
Reserva de Processamento: uma abordagem no nı́vel do
usuário

Valéria Q. Reis, Renato F. G. Cerqueira

1Departamento de Informática – PUC-Rio
Rio de Janeiro, Brasil

{vreis,rcerq}@inf.puc-rio.br

Resumo. Sistemas Operacionais de propósito geral ñao apresentam mecanis-
mos eficazes para a reserva de processamento de aplicações. Dessa ma-
neira, algumas iniciativas visam oferecer garantia de processamento através da
instrumentaç̃ao de kernels ou através do isolamento de desempenho por meio
da criaç̃ao de ḿaquinas virtuais. De maneira diferente dessas abordagens,este
artigo descreve em detalhes o funcionamento do CPUReserve,um sistema de
reserva de processamento queé executado no nı́vel do usúario. Por apresen-
tar uma arquitetura cliente-servidor e significativa escalabilidade, como suge-
rem os experimentos realizados, o CPUReserve pode ser utilizado em ambientes
distribúıdos e compartilhados.

1. Introdução

Ambientes de computação compartilhada, por natureza, apresentam desafios para o ge-
renciamento de seus recursos. Garantir que usuários não sobrecarreguem máquinas ou
violem polı́ticas de uso, assim como garantir aos usuáriosqualidades mı́nimas de serviço,
consistem em tarefas bastante difı́ceis quando não existem meios para limitar o uso de
recursos no sistema. A implantação de mecanismos de reserva de recursos pode facili-
tar o gerenciamento ao garantir limites inferiores e superiores de uso de processamento,
memória, disco ou rede. O processamento, em especial, consiste em um item central de
estudo deste trabalho já que muitas das aplicações submetidas a ambientes compartilha-
dos são limitadas à CPU (CPU-Bound).

No caso de grades computacionais, a implantação de reserva de processamento
pode evitar a sobrecarga dos nós do sistema ao mesmo tempo que garante aos provedores
de máquinas o direito de estabelecer o limite da capacidadede processamento que dese-
jam disponibilizar. No caso de computação sob-demanda, areserva garantiria ao usuário
uma qualidade de serviço mı́nima, assim como no caso de aplicações multimı́dia, as quais
necessitam de processamento mı́nimo, periódico e constante.

Sistemas Operacionais de Propósito Geral não tratam classes de aplicações de
maneira especı́fica e assim gerenciam de forma ineficiente a Qualidade de Serviço de
algumas aplicações. Casos em que o escalonamento é realizado por um algoritmo de
compartilhamento de tempo ou espaço não distingüem classes de importância entre as
aplicações, além de serem muito conservativos, visto que as fatias de tempo ou espaço
alocadas, mesmo em situações em que não estão sendo utilizadas, não podem ser cedidas
a outros processos. Por outro lado, em sistemas com escalonamento de processos baseado
em prioridade, pode haver uma espera demasiada por parte de aplicações classificadas
com baixa prioridade.

SBC 2008 99



Algumas iniciativas, tais como osResource Kernelsou Resource Containers, vi-
sam o desenvolvimento de mecanismos para a reserva de processamento através do de-
senvolvimento de extensões dekernel com o objetivo de prover acesso garantido e no
tempo esperado aos recursos de um Sistema Operacional [Oikawa and Rajkumar 1999,
Lee et al. 1996, Banga et al. 1999]. Observa-se, porém, o surgimento de uma tendência
ao uso de máquinas virtuais para essa finalidade. Máquinasvirtuais disponibilizam ao
usuário um ambiente personalizado, onde os recursos computacionais são dedicados so-
mente aos processos do usuário corrente. O isolamento de ambiente resulta em maior
controle do uso dos recursos além de aumentar o nı́vel de segurança, pois um processo
de uma determinada máquina virtual é incapaz de acessar osdados de outra máquina
virtual [Keahey et al. 2004, Santhanam et al. 2005].

De maneira diferente à abordagem dosResource Kernelse das máquinas virtuais,
há iniciativas que procuram gerenciar a reserva de recursos no nı́vel do usuário, evitando
a necessidade de recompilação dekernel ou a sobrecarga do sistema ao instanciar um
grande número de máquinas virtuais. Um exemplo desse tipode solução é o DSRT (Dy-
namic Soft Real Time CPU Scheduler) [Chu and Nahrstedt 1997]. Criado no final da
década de90, visando o tratamento de reservas de processamento para aplicações mul-
timı́dia, o DSRT foi utilizado em muitos projetos, mas não evoluiu para que fosse possı́vel
o seu uso em cenários mais atuais como os encontrados em grades oportunı́sticas, ambien-
tes deutility computinge arquiteturas multiprocessadas. No DSRT, por exemplo, não é
possı́vel aumentar a reserva de um processo caso haja CPU ociosa na máquina executora.
Também não é possı́vel dividir uma reserva entre todos osprocessos filhos criados a par-
tir de um processo origem, e nem realizar reservas de processadores a fim de explorar
caracterı́sticas presentes em arquiteturas multiprocessadas.

