

Sobre o Emprego de Tabelas Hash em Sistemas
Operacionais de Tempo Real

Rômulo Silva de Oliveira

Departamento de Automação e Sistemas – Universidade Federal de Santa Catarina
(DAS-UFSC)

Caixa Postal 476 – 88040-900 – Florianópolis-SC – Brasil
romulo@das.ufsc.br

Abstract. Operating systems use hash tables for many different purposes.
Hash tables have an excellent average-case behavior but, in the worst-case, it
degrades to something like a chaining list. Because of that, the use of hash
tables in real-time operating systems is not usual, since those systems may be
required to guarantee deadlines. This paper discusses the use of hash table in
real-time systems, considering that when the probability of a undesirable
behavior is low enough, it can be ignored. It also compares approaches simple
and 2-choice for the table design.

Resumo. Sistemas operacionais empregam tabelas hash para diversas
finalidades. Tabelas hash apresentam excelente comportamento no caso
médio mas, no pior caso, degradam para algo semelhante a uma lista
encadeada. Em função disto, tabelas hash não são usuais em sistemas
operacionais de tempo real onde existe a necessidade de garantir deadlines.
Este artigo discute o emprego de tabelas hash em sistemas de tempo real,
considerando que, quando a probabilidade de um comportamento indesejado
for suficientemente baixa, ele pode ser ignorado. Também são comparadas as
abordagens simples e 2-choice para a construção da tabela.

1. Introdução
Sistemas computacionais de tempo real são definidos na literatura como aqueles
submetidos a requisitos de natureza temporal. Nestes sistemas, os resultados devem
estar corretos não somente do ponto de vista lógico, mas também devem ser gerados no
momento correto. Na maioria dos sistemas os requisitos temporais aparecem na forma
de deadlines (prazos máximos) para a execução de determinadas tarefas [Liu 2000].

 Na literatura os sistemas de tempo real são, em geral, classificados conforme a
criticalidade dos seus deadlines. Nos sistemas tempo real críticos (hard real-time) o não
cumprimento de um deadline pode resultar em conseqüências catastróficas no sentido
econômico, ambiental ou mesmo em risco para seres humanos. Para sistemas deste tipo
é necessária uma análise de escalonabilidade ainda em tempo de projeto (off-line). Esta
análise procura determinar se o sistema vai ou não atender os requisitos temporais
mesmo em um cenário de pior caso, quando as demandas por recursos computacionais
são maiores. Quando os deadlines não são críticos (soft real-time) eles apenas
descrevem o comportamento desejado.

SBC 2008 111

 Em geral, qualquer técnica de programação convencional pode ser empregada
no desenvolvimento de sistemas de tempo real não críticos. Entretanto, em sistemas de
tempo real críticos, em função da criticalidade dos seus deadlines, apenas devem ser
empregadas técnicas de programação que apresentem um comportamento temporal de
pior caso que não comprometa o atendimento dos deadlines.

 Tabelas estão entre as estruturas de dados mais utilizadas em qualquer sistema
operacional, e uma das estruturas de dados mais utilizadas é a tabela por difusão ou
tabela hash [Cormen et al 1990]. Tabelas hash apresentam excelente comportamento no
caso médio. Entretanto, no pior caso, tabelas hash apresentam um comportamento que
degrada para algo semelhante a uma lista encadeada não ordenada. Em função disto, o
uso de tabelas hash não é comum em sistemas operacionais de tempo real onde existe a
necessidade de garantir deadlines mesmo em cenários de pior caso. Em geral, para uma
tabela hash, o comportamento de pior caso é muito pior que o comportamento de caso
médio, e garantir o pior caso representa uma enorme sub-utilização de recursos. Esta
sub-utilização pode ser compensada em parte pela utilização de servidores que coletam
o tempo reservado porém não utilizado por uma tarefa (gain time) e o utilizam para
executar tarefas com deadlines brandos (soft). Porém, a necessidade de dimensionar o
hardware para o pior caso inviabiliza economicamente muitos sistemas.

 Na literatura de tempo real é geralmente recomendado o uso de algum tipo de
árvore ordenada no lugar de tabela hash, pois os vários tipos de árvores descritas na
literatura apresentam um comportamento de pior caso mais próximo do comportamento
médio. Entretanto, o caso médio da tabela hash é melhor que o caso médio das árvores
balanceadas. Embora o gasto de memória seja em geral semelhante, é mais fácil
implementar a tabela hash, além de não ser necessário tempo de processador para
manter a estrutura de dados balanceada, como no caso das árvores.

