1 :I" Anais do XXVIII Congresso da SBC 122 18 de julho
g.I. o WSO - Workshop de Sistemas Operacionais Belém do Pard, PA

Sobre 0 Emprego de Tabelas Hash em Sistemas
Operacionais de Tempo Real

Romulo Silva de Oliveira

Departamento de Automacgao e Sistemas — Universidade Federal de Santa Catarina
(DAS-UFSC)
Caixa Postal 476 — 88040-900 — Floriandpolis-SC — Brasil

romulo@das.ufsc.br

Abstract. Operating systems use hash tables for many different purposes.
Hash tables have an excellent average-case behavior but, in the worst-case, it
degrades to something like a chaining list. Because of that, the use of hash
tables in real-time operating systems is not usual, since those systems may be
required to guarantee deadlines. This paper discusses the use of hash table in
real-time systems, considering that when the probability of a undesirable
behavior is low enough, it can be ignored. It also compares approaches simple
and 2-choice for the table design.

Resumo. Sistemas operacionais empregam tabelas hash para diversas
finalidades. Tabelas hash apresentam excelente comportamento no caso
médio mas, no pior caso, degradam para algo semelhante a uma lista
encadeada. Em funcdo disto, tabelas hash ndo sdo usuais em sistemas
operacionais de tempo real onde existe a necessidade de garantir deadlines.
Este artigo discute o emprego de tabelas hash em sistemas de tempo real,
considerando que, quando a probabilidade de um comportamento indesejado
for suficientemente baixa, ele pode ser ignorado. Também sdo comparadas as
abordagens simples e 2-choice para a construcéo da tabela.

1. Introducéo

Sistemas computacionais de tempo real sdo definidos na literatura como aqueles
submetidos a requisitos de natureza temporal. Nestes sistemas, os resultados devem
estar corretos ndo somente do ponto de vista l6gico, mas também devem ser gerados no
momento correto. Na maioria dos sistemas os requisitos temporais aparecem na forma
de deadlines (prazos maximos) para a execugao de determinadas tarefas [Liu 2000].

Na literatura os sistemas de tempo real sao, em geral, classificados conforme a
criticalidade dos seus deadlines. Nos sistemas tempo real criticos (hard real-time) o ndo
cumprimento de um deadline pode resultar em conseqiiéncias catastroficas no sentido
econdmico, ambiental ou mesmo em risco para seres humanos. Para sistemas deste tipo
¢ necessaria uma analise de escalonabilidade ainda em tempo de projeto (off-line). Esta
analise procura determinar se o sistema vai ou ndo atender os requisitos temporais
mesmo em um cendrio de pior caso, quando as demandas por recursos computacionais
sdo maiores. Quando os deadlines ndo sdo criticos (soft real-time) eles apenas
descrevem o comportamento desejado.

SBC 2008

111

1 :I" Anais do XXVIII Congresso da SBC 122 18 de julho
g.I. o] WSO - Workshop de Sistemas Operacionais Belém do Pard, PA

Em geral, qualquer técnica de programacao convencional pode ser empregada
no desenvolvimento de sistemas de tempo real ndo criticos. Entretanto, em sistemas de
tempo real criticos, em funcdo da criticalidade dos seus deadlines, apenas devem ser
empregadas técnicas de programagdo que apresentem um comportamento temporal de
pior caso que nao comprometa o atendimento dos deadlines.

Tabelas estdo entre as estruturas de dados mais utilizadas em qualquer sistema
operacional, e uma das estruturas de dados mais utilizadas ¢ a tabela por difusdo ou
tabela hash [Cormen et al 1990]. Tabelas hash apresentam excelente comportamento no
caso médio. Entretanto, no pior caso, tabelas hash apresentam um comportamento que
degrada para algo semelhante a uma lista encadeada ndo ordenada. Em fung¢ao disto, o
uso de tabelas hash ndo é comum em sistemas operacionais de tempo real onde existe a
necessidade de garantir deadlines mesmo em cendrios de pior caso. Em geral, para uma
tabela hash, o comportamento de pior caso ¢ muito pior que o comportamento de caso
médio, e garantir o pior caso representa uma enorme sub-utilizagdo de recursos. Esta
sub-utilizacdo pode ser compensada em parte pela utilizacdo de servidores que coletam
o tempo reservado porém ndo utilizado por uma tarefa (gain time) e o utilizam para
executar tarefas com deadlines brandos (soft). Porém, a necessidade de dimensionar o
hardware para o pior caso inviabiliza economicamente muitos sistemas.

Na literatura de tempo real ¢ geralmente recomendado o uso de algum tipo de
arvore ordenada no lugar de tabela hash, pois os véarios tipos de arvores descritas na
literatura apresentam um comportamento de pior caso mais proéximo do comportamento
médio. Entretanto, o caso médio da tabela hash ¢ melhor que o caso médio das arvores
balanceadas. Embora o gasto de memoria seja em geral semelhante, ¢ mais facil
implementar a tabela hash, além de ndo ser necessario tempo de processador para
manter a estrutura de dados balanceada, como no caso das arvores.