As limitações encontradas no DSRT, aliadas à dificuldadede inserção de novas
polı́ticas de compartilhamento de recursos nesse sistema,motivaram o desenvolvimento
de um novo gerenciador de reservas, o CPUReserve, objeto de estudo deste artigo. O
CPUReserve consiste em uma reimplementação das idéias propostas pelo DSRT acres-
cida de novas funcionalidades inseridas para que o sistema pudesse ser utilizado em
cenários de computação compartilhada, oportunı́sticae de arquitetura multiprocessada.
No CPUReserve, a comunicação é realizada através desockets, o que facilita o seu uso
em ambientes distribuı́dos. Quando há processamento ocioso, as reservas ativas dos cli-
entes podem ser expandidas para que esse recurso seja melhorutilizado. O CPUReserve
também permite reservar parte dos processadores de máquinas multiprocessadas. Por fim,
a forma como o CPUReserve foi projetado priorizou a modularização do código de forma
que o mecanismo de implementação de reserva fosse independente das polı́ticas de re-
serva. A separação entre mecanismo e polı́tica de reservaabre espaço para que novos
parâmetros de priorização sejam inseridos no CPUReserve.

As próximas seções apresentam as caracterı́sticas do CPUReserve. Na Seção 2,
são descritos os trabalhos relacionados ao CPUReserve. NaSeção 3 são apresentados os
detalhes de implementação desse sistema e sua arquitetura, seguidos da Seção 4, onde são
descritas a avaliação experimental, casos de uso e limitações do CPUReserve. Na Seção 5
é apresentada uma proposta de integração das abordagensde reserva de processamento
no nı́vel do usuário e com o uso de máquinas virtuais. Por fim, na Seção 6, a conclusão
do trabalho é exposta.

SBC 2008 100



2. Trabalhos Relacionados

A reserva de processamento está freqüentemente relacionada aosResource Kernels. Um
resource kerneĺe umkernelmodificado para gerenciar recursos através de modelos de re-
serva. Com ele é possı́vel garantir o acesso a uma determinada parte dos recursos de uma
máquina durante a execução de uma aplicação através de funcionalidades providas pelo
núcleo do SO. RT-Mach, Linux/RK consistem em dois dos principais Resource kernels
encontrados na literatura [Oikawa and Rajkumar 1999, Lee etal. 1996].

Iniciativas recentes têm utilizado máquinas virtuais como meios para assegu-
rar a reserva de processamento. Isso porque máquinas virtuais apresentam ambien-
tes fechados de execução garantindo segurança e isolamento de desempenho das apli-
cações [Keahey et al. 2004, Santhanam et al. 2005]. O Xen consiste em um dos moni-
tores de maior relevância na literatura [Barham et al. 2003].

Resource Kernelse máquinas virtuais gerenciam a reserva de processamento
de maneira eficiente, mas apresentam limitações de uso, seja pela necessidade de
recompilação do Sistema Operacional, seja pela sobrecarga para a criação de novos
domı́nios. De maneira diferente a essas duas abordagens, o DSRT (Dynamic Soft Real
Time CPU Scheduler), um sistema para o gerenciamento de aplicações desenvolvido no
Departamento de Ciência da Computação da Universidade de Illinois em Urbana Cham-
paign, gerencia a reserva de processamento no nı́vel do usu´ario [Chu and Nahrstedt 1997].

No DSRT, as reservas de processamento são garantidas por meio de temporiza-
dores que, ao expirarem, manipulam as prioridades das aplicações clientes junto ao Sis-
tema Operacional corrente. Nesse sistema, as aplicaçõesclientes e servidor devem residir
em uma mesma máquina visto que a comunicação dessas entidades é feita por compar-
tilhamento de memória. Essa implementação dificulta o uso do DSRT em ambientes
distribuı́dos.

O DSRT foi projetado para atender as necessidades de aplicac¸ões multimı́dia.
Assim, ele possibilita a classificação das aplicações de acordo com o perfil de uso de
processamento, que pode seguir diferentes padrões de periodicidade. Em função dessa
classificação, o DSRT vai fazer a reserva de recursos apropriada. Ele também oferece
uma API de reserva que pode ser inserida no código das aplicações para que o controle
dos recursos seja feito de forma mais precisa (mecanismo deprobe).

