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Abstract. Several research projects have aimed at solving the problem of sys-
tem support for sensor networks. However, most of them either fail in correc-
tly dealing with sensor network application requirements, or present prohibi-
tive overhead. This work presents the project and implementation of a run-
time support environment for wireless sensor network applications based on the
EPOS operating system. This environment provides applications with hardware
support, configurable communication, power management, and a data acquisi-
tion system, and presents significant advantages when compared to other sensor
network operating systems.

1. Introdução
A idéia de uma rede de sensores auto-gerenciada, composta por dispositivos

autônomos energizados por baterias de baixa capacidade ou por energia ambiente, que
colete dados de um ambiente e propague informações através de um enlace sem fios traz
uma série de novos desafios e requisitos tanto do ponto de vista de hardware quanto de
suporte a execução de aplicações.

Para serem instalados não intrusivamente e operar por longos perı́odos com uma
fonte limitada de energia, os nodos devem ser pequenos e consumir pouca energia. Para
suprir necessidades de sensoriamento de diferentes aplicações, mantendo uma mesma ar-
quitetura básica, os nodos devem ter projeto modular, permitindo a conexão com sensores
especı́ficos para diferentes aplicações. Da mesma forma, o hardware de comunicação
usado na rede deve permitir a mais ampla configuração possı́vel do canal de transmissão
de dados, para que diferentes aplicações possam se beneficiar de diferentes técnicas de
modulação de dados e controle de acesso ao meio. Estes requisitos levaram à criação ou
adaptação de uma série de tecnologias e protótipos e, conforme a complexidade destas
tecnologias aumenta, torna-se crı́tica a necessidade de suporte de tempo de execução para
mediar as capacidades do hardware e as necessidades de aplicações.

Os requisitos de sistema para redes de sensores sem fios são bastante amplos, e
incluem a funcionalidade básica de um sistema operacional, serviços de gerência do con-
sumo de energia, mecanismos para reprogramação, abstração de hardware de sensores
heterogêneo e pilha de comunicações configurável. As restritas capacidades computaci-
onais dos nodos de sensor fazem ainda com que estes sistemas tenham que operar com
recursos limitadas, e torna impossı́vel o uso de sistemas operacionais tradicionais. Di-
versos projetos de pesquisa [Hofmeijer et al. 2004, de Almeida et al. 2004, Barr et al.
2002, Dunkels et al. 2004, Hill et al. 2000, Abrach et al. 2003, Han et al. 2005] se
propuseram a tratar o problema de suporte de sistema para redes de sensores sem fios.

SBC 2008 123



Entrentanto, este artigo mostrará que a maioria deles falha em tratar adequadamente os
requisitos das aplicações, ou apresenta overhead excessivo.

O sistema EPOS [Fröhlich 2001,Marcondes et al. 2006] é um framework baseado
em componentes para geração de suporte de execução a aplicações de computação dedi-
cada. O projeto do sistema permite que programadores desenvolvam aplicações indepen-
dentes de plataforma, e ferramentas de análise de aplicações permitem a geração de um
sistema de suporte de tempo de execução que agregue todos os recursos que esta aplicação
especı́fica necessita, e nada mais. Por definição, uma instância do sistema utiliza somente
os recursos necessários ao suporte da aplicação. Ao mesmo tempo, o repositório de com-
ponentes do sistema disponibiliza um grande conjunto de serviços tradicionais de sistema
operacional através de interfaces independentes de plataforma. O sistema suporta diver-
sas plataformas computacionais heterogêneas, como IA32, PowerPC, H8, Sparc, MIPS e
AVR [Marcondes et al. 2006].

Este trabalho apresenta o projeto e implementação de um sistema de suporte a
execução de aplicações em redes de sensores sem fios baseado no sistema EPOS. Este
ambiente inclui suporte a plataformas de hardware, serviços de gerência de energia,
comunicação configurável através do protocolo C-MAC (Configurable MAC), e um sis-
tema de aquisição de dados de sensores. Análises comparativas mostram vantagens deste
ambiente com relação a outros sistemas operacionais para redes de sensores.

2. Sistemas Operacionais para Redes de Sensores

A necessidade de conectividade, abstração de hardware e gerência de recursos
limitados torna o suporte no nı́vel de sistema operacional imperativo para aplicações em
redes de sensores sem fios. Baseado na tecnologia, aplicações e pesquisa atuais [Hill
et al. 2000], é possı́vel listar uma série de requisitos de sistemas operacionais para redes
de sensores sem fios:

Fornecer a funcionalidade básica de um sistema operacional: De maneira a não res-
tringir a funcionalidade e portabilidade das aplicações de redes de sensores, um sistema
operacional para esses dispositivos deve prover serviços tradicionais como: abstração de
hardware, gerência de processos (normalmente segundo o prisma de monotarefa, multi-
thread), serviços de temporização, e gerência de memória.