 Considerando-se uma tabela hash com N elementos inseridos, o pior caso
acontecerá quando a função hash retornar o mesmo valor para todas as N chaves
associadas com estes N elementos. Na maioria das implementações isto degradar a
operação de consulta para uma pesquisa seqüencial sobre todos os N elementos. Por
outro lado, a probabilidade de ocorrer tal colisão total é insignificante na maioria das
aplicações. A probabilidade de uma falta no hardware que comprometa todo o sistema
será provavelmente muito maior do que uma falta temporal gerada pela colisão de uma
grande quantidade de elementos da tabela hash.

 Seja P(e) a probabilidade do evento “e” ocorrer durante a vida útil de um dado
sistema. É possível definir uma probabilidade minimamente relevante Pr tal que, para
quaisquer fins práticos, um evento “e” com P(e) < Pr pode ser considerado como um
evento impossível. Desta forma, se for possível mostrar que a probabilidade de ocorrer
durante a vida útil do sistema um dado número de colisões na tabela hash é menor que
Pr, será possível então considerar este nível de colisão como impossível e utilizar, para
fins de análise de pior caso, um número menor de colisões.

 Este artigo discute o emprego de tabelas hash em sistemas operacionais de
tempo real, a partir da idéia de que, quando a probabilidade de um comportamento
indesejado for suficientemente baixa, ele pode ser ignorado. Desta forma, é proposta a
utilização do “pior caso relevante” no lugar do “pior caso possível” nos testes de
escalonabilidade. Neste artigo será suposto que o número de elementos presentes na

SBC 2008 112

tabela hash a cada momento será N no pior caso, um valor conhecido. Também será
suposto que o tratamento de colisões é feito através de encadeamento.

2. Tabelas Hash
Uma tabela hash ou tabela por difusão é uma estrutura de dados que associa chaves com
valores. A chave é transformada através de uma função hash (função de dispersão) em
um número que é usado como índice dentro da tabela para localizar a posição na qual se
encontra os dados procurados [Cormen et al 1990]. Tabelas hash suportam a inserção
eficiente de novas entradas, com tempo esperado O(1). O tempo gasto em uma busca
depende da função hash e da carga na tabela hash (número de registros). Tanto a
inserção como a busca terão tempo esperado O(1) com uma implementação cuidadosa.

 Na maioria das análises de complexidade é assumida a premissa simples de que
a função hash apresenta uma distribuição uniforme, ou seja, cada chave tem a mesma
probabilidade de gerar cada um dos valores possíveis da função hash, ou seja:

- Para quaisquer duas chaves k1 e k2, em duas entradas quaisquer da tabela y1 e y2, a
chance de h(k1)=h(k2) é exatamente 1/m2, onde m é o número de entradas da tabela.

- Para duas chaves k1 e k2, a probabilidade de h(k1)=h(k2) é exatamente 1/m.

 Para o caso geral não é possível garantir que uma dada função hash exibirá tal
comportamento. Uma maneira de atacar este problema é usando hash universal. Neste
caso, a função hash é escolhida aleatoriamente de maneira independente das chaves,
dentro de um conjunto finito H de funções hash. O conjunto H é dito universal se para
cada par de chaves distintas k1 e k2, o número de funções hash h em H para as quais
h(k1)=h(k2) é no máximo |H|/m, onde |H| é a cardinalidade do conjunto H. Hash
universal resulta em um bom desempenho para o caso médio que pode ser demonstrado.
Entretanto, como o conjunto de chaves é dinâmico e desconhecido, existe uma
probabilidade não nula da tabela apresentar um péssimo comportamento.

 No caso de um hash perfeito, a função hash é construida de tal forma que jamais
duas chaves resultam no mesmo valor de hash. Embora possível e mesmo eficiente para
conjuntos estáticos e conhecidos de chaves, não existem métodos eficientes para gerar
funções hash perfeitas para conjuntos dinâmicos de chaves.

2.1. Tratamento de Colisão

O domínio das chaves de uma tabela hash é tipicamente muito maior do que o número
de entradas da tabela. É inevitável que duas chaves diferentes acabem sendo mapeadas
para a mesma entrada da tabela pela função de dispersão. Neste caso é dito que as duas
chaves colidiram.

 Uma forma de lidar com o problema das colisões é usar endereçamento aberto.
Nesta abordagem, todos os registros são armazenados na própria tabela. Colisões são
resolvidas através da localização do próximo espaço livre na tabela após o endereço
fornecido pela função de dispersão. Esta procura é feita de forma circular na tabela.

 Outra possibilidade de lidar com colisões é encadear as entradas da tabela cujas
chaves resultaram no mesmo endereço cálculado pela função de dispersão. Desta forma,
cada endereço da tabela corresponde ao início de uma lista encadeada de registros.