Por outro lado, o DSRT não explora o processamento ocioso demáquinas, di-
ficultando o seu uso em cenários de computação oportunı́stica. Também não existe no
DSRT mecanismos para a reserva de processadores, uma funcionalidade importante para
o gerenciamento dos recursos de arquiteturas multiprocessadas.

3. CPUReserve

As desvantagens encontradas na reserva de processamento realizadas pelosResource Ker-
nelse pelas máquinas virtuais motivaram a implementação do CPUReserve, um sistema
para reserva de processamento no nı́vel do usuário. Assim como o DSRT, o CPUReserve
gerencia processos através de chamadas ao sistema que alteram dinamicamente a priori-
dade dos processos para consumirem mais ou menos processamento dentro de um perı́odo
de tempo.

SBC 2008 101



O CPUReserve segue o modelo cliente-servidor com comunicac¸ão entre os pro-
cessos sendo feita viasocketo que permite seu uso em ambientes distribuı́dos. Para
executar o servidor é necessário disparar o processo em uma determinada porta, especifi-
cando em quais processadores da máquina deseja-se gerenciar as reservas1:

./server <porta> <cjto processadores decimal>

Para executar o cliente, é necessário executar um comandodo tipo

./client <maq:porta> <periodo> <fatia> <cons> <exec> <params...>

ondemaq:porta corresponde ao nome da máquina juntamente com o número da porta
onde o servidor escuta,fatia, o tempo de processamento necessário à aplicação a cada
perı́odo dems especificado. O campocons (conservaç̃ao), se configurado com0, limita
a quantidade de CPU alocada ao processo àquela especificadana mensagem. Caso esse
campo seja igual a1, a quantidade de processamento por perı́odo pode ser maior caso haja
processamento ocioso na máquina executora. Os camposexec eparams correspondem
juntos à linha de comando da aplicação a ser executada.

Se o pedido do cliente for aceito, a aplicação receberá a porcentagem de CPU
especificada na requisição. A alteração dos parâmetros de reserva pode ser feita através
de um comando do tipo

./adapt <maq:porta> <periodo> <fatia> <cons> <pid>

ondepid é o identificador do processo sendo executado pelo servidor.

Para que não haja inanição dos processos executados por fora do servidor CPU-
Reserve, incluindo o próprio servidor, um limite de reserva é estipulado pela variável
RESERVATION LIMIT que, por padrão é de 0.8*numprocessadoresreservados2.

Tanto a reserva quanto a adaptação, quando executadas pelo servidor, se estendem
a todo processo criado pelo processo em execução (viafork, por exemplo). Os novos
processos compartilham a fatia de tempo reservada ao processo que os criou. Essa prática
evita que processos filhos burlem o acordo de uso de processamento.

3.1. Arquitetura

O servidor CPUReserve é composto por duasthreadsprincipais: uma de monitoração de
uso da CPU (CPU ociosa e tempo de CPU ocupado por cada processo) e outra de espera
de conexões dos clientes. Athreadde espera de conexões escuta, na porta determinada no
momento de inı́cio do servidor, por requisições de reserva de processamento ou adaptação
de reserva.

A figura 1 ilustra a arquitetura do servidor e a interação entre seus componentes.
Ao receber uma mensagem do cliente nathreadde tratamento de IO, o servidor inicia
outrathreadpara tratar da requisição. Essathreadtrata de maneira diferente pedidos de
reserva e de adaptação. No caso dos pedidos de reserva, elaverifica se os parâmetros
da mensagem são consistentes e se podem ser atendidos com a qualidade desejada. No

1Cada processador é representado por umbit. Os processadores a serem reservados têm o seubit con-
figurado para1. Em seguida, o valor binário é convertido para decimal. Nocaso de se desejar reservar
os processadores0 e 2, por exemplo, deve-se passar o valor5 no terceiro parâmetro já que5 = 0101 em
binário.

2Esse valor foi determinado por meio de experimentos descritos na Seção 4.

SBC 2008 102



caso afirmativo, o processo especificado é criado e o mesmo passa a ter o consumo de
processamento monitorado. Monitora-se também novos filhos desse processo para que
os mesmos compartilhem a fatia de tempo estipulada para o processo pai. O controle da
reserva de processamento é realizado por meio de alarmes que expiram após uma fatia de
tempo de processamento.

Figura 1. Arquitetura do servidor de reserva.