Fornecer mecanismos para gerência do consumo de energia nos nodos: O gerencia-
mento eficiente do consumo de energia nos nodos é um fator determinante para o tempo
de vida da rede. Um sistema operacional para redes de sensores deve fornecer mecanis-
mos de gerência de energia às aplicações, bem como utilizar os recursos de hardware de
maneira a consumir o mı́nimo de energia necessário à execução adequada das aplicações.

Prover mecanismos para reprogramação em campo. Dado que os nodos de uma rede
de sensores sem fios podem estar localizados em regiões de difı́cil acesso, e que os re-
quisitos e parâmetros das aplicações de sensoriamento podem mudar com o tempo, a
reprogramação em campo, via rede de comunicação, é um fator importante neste tipo
de redes. Um sistema operacional para redes de sensores idealmente deve prover algum
mecanismo de reprogramação total ou parcial de aplicações já instaladas.

Abstrair o hardware de sensoriamento heterogêneo de maneira uniforme. Os requisitos
de modularidade das aplicações de rede de sensores fazem com que o hardware utilizado
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seja amplamente heterogênio. Considerando isto, uma aplicação de sensoriamento, de-
senvolvida para determinada plataforma, dificilmente será portável para outra diferente, a
menos que os sistemas de suporte de tempo de execução destas plataformas abstraiam e
encapsulem adequadamente a plataforma de sensoriamento. Além das diferenças arqui-
teturais, módulos sensores (e.g. sensores de temperatura, luz ou movimento) apresentam
uma gama de variabilidade ainda maior. Módulos sensores apresentando a mesma funcio-
nalidade variam em suas interfaces de acesso e caracterı́sticas e parâmetros operacionais.

Fornecer uma pilha de protocolos de comunicação configurável Dadas as necessidades
especı́ficas de comunicação de diferentes aplicações, e o requisito de que o hardware de
comunicação seja amplamente configurável, é papel do sistema operacional prover um
mecanismo de configuração dos protocolos de configuração da pilha de comunicações
a ser utilizada na rede, especialmente no que diz respeito aos protocolos de controle de
acesso ao meio, uma vez que é nesta camada de rede que encontram-se as maiores opor-
tunidades de impacto no desempenho e consumo de energia.

Operar com recursos limitados O requisito de baixo consumo de energia para redes de
sensores traz como implicação prática a escolha de micro-controladores de baixa potência
para executar as funções de processamento nos nodos. Esses são geralmente bastante res-
tritos em sua capacidade computacional, e possuem pequenas quantidades de memória
disponı́vel. Um sistema operacional para redes de sensores deve entregar os serviços
necessários à aplicação, sem consumir uma parcela significativa dos recursos computaci-
onais disponı́veis nos nodos.

Sistemas operacionais tı́picos para computação embarcada, como VxWorks,
QNX, OS-9, WinCE e µClinux fornecem um ambiente de programação semelhante ao
existente em computadores de mesa, em geral através de serviços compatı́veis com PO-
SIX. Muitos destes SOs fornecem e, por conseqüência, exigem suporte de hardware à
proteção de memória. Apesar de serem bastante adequados para o uso em telefones celu-
lares, set-top-boxes e aplicações embarcadas complexas, os requisitos de processamento e
memória desses sistemas faz com que eles sejam inadequados para o uso em redes de sen-
sores sem fios. Entre os sistemas operacionais desenvolvidos especificamente para redes
de sensores sem fios, cabe citar AmbientRT [Hofmeijer et al. 2004], YaTOS [de Almeida
et al. 2004], MagnetOS [Barr et al. 2002] e Contiki [Dunkels et al. 2004]. Entretanto,
os mais proeminentes, e que mais se aproximam dos requisitos levantados acima são
TinyOS [Hill et al. 2000], MANTIS OS [Abrach et al. 2003] e SOS [Han et al. 2005].

2.1. TinyOS

TinyOS [Hill et al. 2000] é um sistema operacional baseado em eventos, organi-
zado como uma coleção de componentes de software. O TinyOS apresenta um modelo de
concorrência baseado em tarefas que executam até sua completude, e que só podem ser
preemptadas por interrupções. Um modelo tradicional, baseado em threads com pilhas
próprias exige que cada thread reserve espaço para seu contexto de execução na memória.
Ao não permitir concorrência entre tarefas, o TinyOS reduz boa parte deste sobrecusto,
mas perde as caracterı́sticas de um modelo multithread tradicional. A restrição de con-
corrência limita também a capacidade do sistema sistema em tratar tempo real.