SBC 2008 113

2.2. Abordagem 2-Choice

Considere uma tabela hash normal que trata colisões com encadeamento e suponha a
premissa de um hash uniforme. Neste caso, após n chaves serem inseridas
seqüencialmente, o tamanho do encadeamento mais longo será O(log n / log log n) com
alta probabilidade. Alta probabilidade significa com probabilidade pelo menos 1–
O(1/nalfa) para alguma constante alfa [Gonnet 1981].

 Suponha agora que sejam usadas duas funções hash uniformes. No momento de
inserir um elemento na tabela, ambas as funções hash são calculadas e portanto duas
entradas possíveis da tabela são identificadas (2-choice). O novo registro será inserido
na entrada com a lista encadeada menor. Se n chaves forem inseridas seqüencialmente
na tabela, o tamanho do maior encadeamento é O(log log n) com alta probabilidade. No
caso de uma consulta, novamente será necessário calcular o valor das duas funções hash
e pesquisar as duas listas encadeadas indicadas, uma vez que a chave procurada pode ter
sido inserida em qualquer uma das duas. Nesta abordagem, o tempo de pesquisa está
relacionado com a varredura das duas listas encadeadas associadas com uma dada
chave. De qualquer modo, a consulta também apresentará uma complexidade O(log log
n) com alta probabilidade. [Mitzenmacher et al 2000]

 A abordagem 2-choice tem a vantagem de usar apenas duas funções hash, ser
fácil de paralelizar e não necessitar re-hashing de entradas inseridas antes. Ela também
oferece robustez no caso das funções hash não serem perfeitamente uniformes [Karp et
al 1996]. O uso de alocações balanceadas (visão mais abrangente desta mesma
abordagem) é discutido em [Azar et al 1994].

2.3. Uso de Tabelas Hash em Sistemas de Tempo Real

Em [Friedman et al 2003] é considerado o emprego de tabelas hash em sistemas de
tempo real embutidos. É proposta uma abordagem incremental para a reorganização de
tabelas hash que é similar à coleta de lixo incremental. A abordagem proposta aplica-se
a tabelas hash com encadeamento. O artigo é motivado pelos problemas de desempenho
que surgem quando uma tabela hash com encadeamento está muito carregada,
resultando em muitas colisões e pesquisa linear através de listas longas. A solução
convencional é construir uma nova tabela, maior que a original, de uma única vez,
removendo os registros da tabela original e fazendo sua inserção na nova tabela. Porém
isto deixa a tabela indisponível enquanto ela é completamente reconstruída. A proposta
em [Friedman et al 2003] faz as inserções de maneira incremental, minimizando o
tempo de tabela indisponível.

 Em [Parson 2004] é discutido um algoritmo para reorganizar tabelas hash cujo
tratamento de colisão utiliza a técnica de “tabela aberta” (open hash table). O
desempenho de tabelas hash abertas degrada após muitas inserções e remoções sendo
necessário reorganizar toda a tabela. Tipicamente isto é feito de forma monolítica, isto
é, toda a tabela permanece indisponível enquanto toda a tabela é reorganizada de uma
só vez. O algoritmo proposto em [Parson 2004] alterna entre a construção incremental
de uma nova tabela através da cópia seletiva das entradas, e a limpeza incremental da
tabela original através do esvaziamento das entradas. Isto limita o tempo de resposta no
pior caso a um evento que requer uma busca na tabela.

SBC 2008 114

 Poucos trabalhos podem ser encontrados sobre tabelas hash na literatura de
tempo real. No presente artigo é suposto que o número máximo de registros na tabela
hash, a qualquer tempo, é conhecido. Desta forma a tabela já é criada com um tamanho
apropriado, o qual nunca muda. Ampliação da tabela em tempo de execução não é
necessário. A questão abordada neste artigo é a identificação de um comportamento
que, embora melhor que o pior caso (onde todas as chaves acabam na mesma entrada da
tabela), seja probabilisticamente tão improvável que possa ser considerado, para fins
práticos, como o pior comportamento possível do sistema. Trata-se portanto de uma
questão diferente daquelas abordadas na literatura citada.

3. Critérios de Projeto
Como proposto neste artigo, o emprego de tabelas hash em sistemas operacionais de
tempo real requer os seguintes passos:

 - Definição de uma probabilidade a partir da qual os eventos são considerados
irrelevantes, por serem muito raros;

- Cálculo da probabilidade de uma lista de tamanho k ocorrer durante a vida do sistema;

- Determinação do tamanho t da maior lista a qual ainda possui probabilidade relevante,
este será o tamanho da fila no pior caso para fins de análise de pior caso do sistema.