No caso do pedido de adaptação, athreadtratadora da requisição verifica se o pro-
cesso requisitado existe. Se o processo existir, ela verifica se os parâmetros de adaptação
são válidos e possı́veis de serem atendidos. Nesse caso, os novos parâmetros de reserva
do processo são atualizados e novos alarmes são configurados.

Os alarmes são ordenados em uma fila, onde os primeiros são os alarmes que ex-
piram mais cedo. Quando um alarme expira, cria-se umathreadpara tratá-lo. Essathread
verifica o tempo de processamento do processo que gerou o alarme e toma decisões quanto
à continuidade ou não de execução do processo em questão. Trocas de informações acon-
tecem entre asthreadsde monitoração e a tratadora de alarme. Elas ocorrem nos momen-
tos em que athreadtratadora de alarme deseja saber se há capacidade de processamento
ociosa na máquina a fim de cedê-la a um processo do tipo conservativo.

Dependendo da configuração da propriedade TRANSFEROUTPUT do servidor,
os clientes podem ficar bloqueados em espera até que os seus pedidos sejam finalizados e
os arquivos de saı́da (outpute erro), gerados na execução dos processos, sejam transferi-
dos para os seus sistemas de arquivo locais.

3.2. Detalhes de Implementaç̃ao

Ao ser iniciado, o servidor tem a sua execução ligada a um determinado conjunto de
processadores. A ligação de processadores restringe não só a execução do servidor, mas
também a dos processos gerenciados por ele. Ela é garantida por meio de chamadas ao
Sistema Operacional as quais realizam a afinidade de processadores.

Para gerenciar o escalonamento dos processos solicitados pelos clientes, o ser-
vidor é executado com a máxima prioridade para processos de tempo real. Ao colocar

SBC 2008 103



um processo cliente em execução, o servidor o torna de tempo real com a segunda maior
prioridade do sistema. Em seguida, esse processo cliente émonitorado e, caso tenha su-
perado a fatia de tempo estipulada para o perı́odo, ele pode ser parado ou então ter a sua
prioridade reduzida ao mı́nimo permitido para classes de processos comuns do Linux até
o próximo perı́odo. A decisão de ser parado ou ter a prioridade reduzida é feita com base
no parâmetro conservação informado pelo pedido de reserva ou adaptação.

Toda a monitoração dos processos é realizada por meio de alarmes de tempo
real que, quando expirados, invocam umathread de decisão. Essathread apresenta
implementação guiada pelas decisões ilustradas na figura 2.

Figura 2. Etapas de decis ão da thread tratadora dos alarmes.

Ao expirar um alarme, athreadverifica qual é o estado do processo que solicitou
o alarme. Se o estado for terminado, então o processo é retirado da fila de processos do
servidor e, dependendo da configuração do sistema, pode ter os seus arquivos de saı́da
transferidos para a máquina do cliente. Se o estado for parado, é sinal que no perı́odo
anterior, o processo executou a sua fatia de tempo de processamento, foi parado até o fim
do perı́odo por não ser conservativo e, no novo perı́odo, deve executar uma nova fatia
de tempo. Se o estado do processo for executando, então é preciso verificar se ele vem
sendo executado como processo de tempo real(RT) ou comum(OTHER). Se for processo
do tipo OTHER, então o alarme expirou porque o processo teveum perı́odo finalizado.
Dessa maneira, é preciso transformar o processo em tempo real novamente e dar a ele
uma nova fatia de tempo para execução.

Caso o processo venha executando em tempo real, então é preciso verificar se
ele já executou a sua fatia de tempo. Caso tenha executado, verifica-se se o limite de
perı́odo já passou. Se o limite estiver sido atingido, o processo pode executar por mais
uma fatia de tempo. Se o limite de perı́odo não tiver sido ultrapassado, então verifica-se se
o processo é do tipo conservativo. Se o processo for conservativo, ele é transformado em
um processo comum de baixa prioridade e deixado em execução nesse estado. Por outro
lado, se o processo não for conservativo, ele é parado atéo próximo limite de perı́odo.

Se o processo vem executando em tempo real, mas não executoua sua fatia de
tempo ainda, então verifica-se se o perı́odo já foi ultrapassado. Caso afirmativo, ocorreu

SBC 2008 104



um erro (indicado na figura 2 com um asterisco). Esse erro indica que há mais reserva
do que os processadores disponı́veis podem suportar. Nessecaso, deve-se reduzir o valor
da variável RESERVATIONLIMIT. Para que não haja pausa na execução do servidor,
permite-se que o processo, mesmo com um erro, possa continuar a executar reiniciando
uma fatia de tempo. Caso o perı́odo do processo já tenha expirado, permite-se que o
processo execute pelo restante da fatia de tempo, se ainda for possı́vel executar o que falta
da fatia antes do perı́odo expirar; ou pelo restante do perı́odo, situação onde ocorreu um
erro semelhante ao anteriormente descrito.