A gerência do consumo de energia no TinyOS é implementada por seu escalona-
dor. Quando a fila de tarefas do escalonador está vazia, este pára o processador, deixando
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os periféricos operando. Desta forma, novas tarefas só serão postadas no evento de uma
interrupção. Este controle simples fornece resultados bastante satisfatórios para a gerência
de consumo do microcontrolador principal, e mecanismos de gerência de energia mais
agressivos (inclusive a desativação de periféirocos) são deixados a cargo da aplicação.

O TinyOS apresenta um projeto de três camadas para abstração de hardware
[Handziski et al. 2005]. Uma Camada de Apresentação de Hardware fica diretamente
sobre a interface software/hardware. Componentes nesta camada exportam uma inter-
face que é completamente determinada pelas caracterı́sticas do hardware. Uma Camada
de Adaptação de Hardware usa estas interfaces para construir componentes especı́ficos
para um domı́nio, como Alarm e ADC Channel. Finalmente, uma Camada de In-
terface de Hardware usa os componentes especı́ficos para plataformas e os converte em
interfaces independentes de hardware através de adaptação por software (emulando ou
ignorando caracterı́sticas de hardware). Não há abstrações independentes de plataforma
especı́ficas para dispositivos sensores além da interface de canal de ADC. Isto faz com
que as aplicações ou bibliotecas tenham que completar a funcionalidade dos drivers de
sensores, o que pode comprometer a portabilidade e uso eficiente de recursos.

A pilha de comunicação do TinyOS é baseada no protocolo B-MAC [Polastre
et al. 2004], que é implementado em camadas. Uma camada de controle de hardware per-
mite ajuste de parâmetros básicos da comunicação (e.g. freqüência e potência de trans-
missão). Por outro lado, adaptações na camada de lógica do protocolo (e.g. ajuste do
tamanho do perı́odo ativo, uso de algorı́tmo de clear channel assessment e uso de pacotes
de confirmação) exigem adaptações do usuário no código fonte do protocolo.

O modelo de componentes e concorrência do TinyOS torna o sistema fiel ao seu
nome (tiny - minúsculo em português).O sistema consume poucos recursos, e é capaz de
executar em plataformas de 8 bits com menos de 1KB de RAM. Entretanto, o modelo de
concorrência simplificado, a falta de gerência dinâmica de recursos [Hill et al. 2000] e
modelo de abstração de hardware excessivamente dependente de plataforma fazem com
que as aplicações possam ter que completar a funcionalidade do sistema operacional.

2.2. MANTIS OS
O sistema operacional MANTIS (Multimodal Networks of In-situ Sensors)

[Abrach et al. 2003] é um sistema multithread com uma API inspirada em POSIX, adap-
tada às necessidades das redes de sensores sem fios. O núcleo do sistema é composto
por um escalonador e drivers de baixo nı́vel para comunicação e leitura de dispositivos
(e.g. ADC). O sistema fornece ainda uma pilha de comunicação em nı́vel de usuário e um
servidor de comandos.

O escalonador do MANTIS OS fornece um subconjunto do pacotes de threads
POSIX, com escalonamento round-robin com prioridades. O escalonador é acionado
periodicamente por um temporizador dedicado, ou por operações em semáforos. Uma
thread idle é criada na inicialização do sistema, e executa quando todas as outras thre-
ads estão bloqueadas, funcionando como ponto de entrada para polı́ticas de gerência do
consumo de energia. Estas faz uso de uma chamada sleep, que controla apenas o mi-
crocontrolador principal do sistema, não havendo controle especı́fico para os periféricos
além do fornecido pelos drivers.

O MANTIS OS utiliza uma camada de abstração de hardware monolı́tica (HAL)
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em estilo POSIX. Cada função da HAL passa como parâmetro o dispositivo a ser tratado,
e uma tabela de ponteiros para funções redireciona, em tempo de execução, as chama-
das gerais às chamadas especı́ficas. Não há no MANTIS OS abstrações unificadas para
sensoriamento (cada driver de sensor tem semântica especı́fica).