Considerando-se uma tabela hash com N elementos inseridos, o pior caso
acontecera quando a funcdo hash retornar o mesmo valor para todas as N chaves
associadas com estes N elementos. Na maioria das implementagdes isto degradar a
operagdo de consulta para uma pesquisa seqiiencial sobre todos os N elementos. Por
outro lado, a probabilidade de ocorrer tal colisdo total ¢ insignificante na maioria das
aplicagdes. A probabilidade de uma falta no hardware que comprometa todo o sistema
sera provavelmente muito maior do que uma falta temporal gerada pela colisdo de uma
grande quantidade de elementos da tabela hash.

Seja P(e) a probabilidade do evento “e” ocorrer durante a vida Util de um dado
sistema. E possivel definir uma probabilidade minimamente relevante Pr tal que, para
quaisquer fins praticos, um evento “e” com P(e) < Pr pode ser considerado como um
evento impossivel. Desta forma, se for possivel mostrar que a probabilidade de ocorrer
durante a vida util do sistema um dado numero de colisdes na tabela hash ¢ menor que
Pr, sera possivel entdo considerar este nivel de colisdo como impossivel e utilizar, para
fins de analise de pior caso, um niamero menor de colisdes.

Este artigo discute o emprego de tabelas hash em sistemas operacionais de
tempo real, a partir da idéia de que, quando a probabilidade de um comportamento
indesejado for suficientemente baixa, ele pode ser ignorado. Desta forma, ¢ proposta a
utilizagdo do “pior caso relevante” no lugar do “pior caso possivel” nos testes de
escalonabilidade. Neste artigo serd suposto que o numero de elementos presentes na

SBC 2008 112

1 :I" Anais do XXVIII Congresso da SBC 122 18 de julho
g.I. o] WSO - Workshop de Sistemas Operacionais Belém do Pard, PA

tabela hash a cada momento serda N no pior caso, um valor conhecido. Também sera
suposto que o tratamento de colisdes ¢ feito através de encadeamento.

2. Tabelas Hash

Uma tabela hash ou tabela por difusdo ¢ uma estrutura de dados que associa chaves com
valores. A chave ¢ transformada através de uma func¢do hash (fun¢do de dispersdo) em
um numero que ¢ usado como indice dentro da tabela para localizar a posi¢ao na qual se
encontra os dados procurados [Cormen et al 1990]. Tabelas hash suportam a inser¢ao
eficiente de novas entradas, com tempo esperado O(1). O tempo gasto em uma busca
depende da funcdo hash e da carga na tabela hash (ntimero de registros). Tanto a
inser¢do como a busca terdo tempo esperado O(1) com uma implementacao cuidadosa.

Na maioria das analises de complexidade ¢ assumida a premissa simples de que
a funcdo hash apresenta uma distribui¢ao uniforme, ou seja, cada chave tem a mesma
probabilidade de gerar cada um dos valores possiveis da fun¢ao hash, ou seja:

- Para quaisquer duas chaves k1 e k2, em duas entradas quaisquer da tabela yl e y2, a
chance de h(k1)=h(k2) ¢ exatamente 1/m”, onde m é o nimero de entradas da tabela.

- Para duas chaves k1 e k2, a probabilidade de h(k1)=h(k2) ¢ exatamente 1/m.

Para o caso geral ndo ¢ possivel garantir que uma dada funcdo hash exibira tal
comportamento. Uma maneira de atacar este problema ¢ usando hash universal. Neste
caso, a fungdo hash ¢é escolhida aleatoriamente de maneira independente das chaves,
dentro de um conjunto finito H de func¢des hash. O conjunto H ¢ dito universal se para
cada par de chaves distintas k1 e k2, o nimero de fun¢des hash h em H para as quais
h(kl)=h(k2) é no maximo |H|/m, onde |[H| ¢ a cardinalidade do conjunto H. Hash
universal resulta em um bom desempenho para o caso médio que pode ser demonstrado.
Entretanto, como o conjunto de chaves ¢ dinamico e desconhecido, existe uma
probabilidade ndo nula da tabela apresentar um péssimo comportamento.

No caso de um hash perfeito, a fun¢ao hash ¢ construida de tal forma que jamais
duas chaves resultam no mesmo valor de hash. Embora possivel e mesmo eficiente para
conjuntos estaticos e conhecidos de chaves, ndo existem métodos eficientes para gerar
funcdes hash perfeitas para conjuntos dindmicos de chaves.

2.1. Tratamento de Colisédo

O dominio das chaves de uma tabela hash ¢ tipicamente muito maior do que o numero
de entradas da tabela. E inevitavel que duas chaves diferentes acabem sendo mapeadas
para a mesma entrada da tabela pela funcdo de dispersdo. Neste caso ¢ dito que as duas
chaves colidiram.

Uma forma de lidar com o problema das colisdes ¢ usar enderegamento aberto.
Nesta abordagem, todos os registros sdo armazenados na propria tabela. Colisdes sdo
resolvidas através da localizagdo do proximo espago livre na tabela apds o endereco
fornecido pela fun¢ao de dispersdo. Esta procura ¢ feita de forma circular na tabela.

Outra possibilidade de lidar com colisdes ¢ encadear as entradas da tabela cujas
chaves resultaram no mesmo endereco calculado pela funcao de dispersdo. Desta forma,
cada endereco da tabela corresponde ao inicio de uma lista encadeada de registros.