4. Avaliações Experimentais

Testes foram realizados a fim de avaliar a escalabilidade do CPUReserve e o seu uso
em um cenário real de computação compartilhada distribuı́da. Os testes mostraram
que o servidor apresenta significativa escalabilidade, mastambém evidenciaram algumas
limitações do sistema proposto assim como será exposto nas próximas seções.

4.1. Testes de Escalabilidade

Os testes de escalabilidade foram realizados em um computador Intel Centrino Duo de
1,66 GHZ, 1G de memória executando o Sistema Operacional Linux, distribuição Ubuntu
7.10 padrão, comkernel2.6.22. O objetivo foi estimar o quanto o servidor consome dere-
cursos para atender a um número crescente de clientes. Paraisso, o servidor CPUReserve
foi inicializado para gerenciar os dois processadores da m´aquina. Os clientes consisti-
ram em uma aplicação de espera ocupada. As especificações dos clientes eram de que o
servidor reservasse a eles10ms a cada1000ms, ou seja,1% da CPU para cada processo
cliente. A escolha de uma porcentagem tão pequena de processamento foi feita com o ob-
jetivo de que muitos alarmes fossem disparados no menor intervalo de tempo possı́vel3.
Com isso, o servidor trabalharia em um estado mais próximo ao de sua saturação pois
teria que gerar muitasthreadspara os tratamentos das reservas. Os experimentos mostra-
ram que o servidor por si só, sem atender a nenhum cliente, consome valor muito próximo
a0% de CPU,18 MB de memória virtual e732 KB de memória residente. Os resultados
dos experimentos, divididos pelo número de clientes, paraas taxas de porcentagem de
CPU, quantidade desoft page faultpor segundo, memória virtual e memória residente do
servidor são apresentados na tabela 1.

Nota-se que o consumo de CPU, assim como o número depage faultspor segundo,
cresce linearmente com o aumento do número de clientes. A quantidade de CPU por
processo nos testes oscilou entre 0.1 e 0.2%, enquanto a taxadepage faultsmanteve-se
em torno de30 por segundo. O baixo consumo de CPU era esperado visto que o servidor
apresenta pouco processamento no seu código.

Como conseqüência do aumento do compartilhamento de mem´oria quando o
número de clientes foi aumentado, notou-se uma discreta redução na quantidade de
memória virtual alocada por cliente. Com5 clientes, essa quantidade era próxima de
15MB por processo, já com60 clientes, essa quantidade passou para aproximadamente
9MB.

3O tempo de execução de um processo no CPUReserve é obtido apartir do seu arquivo /proc/pid/stat.
Esse tempo é dado emjiffiesque, no ambiente utilizado para testes, corresponde a10ms.

SBC 2008 105



Num. %CPU Page Fault/ Mem. Mem.
Clientes sec. Virtual(KB) Residente(KB)
1 1 51 34.77 784
5 0.2 29.6 15.35 165.6
10 0.2 20.9 11.78 86.8
15 0.13 29.33 10.58 61.07
20 0.15 29.6 9.99 48
25 0.12 22.08 9.96 40.16
30 0.13 27.4 9.66 34.67
35 0.11 27.26 9.45 30.97
40 0.13 27.08 9.4 28.3
45 0.13 24.84 9.17 25.96
50 0.14 27.82 9.16 24.32
55 0.13 32.07 9.14 22.84
60 0.12 31.35 9.08 21.8

Tabela 1. Resultados dos testes de escalabilidade do servid or.

A quantidade de memória residente alocada para cada cliente no servidor é redu-
zida com o aumento do número de processos. Essa redução acontece por três motivos:
primeiro porque o gerenciamento de novos processos pelo servidor acarreta na criação de
processos leves do tipothreadque consomem poucos recursos do sistema; segundo por-
que o montante de memória necessário para carregar o servidor foi sendo dividido entre
um número crescente de processos; e terceiro porque o curtoespaço de tempo entre cada
perı́odo dos clientes faz que alguns alarmes de monitoraç˜ao expirem ao mesmo tempo,
sendo então tratados todos por uma únicathread.