 Por exemplo, suponha que a tabela hash é alterada a cada segundo. Vamos supor
que a qualquer momento a tabela hash possui no máximo N elementos, sendo N uma
característica da aplicação. Ao longo do tempo ocorrem inserções e remoções, mas o
número de elementos na tabela a qualquer momento nunca é maior do que N. Desta
forma, podemos ter a cada 2s uma nova configuração para a tabela com N elementos. É
possível calcular o número de diferentes configurações que são geradas ao longo de 100
milhões de anos: 108 ano × 365,25 dia/ano ×24 hora/dia × 3600 s/hora × 0,5 config/s
 ≤ 0,16 × 1016 config

 Um critério de projeto possível é considerar que qualquer evento que ocorra em
média uma vez a cada 100 milhões de anos é irrelevante para o projeto do sistema
computacional em questão. Por exemplo, a colisão de um meteoro gigante com o
planeta Terra que destrua a maior parte da vida no planeta. Desta forma, uma
probabilidade de 10-16 seria considerada o ponto de corte e eventos com probabilidades
menores que esta são possíveis, porém irrelevantes.

4. Solução Numérica
Com o propósito de mostrar o conceito, foi implementada em Java uma ferramenta que
calcula a PMF (Probability Mass Function) da variável aleatória Lh(N), isto é, o
tamanho da lista encadeada associada com a entrada h da tabela hash, quando existem N
elementos inseridos na tabela. Para o exemplo numérico será adotada como
probabilidade de corte o valor 10-16, a partir da discussão apresentada na seção anterior.
Serão supostos para a tabela hash os valores M=1000 para o número de entradas da
tabela e N=750 para o número máximo de registros na tabela em qualquer momento da
vida útil do sistema. Colisões são resolvidas por encadeamento.

 Para calcular a função de massa de probabilidade do tamanho das listas
encadeadas será feita a operação de adição sobre variáveis aleatórias, isto é, será feita a

SBC 2008 115

convolução das respectivas funções de massa de probabilidade. Seja X a variável
aleatória tamanho da lista encadeada de uma entrada qualquer da tabela. Partindo de
N=0, temos que a função massa de probabilidade da variável X é definida por
P(X=0)=1.

 Por exemplo, supondo que a função hash é perfeitamente uniforme (esta
restrição será discutida na seção 5 e removida nas experiências), podemos definir como
Ph a probabilidade de um novo registro ser inserido em uma dada entrada h da tabela.
Este valor pode ser calculado por Ph=1/M, ele independe do número de elementos já
inseridos na tabela. Sempre que for feita uma nova inserção, a probabilidade da lista
associada com a entrada h aumentar de tamanho é 1/M, e a probabilidade da lista
associada com a entrada h ficar com o mesmo tamanho é 1-1/M. A variável aleatória Ih
define o aumento de tamanho da lista associada com a entrada h da tabela, e sua PMF é:
P(Ih=0) = 1-1/M; P(Ih=1) = 1/M; P(Ih>1) = 0.

 Para determinar as probabilidades de um sistema com N=1, basta somar a
variável aleatória Lh(0) do tamanho da lista quando N=0, com a variável Ih, a qual
determina a alteração que a lista associada com a entrada h da tabela sofrerá após uma
nova inserção. Como tanto Lh(0) como Ih são variáveis aleatórias, o resultado da soma
Lh(1) também será uma variável aleatória. A PMF de Lh(1) será dada pela convolução
das PMFs de Lh(0) e Ih. Inicialmente temos a seguinte PMF de Lh(0):

P(Lh(0) = 0) = 1 P(Lh(0) > 0) = 0

 Após a convolução de Lh(0) com Ih temos a PMF para Lh(1):

P(Lh(1) = 0) = P(Lh(0) = 0) × P(Ih = 0) = 1 × (1-1/M) = (1-1/M)
P(Lh(1) = 1) = P(Lh(0) = 0) × P(Ih = 1) = 1 × (1/M) = (1/M)
P(Lh(1) > 1) = 0

 Após a convolução de Lh(1) com Ih temos a PMF para Lh(2):

P(Lh(2) = 0) = P(Lh(1) = 0) × P(Ih = 0) = (1-1/M) × (1-1/M)
P(Lh(2) = 1) = P(Lh(1) = 1) × P(Ih = 0) + P(Lh(1) = 0) × P(Ih=1) =
= (1/M) × (1-1/M) + (1-1/M) × (1/M)
P(Lh(2) = 2) = P(Lh(1) = 1) × P(Ih = 1) = (1/M) × (1/M)
P(Lh(2) > 2) = 0

 Percebe-se que a medida que N cresce, as probabilidades individuais para os
possíveis valores de N diminuem, a medida que as PMFs tornam-se mais alongadas. É
exatamente para valores grandes de N que a probabilidade de ocorrência torna-se menor
do que a probabilidade relevante.