O MANTIS OS fornece uma interface unificada de comunicação na forma de uma
ou mais threads de usuário. Há um formato de pacote unificado para as diversas interfaces
de comunicação (e.g. interfaces seriais, USB ou rádio). Essa camada de comunicação ge-
rencia sincronização e buferização de pacotes. Abaixo da API de comunicação, o MAN-
TIS OS utiliza drivers de dispositivo tradicionais para tratar de suporte de hardware e
implementar suporte de MAC. A abordagem monolı́tica da pilha de comunicações do
MANTIS OS pode ocasionar um sobrecusto grande de desempenho e tamanho de código
no sistema. Por outro lado, a vantagem de um único ponto de entrada no sistema de
comunicação é diminuı́da pelas chamadas especı́ficas aos métodos de controle de hard-
ware. Como a semântica e parâmetros desses métodos varia entre dispositivos, a aplicação
não pode trocar transparentemente de interface de comunicação (e.g. trocar um modelo
de rádio por outro, ou trocar uma interface serial por um rádio).

O modelo de escalonamento baseado em threads do MANTIS OS, bem como sua
camada de abstração de hardware monolı́tica, fazem com que o sistema tenha requisitos
maiores do que um modelo mais simples, baseado em eventos. Ainda assim, mesmo com
footprint tipicamente maior do que uma configuração equivalente do TinyOS, o sistema
mostra-se adequado à execução nos protótipos atuais de nodos de redes de sensores.

2.3. SOS

SOS [Han et al. 2005] é um sistema operacional para redes de sensores reconfi-
gurável dinamicamente. O sistema é organizado como um conjunto de módulos binários
que implementam tarefas ou funções especı́ficas, comparáveis em funcionalidade com
componentes do TinyOS. Uma aplicação do sistema é composta por uma série de módulos
que interagem entre si e apresentam interfaces de métodos e passagem de mensagens.

A passagem de mensagens do SOS funciona de maneira assı́ncrona e é coorde-
nada por um escalonador que retira mensagens de uma fila ordenada por prioridade e
passa a mensagem ao tratador adequado do módulo de destino. Chamadas diretas de
funções são utilizadas quando há necessidade de operações sı́ncronas entre módulos. A
carga e distribuição de módulos são realizadas através de estruturas de meta-descrição de
módulos, e protocolos de distribuição de imagens de módulos independentes do kernel.
O sistema inclui um alocador dinâmico de memória e um garbage collector. Como no
TinyOS e MANTIS OS o escalonador coloca o processador em modo de baixo consumo
quando não há tarefas para escalonar.

Para a abstração de hardware de sensoriamento, o sistema utiliza os módulos car-
regáveis do kernel. Através destes, um sensor analógico conecta-se a um canal de ADC
e registra um tipo de sensor (e.g. PHOTO). Quando a aplicação requisita dados de um
tipo de sensor, o kernel envia o pedido para o driver registrado e recebe a leitura de ADC
apropriada. Nesta solução, modelos diferentes de hardware com a mesma função podem
ser abstraı́dos de forma similar, ainda que com grande sobrecusto de memória, devido ao
registro dinâmico de drivers, e de execução, devido aos testes de mensagens necessários
para determinar a ação associada a mensagem recebida em tempo de execução.
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O modelo de reconfigurabilidade dinâmica do SOS faz com que o sistema tenha
requisitos de memória e sobrecusto consideravelmente maior do que os outros sistemas
analisados. Entretando, os autores do sistema argumentam que este sobrecusto é aceitável
para a maioria de aplicações de redes de sensores sem fios [Han et al. 2005].

3. O Sistema EPOS
O sistema EPOS (Embedded Parallel Operating System) [Fröhlich 2001, Marcon-

des et al. 2006] é um framework baseado em componentes para geração de sistemas de
suporte de execução a aplicações de computação dedicada. O projeto do sistema, baseado
na metodologia do projeto de sistemas orientado à aplicação, permite que programado-
res desenvolvam aplicações independentes de plataforma, e ferramentas de análise de
aplicações permitem a geração de um sistema de suporte de tempo de execução que agre-
gue todos os recursos que esta aplicação especı́fica necessita, e nada mais. Esta seção
apresenta os principais conceitos relacionados ao sistema EPOS, incluindo a metodologia
do projeto de sistemas orientado à aplicação, e seus serviços especı́ficos para redes de
sensores sem fios.