Apesar dos testes com o servidor mostrarem que o CPUReserve consome pou-
cos recursos do sistema, não foi possı́vel realizar experimentos com mais de60 clientes.
Nesses casos, aconteceram retardos no tempo de resposta do Sistema Operacional e, con-
seqüentemente, mal comportamento das aplicações sendoexecutadas nele, inclusive na
execução de alguns processos clientes que, em vez de executarem com apenas1% de
CPU executavam com3 ou 4%. Esse mal funcionamento da reserva é causado por dois
motivos: o alto tempo gasto para a criação de novasthreadspara o tratamento dos alarmes;
e o excesso de trabalho que o servidor tem que realizar a cada intervalo de10ms - quando
a quantidade de processos se aproxima de60, o servidor não é mais capaz de gerenciar
as prioridades e os temporizadores de todos os processos comperı́odo/fatia de tempo ex-
pirados dentro do intervalo de10ms, fazendo com que alguns processos permaneçam em
execução por mais tempo do que deveriam.

À medida que o servidor CPUReserve torna-se saturado, athread receptora de
novos pedidos de clientes, implementada como um processo debaixa prioridade, deixa
de receber novas requisições. Essa prática é importante para evitar que o servidor fique
ainda mais saturado em situações de alta carga de trabalhoa ser gerenciada.

Como o servidor consumiu menos de10% de CPU para o gerenciamento limite
de60 clientes, pode-se garantir, nesse caso, que um valor limitepara a variável RESER-
VATION LIMIT esteja em torno de0.9.

SBC 2008 106



4.2. Casos de Uso

No CSBase [Lima et al. 2006], umframeworkpara gerenciamento de recursos e execução
de aplicações em ambientes distribuı́dos, estuda-se a inserção de um mecanismo de re-
serva de processamento nos servidores de execução com o objetivo de limitar a quantidade
de CPU que uma aplicação utiliza. Essa funcionalidade, provida pelo CPUReserve, pos-
sibilitaria a divisão mais justa de recursos entre os diversos usuários dos nós de execução
que compõem a infra-estrutura do sistema.

Ainda no projeto CSBase, cada servidor executor de aplicações tem a sua capa-
cidade de processamento medida por meio de umbenchmarkbaseado no Whetstone. O
resultado dessebenchmark, denominado CSBench, é utilizado como métrica no escalona-
mento das aplicações. Como não há garantia de que obenchmarkserá executado sem
nenhuma interferência de cargas de trabalho no servidor, procura-se atribuir uma relação
entre a taxa de CPU ocupada e o resultado gerado pelobenchmark.

Para verificar se tal relação acontecia no CSBench, foram realizadas execuções
dessebenchmarkcom reservas no CPUReserve variando de10 a 100%. Os resultados
obtidos são apresentados nas segunda e terceira colunas databela 2. Nota-se que não há
relação entre a quantidade declockstotais com a quantidade gasta em processamento. Ao
utilizar 1117 clockscom100% de CPU, obenchmarkdeveria utilizar cerca de10 vezes
maisclockscom10% de processamento, mas utilizou cerca de14 vezes mais. Além disso,
o número declocksde processamento deveria se manter mais ou menos constante,mas
variou cerca de50%.

CSBench Linpack Espera Ocupada
Reserva (%) Clock Clock Clock Clock Clock Clock

Total Proc. Total Proc. Total Proc.
100 1117 1090 1982 1977 3516 3504
90 1391 1267 2177 1966 3654 3292
80 2048 1646 2813 2253 4348 3483
70 2215 1556 3101 2173 5004 3499
60 2616 1576 3716 2238 5744 3461
50 3266 1664 4413 2217 6918 3459
40 3521 1480 5506 2205 8724 3503
30 5430 1648 7003 2106 11617 3493
20 7816 1573 10108 2037 17506 3503
10 15935 1625 22303 2251 35011 3514

Tabela 2. Resultados de reserva do CSBench.

Para confrontar dados do CSBench, foi realizado o mesmo teste com o Linpack,
um outrobenchmarkde CPU. Os resultados, ao contrário do CSBench, foram consisten-
tes, como apresentado nas colunas4 e5 da tabela 2.

Também foram realizados testes com uma aplicação que consistia em um laço que
realizava multiplicações por1. Os resultados são apresentados nas duas últimas colunas
da tabela 2. Nota-se que há uma relação entre a quantidadede reserva de CPU e a quan-
tidade total declocksgastos pela aplicação, enquanto que a quantidade declocksgastos
com processamento sofre pequenas variações.

