustrates the proposed feasibility test by comparing its result against a sim-
ulation performed on the same task set. In the experiment, the task-set Γ is composed
by four tasks (τ1,τ2,τ3,τ4), each of them subdivided into three subtasks. The worst-case
execution times, periods, deadlines, offsets and criticality are presented in Table 1. Ta-
bles 2,3,4 and 5 present the steps to assign priorities to subtasks B using Algorithm 3
where max,

∑
, min QoS and prio (priority) represent the maximum interference by lower

priority subtasks, the sum of interferences by all higher priority subtasks, the worst-case
response-time, the minimum expected QoS and the subtask’s priority.

Table 1. Example With Four Tasks.
τ subtask Wi Di Ti Φi criticality

τ1

A1 2 6 40 0
B1 4 20 40 7 cumulative
C1 2 40 40 20

τ2

A2 3 9 40 0
B2 3 31 40 9 strict
C2 2 40 40 31

τ3

A3 2 25 80 0
B3 6 38 80 28 cumulative
C3 1 80 80 38

τ4

A4 3 23 120 0
B4 6 35 120 23 cumulative
C4 3 120 120 35

The specific parameters of subtasks B such as ρ, ψ, Bmin and Bmax are presented in
Table 6. The results of the offline test (using the priorities from Table 5) can be seen in
Table 7. The subtask B2 (with strict criticality) always runs inside the ideal time-interval,
resulting in the maximum QoS. The other three subtasks have cumulative criticality and
present a minimum QoS of 87.5%, 11.11% and 16.66% respectively. Due to a pessimistic
offline test, the wcrt shown in Table 7 is an upper bound of the rt values. Therefore,

Table 2. Chooses Subtask B1.
Bi max

∑
wcrt min

QoS
prio

B1 0 3 7 87.5 4
B2 0 16 19 0.0 -
B3 0 9 15 11.1 -
B4 0 9 15 16.6 -

Table 3. Chooses Subtask B4.
Bi max

∑
wcrt min

QoS
prio

B1 0 3 7 87.5 4
B2 4 12 19 0.0 -
B3 0 9 15 11.1 -
B4 0 9 15 16.6 3

Table 4. Chooses Subtask B3.
Bi max

∑
wcrt min

QoS
prio

B1 0 3 7 87.5 4
B2 10 6 15 0.0 -
B3 6 3 15 11.1 2
B4 0 9 15 16.6 3

Table 5. Chooses Subtask B2.
Bi max

∑
wcrt min

QoS
prio

B1 0 3 7 87.5 4
B2 6 0 9 100.0 1
B3 6 3 15 11.1 2
B4 0 9 15 16.6 3

we should expect that the actual minimum QoS (obtained by simulation) might be higher
than (or equal to) the values given by the offline test. In the same way, the bcrt is a lower
bound for the rt and the actual maximum QoS might be lower than (or equal to) the values
given by the offline test.

The task set was simulated for 10.000 time units, assuming the release time uniformly
chosen between Bmin and Bmax (Table 8). It is assumed that subtasks Bi and Ci are
required in 90% of τi activations. The simulation shows a consistent result where the
minimum QoS values are equal or higher than the values given by the offline test. Thus,
the offline test can guarantee that during its execution no task will ever obtain a lower QoS
than computed by the offline test.

Table 6. Parameters of Subtasks B.
Bi ρ ψ Bmin Bmax
B1 8 6 6 13
B2 9 9 9 23
B3 14 8 25 27
B4 10 10 23 27

Table 7. Offline Results.
Bi wcrt bcrt min

QoS
max
QoS

B1 7 4 87.5 100.0
B2 9 3 100.0 100.0
B3 15 6 11.1 100.0
B4 15 6 16.6 100.0

Table 8. Simulation Results.
Bi wcrt bcrt min

QoS
max
QoS

B1 7 4 87.5 100.0
B2 6 3 100.0 100.0
B3 11 6 75.0 100.0
B4 12 6 66.6 100.0

5. Conclusions and Future Work
This paper makes two contributions to the time-interval problem. The first contribution
is an improvement on how interference among B segments are accounted. As a result,

we presented a new offline schedulability test which is less pessimistic than the previous
one. The second contribution is a study about priority assignment for B segments. We
presented an optimal and also a heuristic algorithm to assign priorities to subtasks B
which increases the global QoS. As a future work, we intend to extend our scheduling
approach to deal with preemptive B segments where in spite of its preemptive behavior
the access of devices must obey an exclusive access scheme to prevent inconsistences.

References
Audsley, N. (1991). Optimal priority assignment and feasibility of static priority tasks

with arbitrary start times - ycs164, dept. computer science, university.

Buttazzo, G. C. (2005). Rate Monotonic vs. EDF: Judgment Day. In Real-Time Systems,
pages 2–26.

de la Rocha, F. R. and de Oliveira, R. S. (2006). Time-Interval Scheduling and its Applica-
tions to Real-Time Systems. In Proceedings of the 27th Real-Time Systems Symposium-
WiP.

de la Rocha, F. R. and de Oliveira, R. S. (2007). Real-Time Scheduling Under Time-
Interval Constraints. In Embedded and Ubiquitous Computing - EUC 2007, pages
158–169. Lecture Notes in Computer Science.

Goossens, J. (1999). Scheduling of Hard Real-Time Periodic Systems with Various Kinds
of Deadline and Offset Constraints. PhD thesis, Université Libre de Bruxelles.

Jeffay, K. and Stone, D. L. (1993). Accounting for Interrupt Handling Costs in Dynamic
Priority Task Systems. In Proceedings of the 14th IEEE Symposium on Real-Time
Systems, pages 212–221.

k. Baruah, S., Howell, R. R., and Rosier, L. E. (1990). Algorithms and Complexity Con-
cerning the Preemptive Scheduling of Periodic, Real-Time Tasks on One Processor.
Real-Time Systems, 2:301–324.

Layland, J. and Liu, C. (1973). Scheduling Algorithms for Multiprogramming in a Hard-
Real-Time Environment. Journal of the ACM, 20(1):46–61.

Leung, J. and Merill, M. (1980). A Note on the Preemptive Scheduling of Periodic, Real-
Time Tasks. Information Processing Letters, 11(3):115–118.

Leung, J. Y. T. and Whitehead, J. (1982). On the Complexity of Fixed-Priority Scheduling
of Periodic, Real-Time Tasks. Performance Evaluation, 2:237–250.

Ravindran, B., Jensen, E. D., and Li, P. (2005). On Recent Advances In Time/Utility
Function Real-Time Scheduling And Resource Management. In 8th IEEE Interna-
tional Symposium on Object-Oriented Real-Time Distributed Computing, pages 55–
60.