3.1. Projeto de Sistemas Orientado à Aplicação

Projeto de Sistemas Orientado à Aplicação (AOSD) é uma metodologia de en-
genharia de domı́nio que expande as estratégias de análise de caracterı́sticas comuns e
variabilidades do Projeto Baseado em Famı́lias e Orientação a Objetos, adicionando os
conceitos de identificação e separação de aspectos às fases iniciais do projeto [Fröhlich
2001]. Desta maneira, AOSD guia o processo de engenharia de domı́nio na direção de
famı́lias de componentes, nas quais dependências do cenário de execução são fatoradas
como aspectos, e relações externas são capturadas em um framework de componentes.
Esta estratégia de engenharia de domı́nio trata consistentemente alguns dos problemas
mais relevantes no desenvolvimento de software baseado em componentes:

Reusabilidade: os componentes tendem a ser altamente reusáveis, já que são modela-
dos como abstrações de elementos reais de um dado domı́nio, e não como partes de um
sistema alvo. Além disso, como as dependências do cenário de execução são fatoradas
como aspectos, os componentes podem ser reutilizados sem modificação em uma série de
cenários, simplesmente com a definição de novos programas de aspecto.

Gerência de complexidade: a identificação e separação de dependências do cenário de
execução implicitamente reduz o número de componentes em cada famı́lia, já que os
componentes que seriam modelados para expressar uma variação no cenário de execução
são suprimidos quando esta dependência pode ser modelada como um aspecto. Desta
forma, um conjunto de 100 componentes poderia ser modelado como um conjunto de
10 componentes mais um conjunto de 10 aspectos. A complexidade e funcionalidade
total deste novo conjunto de 100 componentes é a mesma, mas está confinada em menos
elementos de software. Isto melhora diretamente a manutenção do sistema.

Composição: capturando as relações entre componentes em um framework, AOSD per-
mite que os componentes sejam combinados na geração do sistema. O framework também
limita potenciais problemas na aplicação de aspectos a componentes pré-validados.

No processo de decomposição de domı́nio guiado por AOSD, Abstrações são iden-
tificadas a partir do domı́nio e agrupadas em famı́lias de acordo com suas caracterı́sticas
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comuns. Dependências de cenário são modeladas como aspectos que podem ser aplicados
através de adaptadores de cenário. Famı́lias de abstrações são visı́veis para as aplicações
através de interfaces infladas, que exportam seus membros como um único “super compo-
nente”. Arquiteturas de sistema são capturadas em frameworks de componentes definidos
em termos de aspectos de cenário [Fröhlich 2001].

3.2. Organização e Projeto do Sistema

No EPOS, famı́lias de abstração representam abstrações tradicionais de sistema
operacional. As abstrações são modeladas e implementadas independentemente de
cenários de execução de arquiteturas de sistema especı́ficas. Todas as unidades de hard-
ware dependentes de arquitetura são abstraı́das como mediadores de hardware que expor-
tam, através de suas interfaces independentes de plataforma, as funcionalidades exigidas
pelas abstrações. Devido ao uso de técnicas de metaprogramação e inlining de funções,
os mediadores de hardware implementam sua funcionalidade sem formar uma camada de
abstração de hardware convencional. Conseqüentemente, as abstrações do EPOS atingi-
ram um grau de reusabilidade que permite, por exemplo, a mesma abstração da famı́lia
Thread ser utilizada em um ambiente monotarefa ou multitarefas, como parte de um
µkernel ou completamente embutida em uma aplicação, em um microcontrolador de 8-
bits ou um processador 64-bits.

Processos no EPOS gerenciados pelas abstrações Thread e Task. Cada
Thread mantém em sua pilha o seu contexto de execução. A classe Context deste
mediador define todos os dados a serem armazenados por um fluxo de execução em de-
terminada arquitetura. A abstração Alarm é ser usada para gerar eventos que acordam
uma Thread ou chamam uma função previamente registrada. A abstração Alarm incor-
pora ainda um evento mestre, que é utilizado para disparar o algoritmo de escalonamento
de processos, quando o sistema está configurado com um escalonador ativo.

A famı́lia de abstrações Synchronizer fornece mecanismos para garantir con-
sistência de dados em ambientes de execução concorrentes. O membro Mutex imple-
menta um mecanismo de exclusão mútua que fornece duas operações atômicas: lock
e unlock. O membro Semaphore implementa uma variável de semáforo, cujo valor
pode ser manipulado indiretamente pelas operações p e v. O membro Condition é ins-
pirado no mecanismo de variáveis de condição, e permite que uma Thread suspenda sua
execução até que determinado predicado em dados compartilhados torne-se verdadeiro.

No EPOS, detalhes de proteção e tradução de endereços, bem como alocação
dinâmica de memória, são tratados pela famı́lia de mediadores MMU. O membro Flat da
famı́lia Address Space define um modelo de memória com equivalência de endereços
fı́sicos e lógicos, eliminando a necessidade de uma unidade de gerência de memória.
Esta abstração mantém o contrato de interface com outros componentes do sistema para
plataformas sem uma MMU em hardware. Nestas plataformas, o mediador MMU é um
componente que simplesmente mantém o contrato de interface com a abstração Flat.
Métodos de alocação de memória operam de forma similar à função malloc da libc.