SBC 2008 107



Para que houvesse garantia de que o CSBench não estava sendoprejudicado por
criar processos em número igual ao de processadores, a aplicação de multiplicação foi
alterada para também criar processos, mas os resultados foram bastante parecidos com
os apresentados pela aplicação sem a criação de filhos. Uma possı́vel explicação para o
mau comportamento do CSBench nos experimentos pode ser a alta influência dacache
de dados/instruções na execução do programa. Entenderesse comportamento, porém, é
objetivo de outros estudos que fogem ao escopo deste trabalho.

4.3. Limitações

Por ser desenvolvido no nı́vel do usuário, o CPUReserve é limitado pelo Sistema Ope-
racional da máquina. Cabe ao sistema operacional, por exemplo, prover interfaces para
chamadas ao sistema responsáveis por configurar a afinidadede processadores, alterar a
prioridade de processos e a polı́tica de escalonamento em atividade. A impossibilidade
de atender aplicações com perı́odo/fatia de tempo menores que a de umjiffy4 consiste em
uma das limitações impostas pelo Sistema Operacional5.

Ainda por executar no nı́vel do usuário, o CPUReserve pode sofrer a interferência
de outros processos na mudança de prioridade das aplicaç˜oes sendo gerenciadas (coman-
dos do tiponice, por exemplo). Para que a reserva seja feita de forma consistente, é
preciso garantir que o servidor CPUReserve seja executado como o de maior prioridade
no sistema, sendo seguido em prioridade pelas aplicaçõesas quais ele gerencia.

A execução do servidor é imprevista em situações em quehá muita carga de tra-
balho na máquina. Nesses casos, pode acontecer de um alarmeexpirar sem que o tratador
possa ser chamado naquele momento. Para que isso não aconteça, é importante confi-
gurar a varı́avel RESERVATIONLIMIT de modo que o Sistema Operacional não sofra
limitações para a sua execução.

5. CPUReserve e Ḿaquinas Virtuais

Durante a fase de criação de uma máquina virtual, é poss´ıvel especificar o quanto de
memória, disco e processamento que a máquina conterá. Com essa especificação, moni-
tores de máquinas virtuais são capazes de prover isolamento de desempenho entre os
diferentes domı́nios presentes nohardwareatravés da multiplexação dos recursos das
máquinas.

Apesar do isolamento de desempenho ser garantido com o uso demáquinas
virtuais, o custo para o gerenciamento das mesmas é alto e pode inviabilizar a prá-
tica de isolar a execução de aplicações colocando-as emdiferentes máquinas vir-
tuais [Gupta et al. 2006]. Por outro lado, a execução de mais de uma aplicação por
máquina virtual deixa de garantir o isolamento de desempenho. Como alternativa, é
possı́vel visualizar ambientes de isolamento hı́bridos onde coexistem máquinas virtuais
e gerenciadores de reserva no nı́vel do usuário.

A figura 3 apresenta um ambiente hı́brido contendo uma hierarquia de reservas,
onde uma máquina fı́sica é representada com duas máquinas virtuais. Na primeira de-
las, existe uma instância do CPUReserve responsável por gerenciar de forma mais fina

4Um jiffy corresponde à duração de umtick do relógio do sistema. Tipicamente, esse valor é igual a
10ms em sistemas Linux.

5Os tempos de execução dos processos nos arquivos /proc/pid/stat são dados emjiffies.

SBC 2008 108



a reserva de processamento entre as aplicações de uma mesma máquina virtual. Nessa
máquina, é possı́vel que diversas aplicações executemconcorrentemente, sem que o de-
sempenho entre elas seja afetado. Pode-se, por exemplo, especificar que a primeira
máquina será executada com50% de uma CPU e a aplicação1 com30% desses50%,
ou seja, com aproximadamente16% da capacidade de processamento de uma CPU. Já
na segunda máquina virtual, o isolamento de desempenho é garantido se somente uma
aplicação for executada, banalizando assim a criação de novas máquinas virtuais quando
novas execuções forem solicitadas.

Figura 3. Hierarquia de reserva de processamento em m áquinas virtuais.

A fim de validar a proposta de um ambiente hı́brido, um protótipo como o apresen-
tado pela figura 3 foi construı́do com o Xen 3.2 ekernel2.6.16. Nesse protótipo, porém,
as reservas não foram realizadas como esperado dado que o tempo de execução dos pro-
cessos das máquinas virtuais não espelham o seu uso de CPU dentro dessas máquinas e
sim dentro da máquina fı́sica como um todo. Um processo de espera ocupada, por exem-
plo, se executado dentro de uma máquina virtual que tem50% de CPU dedicada a ela,
não aparece nos arquivos de monitoração como consumidorde100% do processamento
da máquina virtual, mas sim de50%. Entender como as informações de monitoramento
de processos são geradas no Xen e adaptar o CPUReserve para gerenciar processos nesse
monitor consiste em um objeto de trabalho futuro.