 Quando uma PMF for uniforme ou mesmo parcialmente uniforme, é possível
acelerar o cálculo da convolução, aproveitando-se as simetrias existentes. Por exemplo,
no caso de uma PMF perfeitamente uniforme, todas as entradas da tabela hash
apresentam o mesmo comportamento. Logo, é possível calcular para apenas uma
entrada a PMF do seu tamanho de lista encadeada, e considerar este resultado válido
para todas as entradas. Da mesma forma, uma PMF onde toda uma seção de valores
apresentam a mesma probabilidade, é possível realizar os cálculos para apenas um
representante desta seção e usar os resultados para todas as entradas desta seção. Nas
experiências numéricas deste artigo foram utilizadas funções hash com grandes seções
uniformes, o que resultou em redução significativa do tempo de execução.

SBC 2008 116

4.1. Cálculo da PMF

Uma dificuldade encontrada na implementação da ferramenta está na resolução do tipo
de dado double. Por exemplo, em Java o tipo de dado double corresponde ao formato de
ponto flutuante com precisão dupla (64 bits) definido pelo padrão IEEE 754. Nesta
representação, a resolução fica em torno de 2×10-16, ou seja, não é capaz de representar
com precisão números pequenos, mas essenciais para o cálculo correto da PMF.

 Para superar esta dificuldade foi utilizada a classe java.math.BigDecimal, a qual
implementa números decimais com precisão arbitrária. Um objeto BigDecimal consiste
de um número inteiro com precisão arbitrária (valor base) e um inteiro de 32 bits que
fornece sua escala. Se a escala for zero ou positiva, ela representa o número de dígitos
existentes do lado direito do ponto decimal. Se a escala for negativa, significa que o
valor base é multiplicado por 10 elevado a potência do valor da escala. O número
representado por um objeto BigDecimal é dado por: valorBase × 10escala.

 A classe BigDecimal prove operações aritméticas, manipulação de escalas,
arredondamento, comparações, etc. A classe permite o controle completo sobre
arredondamento. Se nenhum modo de arredondamento for especificado e o resultado
exato não pode ser representado, uma exceção é lançada.

 No caso do cálculo de uma PMF, algum modo de arredondamento é necessário
por duas razões. Primeiramente, valores com um número infinido de dígitos são
possíveis uma fez que a própria probabilidade de P(Ih = 1) = 1/M pode gerar isto,
especialmente por que usualmente M é escolhido entre os números primos. Em segundo
lugar, mesmo que seja possível representar todos os valores de interesse com um
número finito de dígitos, o número de dígitos cresce de tal forma que o tempo de
computação torna-se proibitivo.

 Arredondamentos em PMFs são possíveis, mas exigem cuidados especiais. Toda
PMF apresenta como propriedade fundamental o fato de que o somatório de todas as
probabilidades dos valores individuais soma 1. Por exemplo, com M=3 e função hash
com distribuição perfeitamente uniforme temos:

P(Ih = 0) = 1-1/3 = 2/3 P(Ih = 1) = 1/3 = 1/3 P(Ih > 1) = 0

 Claramente o somatório das probabilidades é 1. Entretanto, caso o
arredondamento seja feito sempre para cima, com 10 casas, a propriedade é perdida:

P(Ih = 0) = 0.6666666667 P(Ih = 1) = 0.3333333334 P(Ih > 1) = 0

 A propriedade de somatório igual a 1 poderia ser mantida através de
compensações nos arredondamentos, tal como:

P(Ih = 0) = 0.6666666667 P(Ih = 1) = 0.3333333333 P(Ih > 1) = 0

 Mas, neste caso, um grave erro é incluído no modelo. A probabilidade da lista
associada com a entrada h ter 1 elemento foi artificialmente reduzida. Ou seja, os
resultados que seriam obtidos a partir desta análise seriam artificialmente otimistas, o
que não é aceitável em um sistema de tempo real que requer garantias para o pior caso.

 No sentido de preservar a análise de pior caso, ao mesmo tempo que
arredondamentos são viabilizados, optou-se neste estudo por fazer arredondamentos
seguidos de compensações que mantém a propriedade de somatório igual a 1, sempre

SBC 2008 117

aumentando a probabilidade do pior comportamento possível. Embora esta solução
introduza um pequeno pessimismo na análise, ela preserva as garantias de
comportamento no pior caso oriundas desta análise.