O controle de entrada e saı́da em dispositivos periféricos no EPOS é fornecido
pelos mediadores especı́ficos do hardware em questão. O mediador Machine guarda
informações de localização de memória de periféricos, e trata do registro dinâmico de
tratadores de interrupções de maneira independente de plataforma. O mediador IC (Con-
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trolador de Interrupções) é responsável por habilitar, desabilitar e configurar interrupções
individuais. De maneira a tratar interrupções disponı́veis em diferentes plataformas e con-
textos, o EPOS dá nome e semântica comum e independente de plataforma às interrupções
que são utilizadas pelas abstrações do sistema (e.g. interrupção de temporizador).

3.3. Gerência do Consumo de Energia

No EPOS, a gerência de energia é realizada através de chamadas da aplicação a
uma API (Application Programming Interface) uniforme que é implementada por todos
os componentes do sistema. De modo a garantir o correto funcionamento, as relações
entre componentes do sistema foram formalizadas através de Redes de Petri. Esta
formalização permite não só uma análise em alto-nı́vel dos procedimentos de migração
dos componentes, mas também o estabelecimento de um mecanismo de troca de men-
sagens, em que os componentes se coordenam para garantir a consistência na troca de
modos de operação de subsistemas (e.g., comunicação, processamento, sensoriamento)
ou de todo o sistema [Hoeller Junior et al. 2006].

A aplicação pode acessar um componente global (System), que conhece todos
os componentes instanciados no sistema, provocando a alteração do modo de operação
de todo o sistema. Outra forma de acesso da aplicação à API é através dos subsistemas
(e.g., Comunicação, Processamento, Sensoriamento). Deste modo as mensagens são pro-
pagadas apenas para os componentes utilizados na implementação de cada subsistema.
A aplicação ainda pode acessar diretamente o hardware, utilizando a API disponı́vel nos
drivers, como Network Interface Card (NIC), CPU, Temperature Sensor. A API in-
clui um método para alterar o modo de operação e outro para consultá-lo, e define quatro
modos universais de operação: FULL, LIGHT, STANDBY e OFF.

Adicionalmente, o sistema implementa algoritmos de gerência ativa de energia
através do escalonador de processos. Além de colocar o processador em modo de baixo
consumo de energia quando não há tarefas a escalonar, este gerente de energia utiliza
contadores de acesso para determinar quando componentes periféricos estão inativos. As
heurı́sticas para determinar quando deve-se desligar um compoenente ou coloca-lo em
modo de baixo consumo são “re-plugáveis”, e perimitem às aplicação selecionarem as
estratégias mais adequadas às suas necesidades Estudos de caso [Wiedenhoft et al. 2007,
Hoeller Junior et al. 2006] mostraram que tanto o gerenciamento de energia dirigido
pela aplicação quanto o gerente ativo do EPOS conseguiram resultados significativos de
economia do consumo de energia, sem sobrecusto excessivo, e com intervenção mı́nima
do programador de aplicação.

3.4. Sensoriamento

O EPOS fornece suporte de sensoriamento às aplicações através de uma inter-
face de software/hardware que abstrai famı́lias de dispositivos de sensor de forma uni-
forme [Wanner et al. 2006]. O sistema define classes de dispositivos sensores baseado
em sua finalidade (e.g. medir aceleração ou temperatura), e estabelecemos um subs-
trato comum para cada classe. Cada dispositivo individual armazena suas propriedades
e parâmetros operacionais, de maneira simular ao data sheet eletrônico de transdutor do
padrão IEEE 1451. Uma camada fina de software adapta dispositivos individuais (e.g.
converte leituras de ADC em valores contextualizados, aplica fatores de calibragem) para
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TinyOS MANTIS OS EPOS
Sensor Memória (bytes) Taxa Memória (bytes) Taxa Memória (bytes) Taxa

Código Dados (Hz) Código Dados (Hz) Código Dados (Hz)
Custo base 10188 455 — 25500 596 — 7046 313 —

ATMega128 ADC 550 4 8084 538 9 3685 64 3 24597
ADXL202 722 4 7657 936 10 3401 266 9 21711

ERT-J1VR103J 1366 12 5766 1050 11 3107 1064 3 10999
Fotocélula CdSe 1366 12 6009 1050 11 3117 1064 3 11121

HMC1002 748 7 7494 910 10 3408 246 9 23024
SHT11 1984 23 6 — — — 3206 8 10

Tabela 1. Tamanho de memória e taxa de amostragem dos componentes de sensoriamento

adequá-lo às caracterı́sticas mı́nimas da sua classe de sensores. Desta forma, um termis-
tor simples é exportado para a aplicação exatamente da mesma forma que um sensor de
temperatura digital complexo.