SBC 2008

113

1 :I" Anais do XXVIII Congresso da SBC 122 18 de julho
g.I. o] WSO - Workshop de Sistemas Operacionais Belém do Pard, PA

2.2. Abordagem 2-Choice

Considere uma tabela hash normal que trata colisdes com encadeamento e suponha a
premissa de um hash uniforme. Neste caso, ap6s n chaves serem inseridas
seqliencialmente, o tamanho do encadeamento mais longo serd O(log n / log log n) com
alta probabilidade. Alta probabilidade significa com probabilidade pelo menos 1-
O(1/n*™) para alguma constante alfa [Gonnet 1981].

Suponha agora que sejam usadas duas fun¢des hash uniformes. No momento de
inserir um elemento na tabela, ambas as fun¢des hash sdo calculadas e portanto duas
entradas possiveis da tabela sdo identificadas (2-choice). O novo registro sera inserido
na entrada com a lista encadeada menor. Se n chaves forem inseridas seqiiencialmente
na tabela, o tamanho do maior encadeamento ¢ O(log log n) com alta probabilidade. No
caso de uma consulta, novamente sera necessario calcular o valor das duas fun¢des hash
e pesquisar as duas listas encadeadas indicadas, uma vez que a chave procurada pode ter
sido inserida em qualquer uma das duas. Nesta abordagem, o tempo de pesquisa esta
relacionado com a varredura das duas listas encadeadas associadas com uma dada
chave. De qualquer modo, a consulta também apresentara uma complexidade O(log log
n) com alta probabilidade. [Mitzenmacher et al 2000]

A abordagem 2-choice tem a vantagem de usar apenas duas func¢des hash, ser
facil de paralelizar e ndo necessitar re-hashing de entradas inseridas antes. Ela também
oferece robustez no caso das fung¢des hash nao serem perfeitamente uniformes [Karp et
al 1996]. O uso de alocagdes balanceadas (visdo mais abrangente desta mesma
abordagem) ¢ discutido em [Azar et al 1994].

2.3. Uso de Tabelas Hash em Sistemas de Tempo Real

Em [Friedman et al 2003] ¢ considerado o emprego de tabelas hash em sistemas de
tempo real embutidos. E proposta uma abordagem incremental para a reorganizagdo de
tabelas hash que ¢ similar a coleta de lixo incremental. A abordagem proposta aplica-se
a tabelas hash com encadeamento. O artigo ¢ motivado pelos problemas de desempenho
que surgem quando uma tabela hash com encadeamento estd muito carregada,
resultando em muitas colisdes e pesquisa linear através de listas longas. A solucdo
convencional ¢ construir uma nova tabela, maior que a original, de uma unica vez,
removendo os registros da tabela original e fazendo sua inser¢ao na nova tabela. Porém
isto deixa a tabela indisponivel enquanto ela ¢ completamente reconstruida. A proposta
em [Friedman et al 2003] faz as inser¢des de maneira incremental, minimizando o
tempo de tabela indisponivel.

Em [Parson 2004] ¢ discutido um algoritmo para reorganizar tabelas hash cujo
tratamento de colisdo utiliza a técnica de “tabela aberta” (open hash table). O
desempenho de tabelas hash abertas degrada ap6s muitas inser¢des e remocdes sendo
necessario reorganizar toda a tabela. Tipicamente isto ¢ feito de forma monolitica, isto
¢, toda a tabela permanece indisponivel enquanto toda a tabela ¢ reorganizada de uma
s6 vez. O algoritmo proposto em [Parson 2004] alterna entre a constru¢do incremental
de uma nova tabela através da copia seletiva das entradas, e a limpeza incremental da
tabela original através do esvaziamento das entradas. Isto limita o tempo de resposta no
pior caso a um evento que requer uma busca na tabela.

SBC 2008

114

1 :I" Anais do XXVIII Congresso da SBC 122 18 de julho
g.I. o] WSO - Workshop de Sistemas Operacionais Belém do Pard, PA

Poucos trabalhos podem ser encontrados sobre tabelas hash na literatura de
tempo real. No presente artigo ¢ suposto que o nimero maximo de registros na tabela
hash, a qualquer tempo, ¢ conhecido. Desta forma a tabela ja é criada com um tamanho
apropriado, o qual nunca muda. Ampliacdo da tabela em tempo de execugdo ndo ¢é
necessario. A questdo abordada neste artigo ¢ a identificagdo de um comportamento
que, embora melhor que o pior caso (onde todas as chaves acabam na mesma entrada da
tabela), seja probabilisticamente tdo improvavel que possa ser considerado, para fins
praticos, como o pior comportamento possivel do sistema. Trata-se portanto de uma
questao diferente daquelas abordadas na literatura citada.

3. Critérios de Projeto

Como proposto neste artigo, o emprego de tabelas hash em sistemas operacionais de
tempo real requer os seguintes passos:

- Defini¢do de uma probabilidade a partir da qual os eventos sdo considerados
irrelevantes, por serem muito raros;

- Calculo da probabilidade de uma lista de tamanho k ocorrer durante a vida do sistema;

- Determinacao do tamanho t da maior lista a qual ainda possui probabilidade relevante,
este serd o tamanho da fila no pior caso para fins de anélise de pior caso do sistema.