 Outra questão ligada ao arredondamento é o número de casas decimais a serem
preservadas nos valores arredondados. Uma vez que os valores arredondados são
probabilidades e trabalha-se aqui com o conceito de probabilidade relevante, optou-se
por trabalhar com um número de casas decimais que permita a representação exata de
probabilidades 10000 vezes menores do que a menor probabilidade relevante. Por
exemplo, caso a menor probabilidade relevante seja 10-16, os arredondamentos
preservam 20 casas decimais. A título de ilustração, considere a PMF abaixo:

P(X = 0) = 0.367 P(X = 1) = 0.322 P(X = 2) = 0.211
P(X = 3) = 0.100 P(X > 3) = 0

 Um arredondamento para 2 casas decimais geraria a PMF mostrada abaixo.
Observa-se que em ambos os casos o somatório das probabilidades é 1, e que a PMF
arredondada inclui um pequeno pessimismo ao aumentar a probabilidade de x assumir o
valor 3. No entanto, a probabilidade de X assumir valores maiores que 3 continua zero.
No caso de uma tabela hash com N registros, teremos sempre que a probabilidade de
uma entrada da tabela ter associada a ela mais do que N registros é zero.

P(X = 0) = 0.36 P(X = 1) = 0.32 P(X = 2) = 0.21
P(X = 3) = 0.11 P(X > 3) = 0

 É preciso notar que o arredondamento tem como efeito um deslocamento das
probabilidades para a direita, na medida que colunas da esquerda perdem probabilidade
para colunas da direita. Desta forma, é inserido um pequeno pessimismo no
comportamento do sistema, o que invalida o resultado para comportamentos otimistas,
mas mantém a validade do resultado para o comportamento de pior caso, aquele no qual
estamos interessados neste trabalho.

5. Exemplo Numérico
Para o exemplo numérico será adotada como probabilidade de corte o valor 10-16, a
partir da discussão apresentada na seção anterior. Serão supostos para a tabela hash os
valores M=1000 para o número de entradas da tabela e N=750 para o número máximo
de registros na tabela em qualquer momento da vida útil do sistema. Colisões são
resolvidas por encadeamento.

 A qualidade de uma função de dispersão (função hash) está associada com a sua
capacidade de fazer um espalhamento perfeito das chaves que ela recebe. Desta forma,
uma função hash ideal distribui as chaves uniformemente entre as entradas da tabela. Na
prática, funções hash apresentam um comportamento aquém do ideal.

 A princípio, qualquer função hash é vulnerável a uma situação de grande
número de colisões. Em [Carter e Wegman 1979] é proposto o Hash universal
(universal hashing), uma forma para melhorar o desempenho no caso médio da função
hash. A função hash a ser usada é escolhida de maneira aleatória no início da execução,
independentemente das chaves, a partir de um conjunto de funções hash projetadas.

 Mesmo o hash universal não garante um comportamento ideal durante a
execução. O método numérico descrito neste artigo permite que o projetista inclua na

SBC 2008 118

análise as imperfeições da função hash empregada. Desta maneira, é possível antever o
comportamento das listas da tabela hash mesmo quando a função hash não é perfeita, o
que vem a ser a maioria dos casos. Serão considerados três tipos de funções:

- Função hash perfeitamente uniforme, todas as entradas possuem a mesma
probabilidade de receber uma dada chave: P(h = x) = 1/M, 1≤x≤M .

- Função hash quase uniforme, metade das entradas recebem 2/3 das chaves, enquanto a
outra metade das entradas recebe 1/3 das chaves, dentro de cada metade a distribuição é
uniforme: P(h=x) = 4/(3×M) caso 1≤x≤M/2 ; P(h=x) = 2/(3×M) caso M/2<x≤M.

- Função não uniforme, 3 entradas recebem 30% das chaves, ao passo que as demais M-
3 entradas da tabela recebem 70% das chaves, é suposto M > 3:
P(h = 1) = 0.1 P(h = 2) = 0.1 P(h = 3) = 0.1 P(h = x) = (0.7/M), 4 ≤ x ≤ M.

 No caso da abordagem 2-choice, duas funções hash H1 e H2 são necessárias. Se
as funções hash forem uniformes, então H1 é igual a H2. No caso de funções hash quase
uniformes ou não uniformes, é preciso decidir se as entradas com maior probabilidade
são as mesmas ou são diferentes em H1 e H2. Foram feitos os cálculos supondo as duas
situações. As funções H1 e H2 são ditas não correlacionadas quando as entradas de
maior probabilidade de cada uma forem diferentes. Elas são ditas correlacionadas
quando as entradas de maior probabilidade foram as mesmas nas duas funções.