No subsistema de sensoramento do EPOS, métodos comuns a todos dispositivos de
sensoriamento são definidos pela interface Sensor Common. O método get() provê
leituras para um único sensor em um único canal (i.e. habilita o dispositivo, espera os da-
dos estarem disponı́veis, lê o sensor, desabilita o dispositivo e retorna a leitura convertida
em unidades fı́sicas previamente determinadas). Os métodos enable(), disable(),
data ready() e get raw() permitem que o sistema operacional e as aplicações re-
alizem controle de grão fino sobre leituras de sensores (e.g. realizar leituras seqüenciais,
obter dados não convertidos de sensores). O método convert(int v) pode ser uti-
lizado para converter valores não processados de sensores em unidades cientı́ficas ou de
engenharia. O método calibrate() executa calibragem especı́fica para cada sensor.

Cada famı́lia de sensor pode especializar a interface Sensor Common para abs-
trair adequadamente caracterı́sticas especı́ficas da famı́lia. A famı́lia Magnetometer,
pode adicionar, por exemplo, métodos para realizar leituras em diferentes eixos de sensi-
bilidade. A famı́lia Thermistor, por outro lado, provavelmente não precisará estender
a interface comum básica. Cada famı́lia também define uma estrutura Descriptor
especı́fica, que define campos como precisão, dados para calibração e unidades fı́sicas.
Cada dispositivo sensor implementa uma das interfaces definidas, e preenche a estru-
tura Descriptor da famı́lia com valores especı́ficos do sensor. Valores de padrão de
configuração para cada dispositivo (e.g. freqüência, ganho, etc.) são armazenados em
uma estrutura de traits de configuração.

Sempre que o sistema operacional ou uma aplicação precisam fazer referência a
um dispositivo de sensoriamento, estes podem utilizar um dispositivo especı́fico e realizar
operações especı́ficas do dispositivo, ou utilizar a classe do dispositivo, e restringir-se às
operações definidas por aquela classe. Uma realização meta-programada estaticamente da
classe do dispositivo agrega os dispositivos disponı́veis em uma configuração do sistema.

A tabela 1 apresenta o tamanho dos componentes de sensoriamento e a taxa
máxima de amostragem obtida nestes sensores nos sistemas TinyOS, MANTIS OS e
EPOS. O tamanho menor e taxa de amostragem maior obtidos pelo sistema EPOS são
resultado direto do projeto do sistema, que minimiza as dependências entre os compo-
nentes de sensoriamento e o restante do sistema. Desta forma, um componente do EPOS
que abstraia um sensor analógico normalmente terá dependências somente com o conver-
sor analógico digital e o subsistema de entrada e saı́da de uma plataforma, que por sua
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vez são abstraidos por funções inline ou operadores meta-programados. Desta forma, no
EPOS uma operação de leitura de um sensor em geral traduz-se simplesmente em um pe-
queno conjunto de instruções necessários para fazer uma leitura do conversor ADC. Uma
operação equivalente no TinyOS em geral envolve adicionamente o tratamento de uma
interrupção (devido ao modelo baseado em eventos do sistema). No MANTIS OS uma
leitura de sensor pode envolver a interpretação de parâmetros para determinar qual sensor
deve ser lido, a leitura propriamente dita, e a propagação de resultados da leitura. O mo-
delo do EPOS minimiza o overhead, mesmo considerando que o EPOS inclui métodos de
conversão e calibragem que não encontram equivalentes em outros sistemas.

3.5. Comunicação
A simplicidade do hardware de comunicação para redes de sensores faz com que o

protocolo de controle de acesso ao meio (MAC – Media Access Control) e outros serviços
da camada de enlace de dados, incluindo detecção de pacotes de dados, detecção e tra-
tamento de erros, endereçamento, filtragem de pacotes, tenham que ser implementados
em software. Os protocolos de controle de acesso ao meio para redes de sensores fazem
um compromisso entre desempenho (latência, vazão) por custo (consumo de energia).
Comparações em diferentes cenários mostram que não há um protocolo “ideal” para to-
das aplicações de redes de sensores [Langendoen and Halkes 2005].