Por exemplo, suponha que a tabela hash ¢ alterada a cada segundo. Vamos supor
que a qualquer momento a tabela hash possui no maximo N elementos, sendo N uma
caracteristica da aplicagdo. Ao longo do tempo ocorrem inser¢des € remogoes, mas o
nimero de elementos na tabela a qualquer momento nunca ¢ maior do que N. Desta
forma, podemos ter a cada 2s uma nova configuracio para a tabela com N elementos. E
possivel calcular o nimero de diferentes configuragdes que sao geradas ao longo de 100
milhdes de anos: 10® ano x 365,25 dia/ano %24 hora/dia x 3600 s/hora x 0,5 config/s

<0,16 x 10" config

Um critério de projeto possivel € considerar que qualquer evento que ocorra em
média uma vez a cada 100 milhdes de anos ¢ irrelevante para o projeto do sistema
computacional em questdo. Por exemplo, a colisio de um meteoro gigante com o
planeta Terra que destrua a maior parte da vida no planeta. Desta forma, uma
probabilidade de 107'® seria considerada o ponto de corte e eventos com probabilidades
menores que esta sdo possiveis, porém irrelevantes.

4. Solugdo Numérica

Com o proposito de mostrar o conceito, foi implementada em Java uma ferramenta que
calcula a PMF (Probability Mass Function) da variavel aleatoria Lp(N), isto €, o
tamanho da lista encadeada associada com a entrada h da tabela hash, quando existem N
elementos inseridos na tabela. Para o exemplo numérico serd adotada como
probabilidade de corte o valor 10™'°, a partir da discussdo apresentada na segdo anterior.
Serdo supostos para a tabela hash os valores M=1000 para o nimero de entradas da
tabela e N=750 para o nimero maximo de registros na tabela em qualquer momento da
vida util do sistema. Colisdes sdo resolvidas por encadeamento.

Para calcular a fun¢do de massa de probabilidade do tamanho das listas
encadeadas sera feita a operacao de adi¢do sobre varidveis aleatorias, isto €, sera feita a

SBC 2008 115

1 :I" Anais do XXVIII Congresso da SBC 122 18 de julho
g.I.I} WSO - Workshop de Sistemas Operacionais Belém do Pard, PA

convolu¢ao das respectivas fungdes de massa de probabilidade. Seja X a variavel
aleatoria tamanho da lista encadeada de uma entrada qualquer da tabela. Partindo de
N=0, temos que a fun¢do massa de probabilidade da varidvel X ¢ definida por
P(X=0)=1.

Por exemplo, supondo que a funcao hash ¢ perfeitamente uniforme (esta
restricdo sera discutida na se¢do 5 e removida nas experiéncias), podemos definir como
Ph a probabilidade de um novo registro ser inserido em uma dada entrada h da tabela.
Este valor pode ser calculado por Ph=1/M, ele independe do nimero de elementos ja
inseridos na tabela. Sempre que for feita uma nova inserg¢ao, a probabilidade da lista
associada com a entrada h aumentar de tamanho ¢ 1/M, e a probabilidade da lista
associada com a entrada h ficar com o0 mesmo tamanho ¢ 1-1/M. A variavel aleatoria Th
define o aumento de tamanho da lista associada com a entrada h da tabela, e sua PMF é:
P(Ih=0) = 1-1/M; P(Ih=1) = 1/M; P(Ih>1)=0.

Para determinar as probabilidades de um sistema com N=I, basta somar a
varidvel aleatéria Lh(0) do tamanho da lista quando N=0, com a variavel Ih, a qual
determina a alteracdo que a lista associada com a entrada h da tabela sofrerd ap6s uma
nova inser¢ao. Como tanto Lh(0) como Th sdo variaveis aleatorias, o resultado da soma
Lh(1) também serd uma variavel aleatoria. A PMF de Lh(1) serd dada pela convolugdo
das PMFs de Lh(0) e Ih. Inicialmente temos a seguinte PMF de Lh(0):

P(Lh(0)=0)=1 P(Lh(0)>0)=0
Ap0s a convolugao de Lh(0) com Th temos a PMF para Lh(1):

P(Lh(1)=0)=P(Lh(0)=0)xP(Th=0)=1 x (1-1/M) = (1-1/M)
P(Lh(1)=1)=P(Lh(0)=0)xP(Th=1)=1x (1/M) = (1/M)
P(Lh(1)>1)=0

Ap0s a convolugao de Lh(1) com Th temos a PMF para Lh(2):

P(Lh(2)=0)=P(Lh(1)=0)x P(Th=0) = (1-1/M) x (1-1/M)
P(Lh(2)=1)=P(Lh(1)=1)x P(Ih=0) + P(Lh(1)= 0) x P(Ih=1) =
= (1/M) x (1-1/M) + (1-1/M) x (1/M)
P(Lh(2)=2)=P(Lh(1)=1)xP(Th=1) = (1/M) x (/M)
P(Lh(2)>2)=0

Percebe-se que a medida que N cresce, as probabilidades individuais para os
possiveis valores de N diminuem, a medida que as PMFs tornam-se mais alongadas. E
exatamente para valores grandes de N que a probabilidade de ocorréncia torna-se menor
do que a probabilidade relevante.