5.1. Resultados

Para uma tabela simples com função hash uniforme, o tamanho máximo relevante da
lista encadeada chegou a 16 entradas, embora 750 inserções sejam feitas na tabela hash.
As probabilidades calculadas para este caso foram:

[0 registros] 0.47676059996147070471 [11 registros] 4.1099351096E-10
[1 registros] 0.35333048416116927176 [12 registros] 2.501022747E-11
[2 registros] 0.13075322758731027045 [13 registros] 1.40297537E-12
[3 registros] 0.03221456331861269999 [14 registros] 7.298059E-14
[4 registros] 0.00594473290489221967 [15 registros] 3.53786E-15
[5 registros] 0.00087643690653154137 [16 registros] 1.6000E-16
[6 registros] 0.00010753384311034233 [17 registros] 6.12E-18
[7 registros] 0.00001129378589414100 [18 registros] 1E-20
[8 registros] 0.00000103647269260709 [19 a 749 registros] 1E-20
[9 registros] 8.443815743448E-8 [750 registros] 1E-20
[10 registros] 6.18267536145E-9 [751 registros] 0

 Os resultados fundamentais dos cálculos realizados são apresentados na tabela 1.
Quando a função hash utilizada não é perfeitamente uniforme, mas quase uniforme, nos
termos definidos neste artigo, o tamanho máximo relevante para as listas encadeadas
aumenta para apenas 17, ou seja, um registro a mais. Entretanto, ao ser utilizada uma
função hash não uniforme, com uma elevada concentração de probabilidade em poucas
entradas, o tamanho máximo relevante da lista encadeada aumenta para 151, quase dez
vezes maior que o caso uniforme, usualmente considerado na literatura. Neste caso, a
previsibilidade temporal do sistema ficaria seriamente comprometida, caso o sistema
fosse dimensionado para uma função uniforme.

SBC 2008 119

 A qualidade de uma função hash está associada com a sua capacidade de fazer
um espalhamento perfeito das chaves que ela recebe. Desta forma, uma função hash
ideal distribui as chaves uniformemente entre as entradas da tabela. Na prática, funções
hash apresentam um comportamento aquém do ideal. É necessário conviver com o fato
da função utilizada não espalhar perfeitamente as chaves nas entradas da tabela.

 A abordagem 2-Choice trás robustez ao sistema. Primeiramente, o tamanho
máximo relevante das listas encadeadas cai de 16 para 3 se a função hash for
perfeitamente uniforme. No caso de funções hash quase uniformes, sejam elas
correlacionas ou não, o tamanho máximo relevante para uma lista encadeada permanece
em 3. No caso da abordagem 2-choice, no pior caso é necessário percorrer duas listas
encadeadas. Logo, um tamanho máximo relevante de 3 para as listas indica que será
necessário percorrer 3+3=6 registros a cada operação na tabela. Ainda assim, este
número é bem menor que os 16 ou 17 da tabela simples.

Tabela 1. Tamanho máximo relevante das listas encadeadas

Tabela Tipo de Função Tamanho máx.
relevante

Registros a
pesquisar

Simples Uniforme 16 16

Simples Quase Uniforme 17 17

Simples Não Uniforme 151 151

2-choice Uniforme 3 6

2-choice Quase Uniforme Não Correlacionada 3 6

2-choice Quase Uniforme Correlacionada 3 6

2-choice Não Uniforme Não Correlacionada 8 16

2-choice Não Uniforme Correlacionada 10 20

 No caso de funções hash não uniformes, assim como no caso da tabela hash
simples, o tamanho máximo relevante das listas encadeadas aumenta. Entretanto,
mesmo no caso de funções hash correlacionadas, ele fica em 10, o que resulta em
pesquisar 10+10=20 registros da tabela 2-choice, no lugar dos 151 registros da tabela
hash simples. As probabilidades calculadas para o caso de tabela 2-choice com funções
hash não uniformes e correlacionadas, considerando-se uma entrada de alta
probabilidade, foram:

[0 registros] 0.00900853291867478015 [8 registros] 0.13556813347534509603
[1 registros] 0.02367672240017487672 [9 registros] 0.00182367409035382306
[2 registros] 0.04528701275583918460 [10 registros] 1.30004720397E-9
[3 registros] 0.06499467606307381824 [11 registros] 1E-20
[4 registros] 0.08976225758159696449 [12 a 749 registros] 1E-20
[5 registros] 0.12795405064570978937 [750 registros] 1E-20
[6 registros] 0.19983082784151369890 [751] 0
[7 registros] 0.30209411092767075707

 As experiências realizadas indicam claramente que é possível adotar uma
abordagem probabilista para o comportamento das tabelas hash no pior caso. Embora

SBC 2008 120

exista uma probabilidade não nula de uma mesma entrada da tabela hash receber todos
os 750 registros, o que tornaria o processo de pesquisa muito lento, esta probabilidade
não nula é tão pequena (menor que 10-20 no nosso caso) que pode ser considerada
irrelevante. Tamanhos máximos de lista encadeada mais realistas podem ser usados,
ainda com boa margem de segurança.