A infra-estrutura de comunicação do EPOS faz uso do C-MAC (Configurable
MAC), um protocolo configurável de acesso ao meio para redes de sensores sem fios.
O C-MAC [Wanner et al. 2007] funciona como um framework de estratégias de controle
de acesso ao meio, com um sistema de configuração transparente. O protocolo agrega
diferentes serviços (e.g. sincronização, detecção de dados, mensagens de confirmação,
contenção, envio e recepção), implementados sob diferentes estratégias. Aplicações po-
dem configurar diferentes parâmetros em tempo de compilação e execução.

O C-MAC utiliza um framework metaprogramado para construir um kernel de
comunicação configurável. A configuração em tempo de execução permite alterar pa-
rametros básicos de comunicação (e.g. freqüência e potência de transmissão), e a
configuração em tempo de compilação permite alterar amplamente a lógica do protocolo,
incluindo perı́odo ativo e organização, mecanismos para evitar, detectar e tratar colisões,
e uso de pacotes de confirmação. Esta gama de configuração permite ao protocolo emu-
lar com sobrecusto mı́nimo o funcionamento de outros protocolos tı́picos de redes de
sensores [Wanner et al. 2007].

As diversas caracterı́sticas configuráveis do C-MAC são selecionadas pelo pro-
gramador através dos Traits de configuração do EPOS. Traits são classes para-
metrizadas cujos membros constantes estáticos descrevem as propriedades de uma certa
classe. Quando determinada propriedade é selecionada, a funcionalidade que ela descreve
é incluı́da no protocolo. Por outro lado, devido ao uso de meta-programação estática e
inlining de funções, quando uma caracterı́stica não é selecionada, nenhum sobrecusto re-
lativo a ela é adicionado ao código objeto final do protocolo. Desta forma, é possı́vel ao
C-MAC emular a funcionalidade de outros protocolos com tamanho de memória menor
e desempenho melhor. Esta caracterı́stica é ilustrada pela tabela 2, que apresenta uma
comparação entre o protocolo C-MAC no EPOS e o protocolo B-MAC [Polastre et al.
2005] no TinyOS, com os dois protocolos configurados de forma identica, em uma rede
composta por três nodos [Wanner et al. 2007].
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Sistema Código (bytes) Dados (bytes) Pacotes Recebidos (%) Taxa de dados (bps)
EPOS / C-MAC 3888 108 77,7 10251
TinyOS / B-MAC 8562 205 74,3 9130

Tabela 2. Tamanho de memória e desempenho de comunicação

3.6. Reprogramação

A estrutura de reprogramação em campo do EPOS faz uso de uma estrutura de
proxy e agent disponı́vel no sistema. Nesta estrutura, a invocação de um método de um
componente da aplicação previamente configurado com suporte para atualização (através
do seu Traits no sistema) do cliente passa pelo proxy que envia uma mensagem para o
agent. Esta mensagem é composta pelos IDs do objeto, método e classe, na qual o Agent
usa essas informações para fazer a invocação do método correspondente, associando seus
valores à um tabela. Através do objeto, o Agent acessa o endereço em que aquele compo-
nente esta na memória. Após a chamada, o valor de retorno é enviado ao proxy.

Esta estrutura cria um nı́vel de indireção entre as chamadas de método e permite
um confinamento dos componentes do sistema. Toda a chamada de método dos compo-
nentes configurados com suporte a atualização passam obrigatoriamente por esta estru-
tura. Com isso os componentes podem ser mapeados em qualquer posição da memória.
Em uma atualização, simplemeste é feita a atualização do endereço em memória do com-
ponente na tabela do Agent. Resultados preliminares mostram que esta estrutura é capaz
de lidar adequadamente com reprogramação, adicionando em média um overhead de me-
nos de 50 bytes de memória por componente.

4. Conclusões

Este trabalho apresentou o projeto e implementação de suporte de tempo de
execução para aplicações de redes de sensores sem fios baseado no sistema EPOS. O sis-
tema EPOS fornece um ambiente de programação amplamente portável para aplicações
embarcadas. Seu sistema de gerência do consumo de energia fornece controle autônomo
ou dirigido pela aplicação, permitindo que partes do sistema, ou que o sistema como um
todo, migre para nı́veis mais baixos de consumo de energia. Seu subsistema de sensori-
amento permite que aplicações coletem dados de sensor sem ter que lidar com detalhes
especı́ficos de hardware, e sem sobrecusto excessivo. A implementação e projeto do pro-
tocolo C-MAC permitem emular funcionalidade de diferentes protocolos de comunicação
de acordo com as necessidades das aplicações, com tamanho de memória menor e desem-
penho competitivos. Finalmente, o mecanismo de reprogramação do EPOS permite alterar
funcionalidade de componentes online, com sobrecusto mı́nimo.
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