Quando uma PMF for uniforme ou mesmo parcialmente uniforme, ¢ possivel
acelerar o célculo da convolucao, aproveitando-se as simetrias existentes. Por exemplo,
no caso de uma PMF perfeitamente uniforme, todas as entradas da tabela hash
apresentam o mesmo comportamento. Logo, ¢ possivel calcular para apenas uma
entrada a PMF do seu tamanho de lista encadeada, e considerar este resultado valido
para todas as entradas. Da mesma forma, uma PMF onde toda uma sec¢ao de valores
apresentam a mesma probabilidade, ¢ possivel realizar os célculos para apenas um
representante desta secdo e usar os resultados para todas as entradas desta se¢do. Nas
experiéncias numéricas deste artigo foram utilizadas fung¢des hash com grandes se¢des
uniformes, o que resultou em reducdo significativa do tempo de execugao.

SBC 2008

116

1 :I" Anais do XXVIII Congresso da SBC 122 18 de julho
g.I. o] WSO - Workshop de Sistemas Operacionais Belém do Pard, PA

4.1. Célculo da PMF

Uma dificuldade encontrada na implementagdo da ferramenta esta na resolu¢do do tipo
de dado double. Por exemplo, em Java o tipo de dado double corresponde ao formato de
ponto flutuante com precisdo dupla (64 bits) definido pelo padrao IEEE 754. Nesta
representagio, a resolucio fica em torno de 2x107'°, ou seja, ndo é capaz de representar
com precisdo numeros pequenos, mas essenciais para o calculo correto da PMF.

Para superar esta dificuldade foi utilizada a classe java.math.BigDecimal, a qual
implementa niumeros decimais com precisao arbitraria. Um objeto BigDecimal consiste
de um numero inteiro com precisdo arbitraria (valor base) e um inteiro de 32 bits que
fornece sua escala. Se a escala for zero ou positiva, ela representa o nimero de digitos
existentes do lado direito do ponto decimal. Se a escala for negativa, significa que o
valor base ¢ multiplicado por 10 elevado a poténcia do valor da escala. O niimero
representado por um objeto BigDecimal ¢ dado por: valorBase x 105,

A classe BigDecimal prove operagdes aritméticas, manipulacdo de escalas,
arredondamento, comparagdes, etc. A classe permite o controle completo sobre
arredondamento. Se nenhum modo de arredondamento for especificado e o resultado
exato ndo pode ser representado, uma excegao ¢ langada.

No caso do célculo de uma PMF, algum modo de arredondamento ¢ necessario
por duas razdes. Primeiramente, valores com um numero infinido de digitos sdo
possiveis uma fez que a propria probabilidade de P(Th = 1) = 1/M pode gerar isto,
especialmente por que usualmente M ¢ escolhido entre os numeros primos. Em segundo
lugar, mesmo que seja possivel representar todos os valores de interesse com um
nimero finito de digitos, o numero de digitos cresce de tal forma que o tempo de
computacao torna-se proibitivo.

Arredondamentos em PMFs sdo possiveis, mas exigem cuidados especiais. Toda
PMF apresenta como propriedade fundamental o fato de que o somatdrio de todas as
probabilidades dos valores individuais soma 1. Por exemplo, com M=3 e fun¢ao hash
com distribui¢cdo perfeitamente uniforme temos:

P(Th=0)=1-1/3=2/3 P(Th=1)=1/3=1/3 P(Th>1)=0

Claramente o somatdério das probabilidades ¢ 1. Entretanto, caso o
arredondamento seja feito sempre para cima, com 10 casas, a propriedade é perdida:

P(Th=0) = 0.6666666667 P(Th=1)=0.3333333334 P(Th>1)=0

A propriedade de somatorio igual a 1 poderia ser mantida através de
compensagdes nos arredondamentos, tal como:

P(Ih=0)=0.6666666667 P(Th=1)=0.3333333333 P(Ih>1)=0

Mas, neste caso, um grave erro ¢ incluido no modelo. A probabilidade da lista
associada com a entrada h ter 1 elemento foi artificialmente reduzida. Ou seja, os
resultados que seriam obtidos a partir desta analise seriam artificialmente otimistas, o
que ndo € aceitavel em um sistema de tempo real que requer garantias para o pior caso.

No sentido de preservar a andlise de pior caso, a0 mesmo tempo que
arredondamentos sdo viabilizados, optou-se neste estudo por fazer arredondamentos
seguidos de compensacdes que mantém a propriedade de somatorio igual a 1, sempre

SBC 2008 117

1 :I" Anais do XXVIII Congresso da SBC 122 18 de julho
g.I. o] WSO - Workshop de Sistemas Operacionais Belém do Pard, PA

aumentando a probabilidade do pior comportamento possivel. Embora esta solugao
introduza um pequeno pessimismo na analise, ela preserva as garantias de
comportamento no pior caso oriundas desta analise.