 O maior risco desta abordagem são funções hash que apresentem
comportamento patológico para o conjunto de registros observados na prática. Por
exemplo, a concentração de 30% dos registros em apenas 3 entradas da tabela hash fez
o tamanho máximo relevante de uma lista da tabela saltar de 16 ou 17 para 151 no caso
da tabela hash simples. Neste caso, a tabela 2-choice representa uma segurança quanto a
falhas de projeto da função hash. Na mesma situação, e considerando as suas duas
funções hash correlacionadas, o tamanho máximo relevante ficou em 10, o que
significaria uma pesquisa sobre 20 entradas (duas listas).

 Foram necessárias cerca de 3,5 horas para computar todos os casos apresentados
neste artigo, em um Pentium de 2GHz e 500Mbytes de memória principal, sendo a
ferramenta programada em Java. O tempo de cálculo depende dos formatos da funções
hash e do tipo de tabela. Por exemplo, o caso da tabela 2-choice com funções hash não
uniformes correlacionadas demorou cerca de 40 minutos neste computador.

6. Considerações Finais
Este artigo discutiu o uso de tabelas hash em sistemas operacionais de tempo real, onde
o tempo de resposta das tarefas é uma restrição importante e, por vezes, precisa ser
garantido para aplicações críticas. Mostra-se que é possível definir uma probabilidade
minimamente relevante tal que, para quaisquer fins práticos, um evento com
probabilidade menor do que a probabilidade minimamente relevante pode ser
considerado como um evento impossível.

 O artigo descreve uma ferramenta de software construída para calcular
numericamente a função massa de probabilidade do tamanho das listas encadeadas de
uma tabela hash que resolve colisão através de encadeamento. Esta ferramenta emprega
diversas técnicas para controlar a precisão na representação dos dados e para reduzir o
tempo de cálculo. Foram consideradas tabelas hash simples e baseadas na abordagem 2-
choice.

 As experiências mostram que faz sentido adotar uma abordagem probabilista
para o comportamento das tabelas hash no pior caso. Embora exista uma probabilidade
não nula de uma mesma entrada da tabela hash receber todos os registros inseridos, esta
probabilidade não nula é tão pequena que pode ser considerada irrelevante. Desta
forma, tamanhos máximos de lista encadeada mais realistas podem ser usados, ainda
com boa margem de segurança. Cabe ao projetista do software definir a probabilidade
minimamente relevante do seu sistema.

 Uma questão não abordada neste trabalho é o tempo para calcular uma segunda
função hash, a cada operação sobre a tabela. Este é o preço pago pela abordagem 2-
choice. Se o custo computacional da segunda função hash for elevado, ele poderá
compensar o ganho da abordagem 2-choice no tempo de pesquisa. Entretanto, mesmo
neste caso, pode ser vantajoso usar uma tabela 2-choice, em função da robustez que ela
confere à tabela na ocorrência de funções hash com comportamento patológico.

SBC 2008 121

 Outra questão em aberto é a caracterização precisa da PMF das funções hash
utilizadas, levando em consideração os dados reais da aplicação. Qualquer informação
disponível sobre os valores de chaves a serem utilizados na prática pode permitir uma
melhor caraterização das PMFs, levando a resultados mais precisos na análise numérica.

References
Azar, Y., Broder, A. Z., Karlin, A. R., Upfal, E. (1994) “Balanced Allocations”,

Proceedings of the 26th Annual ACM Symposium on the Theory of Computing
(STOC 94), pages 593-602.

Carter, J. L. and Wegman, M. N. (1979) “Universal classes of hash functions”, Journal
of Computer and System Sciences, 18(2), pages 143–154.

Cormen, T. H., Leiserson, C. E., Rivest, R. L. (1990) “Introduction to Algorithms”, The
MIT Press, Cambridge, United States.

Friedman, S., Krishnan, A., Leidenfrost, N., Brodie, B. C., Cytron, R. K., and Niehaus,
D. (2003) “Hash tables for embedded and real-time systems”, Technical Report
2003-15, Department of Computer Science & Engineering, Washington University
in Saint Louis.

Gonnet, G. H. (1981) “Expected Length of the Longest Probe Sequence in Hash Code
Searching”, Journal of the ACM, 28(2), pages 289-304.

Liu, J. (2000) “Real-Time Systems”, Prentice-Hall, United States.

Karp, R. M., Luby, M., Heide, F. M. (1996) “Efficient PRAM Simulation on a
distributed memory Machine”, Algorithmica, 16, pages 245-281.

Mitzenmacher, M., Richa, A., and Sitaraman, R. (2000) “The power of two random
choices: A survey of the techniques and results”, In Handbook of Randomized
Computing, P. Pardalos, S. Rajasekaran, and J. Rolim, Eds. Kluwer.

Parson, D. (2004) “Incremental Reorganization of Open Hash Tables”, Work-in-
progress Section of the IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS), May 25 - May 28, 2004.

SBC 2008 122