6. Conclus̃ao
Este artigo descreveu a implementação de um sistema para reserva de processamento
no nı́vel do usuário baseado nas idéias propostas pelo DSRT [Chu and Nahrstedt 1997].
Ao contrário das abordagens tradicionalmente encontradas na literatura, o sistema resul-
tante, denominado CPUReserve, não necessita de recompilação dokernel do Sistema
Operacional e não causa sobrecargas no servidor, mesmo quando muitos clientes são
monitorados. A escalabilidade apresentada nos testes, assim como a arquitetura cliente-
servidor, são caracterı́sticas fundamentais para o uso doCPUReserve em ambientes de
computação compartilhada distribuı́da. Um caso de uso emum cenário como esse foi
descrito na Seção 4.2, além disso, na Seção 5 uma abordagem hı́brida do CPUReserve
com máquinas virtuais é proposta.

Além de reservar fatias de tempo, o CPUReserve também permite reservar CPUs
em máquinas multiprocessadas. Essa facilidade foi útil para testar as opções de reserva

SBC 2008 109



do próprio sistema quando pôde-se saturar somente um processador da máquina e ver
como o servidor se comportava em tal situação sem que o sistema operacional ficasse
inoperante por excesso de carga de trabalho. Espera-se que essa caracterı́stica de gerenciar
processadores seja útil em outros testes de escalabilidade.

Por outro lado, algumas caracterı́sticas do DSRT ainda nãoforam implementadas
no CPUReserve pela ausência de necessidade imediata.É o caso da API de reserva que
pode ser inserida no código das aplicações para que o controle dos recursos seja feito de
forma mais precisa. Outra caracterı́stica é a possibilidade de classificação das aplicações
de acordo com o perfil de uso de processamento - periódico ou aperiódico.

Por fim, a forma como o CPUReserve foi implementado, buscandoseparar as
polı́ticas de reserva dos mecanismos em si, facilita a inclusão/substituição de polı́ticas de
reserva. Desenvolver novas polı́ticas, assim como portar oCPUReserve para ambientes
Windows, consistem em trabalhos futuros a serem desenvolvidos.

Referências

Banga, G., Druschel, P., and Mogul, J. C. (1999). Resource containers: A new facility for
resource management in server systems. InProceedings of OSDI ’99, pages 45–58,
New Orleans, USA. USENIX Association.

Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer, R., Pratt,
I., and Warfield, A. (2003). Xen and the art of virtualization. In Proceedings of SOSP
’03, pages 164–177, New York, USA. ACM.

Chu, H.-H. and Nahrstedt, K. (1997). A soft real time scheduling server in unix operating
system. InProceedings of IDMS ’97, pages 153–162, London, UK. Springer-Verlag.

Gupta, D., Cherkasova, L., Gardner, R., and Vahdat, A. (2006). Enforcing performance
isolation across virtual machines in xen. In van Steen, M. and Henning, M., editors,
Proceedings of Middleware ’06, volume 4290 ofLecture Notes in Computer Science,
pages 342–362. Springer Berlin / Heidelberg.

Keahey, K., Doering, K., and Foster, I. (2004). From sandboxto playground: Dynamic
virtual environments in the grid. InProceedings of GRID ’04, pages 34–42, Washing-
ton, USA. IEEE Computer Society.

Lee, C., Rajkumar, R., and Mercer, C. (1996). Experience with processor reservation and
dynamic QoS in real-time mach. InProceedings of Multimedia Japan 96, Japan.

Lima, M. J., Ururahy, C., de Moura, A. L., Melcop, T., Cassino, C., dos Santos, M. N.,
Silvestre, B., Reis, V., and Cerqueira, R. (2006). Csbase: Aframework for buil-
ding customized grid environments. InProceedings of WETICE ’06, pages 187–194,
Washington, USA. IEEE Computer Society.

Oikawa, S. and Rajkumar, R. (1999). Portable RK: A portable resource kernel for guaran-
teed and enforced timing behavior. InProceedings of RTAS ’99, page 111, Washington,
USA. IEEE Computer Society.

Santhanam, S., Elango, P., Arpaci-Dusseau, A., and Livny, M. (2005). Deploying virtual
machines as sandboxes for the grid. InProceedings of WORLDS ’05, San Francisco,
USA.

SBC 2008 110