Outra questdo ligada ao arredondamento ¢ o nimero de casas decimais a serem
preservadas nos valores arredondados. Uma vez que os valores arredondados sao
probabilidades e trabalha-se aqui com o conceito de probabilidade relevante, optou-se
por trabalhar com um nimero de casas decimais que permita a representagdo exata de
probabilidades 10000 vezes menores do que a menor probabilidade relevante. Por
exemplo, caso a menor probabilidade relevante seja 107, os arredondamentos
preservam 20 casas decimais. A titulo de ilustracdo, considere a PMF abaixo:

P(X=0)=0.367 P(X=1)=0.322 P(X=2)=0211
P(X=3)=0.100 P(X>3)=0

Um arredondamento para 2 casas decimais geraria a PMF mostrada abaixo.
Observa-se que em ambos os casos 0 somatdrio das probabilidades ¢ 1, e que a PMF
arredondada inclui um pequeno pessimismo ao aumentar a probabilidade de x assumir o
valor 3. No entanto, a probabilidade de X assumir valores maiores que 3 continua zero.
No caso de uma tabela hash com N registros, teremos sempre que a probabilidade de
uma entrada da tabela ter associada a ela mais do que N registros ¢ zero.

P(X=0)=036 P(X=1)=032 P(X=2)=021
P(X=3)=0.11 P(X>3)=0

E preciso notar que o arredondamento tem como efeito um deslocamento das
probabilidades para a direita, na medida que colunas da esquerda perdem probabilidade
para colunas da direita. Desta forma, ¢ inserido um pequeno pessimismo no
comportamento do sistema, o que invalida o resultado para comportamentos otimistas,
mas mantém a validade do resultado para o comportamento de pior caso, aquele no qual
estamos interessados neste trabalho.

5. Exemplo Numeérico

Para o exemplo numérico serd adotada como probabilidade de corte o valor 107, a
partir da discussdo apresentada na secdo anterior. Serdo supostos para a tabela hash os
valores M=1000 para o niimero de entradas da tabela e N=750 para o nlimero maximo
de registros na tabela em qualquer momento da vida util do sistema. Colisdes sdo
resolvidas por encadeamento.

A qualidade de uma fung¢do de dispersdo (funcdo hash) estd associada com a sua
capacidade de fazer um espalhamento perfeito das chaves que ela recebe. Desta forma,
uma funcao hash ideal distribui as chaves uniformemente entre as entradas da tabela. Na
pratica, fungdes hash apresentam um comportamento aquém do ideal.

A principio, qualquer funcdo hash ¢ vulnerdvel a uma situagdo de grande
numero de colisdes. Em [Carter e Wegman 1979] ¢ proposto o Hash universal
(universal hashing), uma forma para melhorar o desempenho no caso médio da fungéo
hash. A fun¢ao hash a ser usada ¢ escolhida de maneira aleatoéria no inicio da execugao,
independentemente das chaves, a partir de um conjunto de fungdes hash projetadas.

Mesmo o hash universal ndo garante um comportamento ideal durante a
execucdo. O método numérico descrito neste artigo permite que o projetista inclua na

SBC 2008

118

SBC

Anais do XXVIII Congresso da SBC

2008

WSO - Workshop de Sistemas Operacionais

12 a 18 de julho
Belém do Para, PA

analise as imperfei¢coes da funcao hash empregada. Desta maneira, ¢ possivel antever o
comportamento das listas da tabela hash mesmo quando a funcdo hash ndo ¢ perfeita, o
que vem a ser a maioria dos casos. Serdo considerados trés tipos de fungdes:

- Fungcdo hash perfeitamente uniforme, todas as entradas possuem a mesma
probabilidade de receber uma dada chave: P(h=x)=1/M, I<x<M.

- Fungao hash quase uniforme, metade das entradas recebem 2/3 das chaves, enquanto a
outra metade das entradas recebe 1/3 das chaves, dentro de cada metade a distribuigdo ¢
uniforme: P(h=x) = 4/(3xM) caso 1<x<M/2 ; P(h=x) =2/(3xM) caso M/2<x<M.

- Funcao ndo uniforme, 3 entradas recebem 30% das chaves, ao passo que as demais M-
3 entradas da tabela recebem 70% das chaves, ¢ suposto M > 3:
P(h=1)=0.1 Pth=2)=0.1 Ph=3)=0.1 P(h=x)=(0.7M), 4 <x<M.

No caso da abordagem 2-choice, duas fungdes hash H1 e H2 sdo necessarias. Se
as fun¢des hash forem uniformes, entdao H1 ¢ igual a H2. No caso de fungdes hash quase
uniformes ou ndo uniformes, ¢ preciso decidir se as entradas com maior probabilidade
sdo as mesmas ou sdo diferentes em H1 e H2. Foram feitos os calculos supondo as duas
situacdes. As fungdes H1 e H2 sdo ditas ndo correlacionadas quando as entradas de
maior probabilidade de cada uma forem diferentes. Elas sdo ditas correlacionadas
quando as entradas de maior probabilidade foram as mesmas nas duas funcdes.

5.1. Resultados

Para uma tabela simples com funcdo hash uniforme, o tamanho méaximo relevante da
lista encadeada chegou a 16 entradas, embora 750 inser¢des sejam feitas na tabela hash.
As probabilidades calculadas para este caso foram:

[0 registros]0.47676059996147070471
[1 registros]0.35333048416116927176
[2 registros]0.13075322758731027045
[3 registros]0.03221456331861269999
[4 registros]0.00594473290489221967
[5 registros]0.00087643690653154137
[6 registros]0.00010753384311034233
[7 registros]0.00001129378589414100
[8 registros]0.00000103647269260709
[9 registros]8.443815743448E-8

[10 registros]6.18267536145E-9

[11 registros]4.1099351096E-10
[12 registros]2.501022747E-11
[13 registros]1.40297537E-12
[14 registros] 7.298059E-14
[15 registros] 3.53786E-15

[16 registros] 1.6000E-16

[17 registros]6.12E-18

[18 registros] 1E-20

[19 a 749 registros] 1 E-20

[750 registros] 1E-20

[751 registros] 0

Os resultados fundamentais dos célculos realizados sdo apresentados na tabela 1.

Quando a fungdo hash utilizada nao ¢ perfeitamente uniforme, mas quase uniforme, nos
termos definidos neste artigo, o tamanho maximo relevante para as listas encadeadas
aumenta para apenas 17, ou seja, um registro a mais. Entretanto, ao ser utilizada uma
funcao hash nao uniforme, com uma elevada concentragcdo de probabilidade em poucas
entradas, o tamanho maximo relevante da lista encadeada aumenta para 151, quase dez
vezes maior que o caso uniforme, usualmente considerado na literatura. Neste caso, a
previsibilidade temporal do sistema ficaria seriamente comprometida, caso o sistema
fosse dimensionado para uma fung¢do uniforme.

SBC 2008

119

1 :I" Anais do XXVIII Congresso da SBC 122 18 de julho
g.I.I} WSO - Workshop de Sistemas Operacionais Belém do Pard, PA

A qualidade de uma funcao hash esta associada com a sua capacidade de fazer
um espalhamento perfeito das chaves que ela recebe. Desta forma, uma funcdo hash
ideal distribui as chaves uniformemente entre as entradas da tabela. Na pratica, fungdes
hash apresentam um comportamento aquém do ideal. E necessario conviver com o fato
da funcao utilizada nao espalhar perfeitamente as chaves nas entradas da tabela.

A abordagem 2-Choice tras robustez ao sistema. Primeiramente, o tamanho
maximo relevante das listas encadeadas cai de 16 para 3 se a fungdo hash for
perfeitamente uniforme. No caso de fungdes hash quase uniformes, sejam elas
correlacionas ou nao, o tamanho méaximo relevante para uma lista encadeada permanece
em 3. No caso da abordagem 2-choice, no pior caso ¢ necessario percorrer duas listas
encadeadas. Logo, um tamanho maximo relevante de 3 para as listas indica que sera
necessario percorrer 3+3=6 registros a cada operagdo na tabela. Ainda assim, este
numero ¢ bem menor que os 16 ou 17 da tabela simples.

Tabela 1. Tamanho méaximo relevante das listas encadeadas

Tabela | Tipo de Funcéo Tamanho méx. | Registros a
relevante pesquisar

Simples Uniforme 16 16
Simples Quase Uniforme 17 17
Simples Nao Uniforme 151 151
2-choice | Uniforme 3 6

2-choice | Quase Uniforme | Nao Correlacionada 3 6

2-choice | Quase Uniforme Correlacionada 3 6

2-choice | Nao Uniforme Nao Correlacionada 8 16
2-choice | Nao Uniforme Correlacionada 10 20

No caso de fungdes hash nao uniformes, assim como no caso da tabela hash
simples, o tamanho maéximo relevante das listas encadeadas aumenta. Entretanto,
mesmo no caso de funcdes hash correlacionadas, ele fica em 10, o que resulta em
pesquisar 10+10=20 registros da tabela 2-choice, no lugar dos 151 registros da tabela
hash simples. As probabilidades calculadas para o caso de tabela 2-choice com fungdes
hash ndo wuniformes e correlacionadas, considerando-se uma entrada de alta
probabilidade, foram:

0 registros] 0.00900853291867478015 [8 registros]0.13556813347534509603
1 registros] 0.02367672240017487672 [9 registros]0.00182367409035382306
2 registros] 0.04528701275583918460 [10 registros]1.30004720397E-9

3 registros] 0.06499467606307381824 [11 registros]1E-20

4 registros] 0.08976225758159696449 [12 a 749 registros]1E-20

5 registros] 0.12795405064570978937 [750 registros]1E-20

6 registros] 0.19983082784151369890 [751]0

7 registros] 0.30209411092767075707

e

As experiéncias realizadas indicam claramente que ¢ possivel adotar uma
abordagem probabilista para o comportamento das tabelas hash no pior caso. Embora

SBC 2008

120

1 :I" Anais do XXVIII Congresso da SBC 122 18 de julho
g.I. o] WSO - Workshop de Sistemas Operacionais Belém do Pard, PA

exista uma probabilidade ndo nula de uma mesma entrada da tabela hash receber todos
os 750 registros, o que tornaria o processo de pesquisa muito lento, esta probabilidade
ndo nula ¢ tio pequena (menor que 102° no nosso caso) que pode ser considerada
irrelevante. Tamanhos maximos de lista encadeada mais realistas podem ser usados,
ainda com boa margem de seguranga.

O maior risco desta abordagem sdo fungdes hash que apresentem
comportamento patoldgico para o conjunto de registros observados na pratica. Por
exemplo, a concentracdo de 30% dos registros em apenas 3 entradas da tabela hash fez
o tamanho maximo relevante de uma lista da tabela saltar de 16 ou 17 para 151 no caso
da tabela hash simples. Neste caso, a tabela 2-choice representa uma seguranca quanto a
falhas de projeto da funcdo hash. Na mesma situagdo, e considerando as suas duas
funcdes hash correlacionadas, o tamanho maximo relevante ficou em 10, o que
significaria uma pesquisa sobre 20 entradas (duas listas).

Foram necessdrias cerca de 3,5 horas para computar todos os casos apresentados
neste artigo, em um Pentium de 2GHz e 500Mbytes de memoria principal, sendo a
ferramenta programada em Java. O tempo de calculo depende dos formatos da func¢des
hash e do tipo de tabela. Por exemplo, o caso da tabela 2-choice com fun¢des hash nao
uniformes correlacionadas demorou cerca de 40 minutos neste computador.

6. Consideracdes Finais

Este artigo discutiu o uso de tabelas hash em sistemas operacionais de tempo real, onde
o tempo de resposta das tarefas ¢ uma restricdo importante e, por vezes, precisa ser
garantido para aplica¢des criticas. Mostra-se que ¢ possivel definir uma probabilidade
minimamente relevante tal que, para quaisquer fins praticos, um evento com
probabilidade menor do que a probabilidade minimamente relevante pode ser
considerado como um evento impossivel.

O artigo descreve uma ferramenta de software construida para calcular
numericamente a fungdo massa de probabilidade do tamanho das listas encadeadas de
uma tabela hash que resolve colisdo através de encadeamento. Esta ferramenta emprega
diversas técnicas para controlar a precisdo na representacdo dos dados e para reduzir o
tempo de célculo. Foram consideradas tabelas hash simples e baseadas na abordagem 2-
choice.

As experiéncias mostram que faz sentido adotar uma abordagem probabilista
para o comportamento das tabelas hash no pior caso. Embora exista uma probabilidade
ndo nula de uma mesma entrada da tabela hash receber todos os registros inseridos, esta
probabilidade nao nula ¢ tdo pequena que pode ser considerada irrelevante. Desta
forma, tamanhos maximos de lista encadeada mais realistas podem ser usados, ainda
com boa margem de seguranca. Cabe ao projetista do software definir a probabilidade
minimamente relevante do seu sistema.

Uma questio ndo abordada neste trabalho ¢ o tempo para calcular uma segunda
funcdo hash, a cada operacdo sobre a tabela. Este ¢ o preco pago pela abordagem 2-
choice. Se o custo computacional da segunda funcdo hash for elevado, ele podera
compensar o ganho da abordagem 2-choice no tempo de pesquisa. Entretanto, mesmo
neste caso, pode ser vantajoso usar uma tabela 2-choice, em funcdo da robustez que ela
confere a tabela na ocorréncia de fungdes hash com comportamento patologico.

SBC 2008

121

1 :I" Anais do XXVIII Congresso da SBC 122 18 de julho
g.I.I} WSO - Workshop de Sistemas Operacionais Belém do Pard, PA

Outra questdao em aberto ¢ a caracterizagao precisa da PMF das fungdes hash
utilizadas, levando em consideracdo os dados reais da aplicagdo. Qualquer informagao
disponivel sobre os valores de chaves a serem utilizados na pratica pode permitir uma
melhor caraterizacdo das PMFs, levando a resultados mais precisos na analise numérica.

References

Azar, Y., Broder, A. Z., Karlin, A. R., Upfal, E. (1994) “Balanced Allocations”,
Proceedings of the 26th Annual ACM Symposium on the Theory of Computing
(STOC 94), pages 593-602.

Carter, J. L. and Wegman, M. N. (1979) “Universal classes of hash functions”, Journal
of Computer and System Sciences, 18(2), pages 143—154.

Cormen, T. H., Leiserson, C. E., Rivest, R. L. (1990) “Introduction to Algorithms”, The
MIT Press, Cambridge, United States.

Friedman, S., Krishnan, A., Leidenfrost, N., Brodie, B. C., Cytron, R. K., and Niehaus,
D. (2003) “Hash tables for embedded and real-time systems”, Technical Report
2003-15, Department of Computer Science & Engineering, Washington University
in Saint Louis.

Gonnet, G. H. (1981) “Expected Length of the Longest Probe Sequence in Hash Code
Searching”, Journal of the ACM, 28(2), pages 289-304.

Liu, J. (2000) “Real-Time Systems”, Prentice-Hall, United States.

Karp, R. M., Luby, M., Heide, F. M. (1996) “Efficient PRAM Simulation on a
distributed memory Machine”, Algorithmica, 16, pages 245-281.

Mitzenmacher, M., Richa, A., and Sitaraman, R. (2000) “The power of two random
choices: A survey of the techniques and results”, In Handbook of Randomized
Computing, P. Pardalos, S. Rajasekaran, and J. Rolim, Eds. Kluwer.

Parson, D. (2004) “Incremental Reorganization of Open Hash Tables”, Work-in-
progress Section of the IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS), May 25 - May 28, 2004.

SBC 2008 122

