1 :I" Anais do XXVIII Congresso da SBC 122 18 de julho
g.I.I} WSO - Workshop de Sistemas Operacionais Belém do Pard, PA

GENOS-0OS: Um sistema operacional base para a
construcéo de sistemas embarcados

Filipe Renaldi, Antonio Carlos Tavares, Mauro Marcdo Mattos

Departamento de Sistemas e Computagao
Universidade Regional de Blumenau (FURB) — Blumei®li— Brasil

{filipe,tavares, mattos} @nf.furb. br

Resumo. Este trabalho apresenta a especificacdo e imphagdo de um
ambiente de desenvolvimento para sistemas embacddseados no
processador ARM7. O sistema engloba um sistemaaojpaal embarcado,
um método de desenvolvimento utilizando componexitas do proprio
software do ambiente de desenvolvimento. O sistggaeacional € baseado
no nucleo do FreeRTOS que oferece uma estrutura dage o desenvolvedor
o0 expande conforme suas necessidades através gmgenies reutilizaveis.
O resultado é um ambiente que prové varias fadlétade construcdo de
software de sistemas embarcados como gerenciamdatoprojeto e
compilacao.

1. Introducéo

Um Sistema Embarcado (SE) é um computador de ptomspecifico encapsulado no
dispositivo que ele controla, geralmente projetaai@ fins especificos, com dimensdes
reduzidas, com recursos (processamento, memorianientos, periféricos) limitados,
executa tarefas pré-definidas e esta presentesnassdiversos objetos do cotidiano
como telefones celulares, televisdes, automéveisngqiedos e tantos outros
equipamentos de consumo.

Os avancos na area de microeletronica permitirdntegracdo de um grande
namero de componentes em um unico chip. Os Systemeahip (SoC), como séo
conhecidos, tém em seu encapsulamento um computaaopleto: processador,
memoria e periféricos. Um exemplo de SoC é o LP6Zpéoduzido pela Philips) que
conta com um processador ARM7TDMI-S e diversos afigfjyos como memoria
RAM, memodria flash, vérias interfaces seriais, geldde tempo real, temporizadores,
interface JTAG, entre outros (PHILIPS, 2003).

A especificidade de cada projeto exige um altcelntle modularidade dos
componentes de sistemas operacionais para que sejaptaveis as caracteristicas
acima apresentadas. Assim, a utilizacdo de difesesistemas operacionais embarcados
para diferentes projetos pode trazer um atraso edendolvimento pela curva de
aprendizagem do programador. Além disso, as presdéemercado demandando
reduzidotime-to-marketfazem do software (sistema operacional e apliQag@a parte
sensivel no projeto de sistemas embarcados.

Este trabalho descreve uma ferramenta voltada padesenvolvimento de
software de sistemas embarcados utilizando compesiethe forma a prover eficiéncia
na reutilizacdo de cédigo uma vez que o ambiente pger expandido com o0s
componentes do préprio usuario. Assim sendo, aiwbjeeste trabalho foi o de criar

SBC 2008 179

1 :I.' Anais do XXVIII Congresso da SBC 122 18 de julho
g.I. o WSO - Workshop de Sistemas Operacionais Belém do Pard, PA

uma plataforma de desenvolvimento de software pstamas embarcados com base
em um sistema operacional embarcado modular cddstroom a agregacao de
componentes.

O trabalho esta organizado em cinco secbes. A epamsecdo prové a
introducéo do trabalho apresentando ainda o essopgetivos do mesmo. Na secéo
dois, estd a fundamentacéo tedrica, onde sdo apades conceitos relacionados ao
desenvolvimento de software baseado em componehtescéo trés apresenta alguns
trabalhos correlatos. A se¢do quatro descreve iteigra do sistema e a secéo cinco
descreve o processo de normalizacdo de interfaepsesenta um estudo de caso. Na
altima secéo, sdo apresentadas as consideracamss fin

2 Desenvolvimento baseado em componentes

Um componente é definido como uma unidade de sodtwae encapsula em si 0
projeto e implementacdo, oferecendo-o através weféices. A motivacdo no uso de
componentes relaciona reutilizagdo com enfoque empd de desenvolvimento e
consisténcia no codigo, uma vez que se trabalhpreema melhor solugdo encontrada.

Nos componentes, as interfaces sdo pontos dagafteicom o sistema e outros
componentes. Um componente pode ter “interfaceeatias” (ou fornecidas), onde os
servicos de um componente sdo acessados, e “cd@srfaqueridas” (ou dependentes),
onde sdo conectados outros componentes necesdatiagio as caracteristicas, 0s
componentes devem incluir os seguintes requisBSENES e HUZITA,; 2005): (a)
as interfaces fornecidas de um componente devemidsetificadas e definidas
separadamente; (b) as interfaces requeridas també¢em ser definidas explicitamente.
Essas interfaces definem os servicos necessériostd®s componentes, para que um
componente possa completar seus proprios ser(igp®;, componente deve interagir
com outros componentes apenas através de suafadeter Um componente deve
garantir o encapsulamento de seus dados e progéssoemponentes devem fornecer
informacgdes sobre propriedades n&o funcionais, quonexemplo desempenhos.

Uma vez que o componente serve de “matéria-priread, documentacdo é
imprescindivel. Um componente, pelo menos, devéuimnuma especificacdo, um
relatério de validacdo que o qualifica no ambieptga o qual foi projetado e
propriedades néo funcionais. Ainda quanto aos b@asfcom a reutilizacdo, Gimenes
e Huzita (2005): destacam: (a) reducdo de custengd de desenvolvimento; (b)
gerenciamento de complexidade, uma vez que o seftéasubdividido em partes
(componentes); (c) desenvolvimento paralelo, damldato de cada componente ser
independente dentro do seu dominio; (d) aumentgudidade, sabendo-se que foram
previamente utilizados e testados; (e) facilidade ohanutencdo, novamente
argumentando-se sua independéncia.

3 Trabalhos correlatos

Existem no mercado uma significativa quantidade slstemas operacionais
embarcados, cada qual com suas caracteristicas.

Sing et al (2004) propdem um meétodo de geracasistemas operacional
embarcado baseado nas aplicagcdes. A geracdo partdedtificacdo dos recursos
solicitados pelo aplicativo. Os servicos de Siste@peracional (SO) sdo entdo
agregados de forma a construir um nudcleo, de acmwdoa necessidade do aplicativo

SBC 2008 180

1 :I.' Anais do XXVIII Congresso da SBC 122 18 de julho
ﬂ.I.I:‘ WSO - Workshop de Sistemas Operacionais Belém do Pard, PA

gue nele executara, gerando-se ao final um SO ifispgeara a aplicagédo.

O FreeRTOS (BARRY, 2006) € um sistema operaciondtitarefa de codigo
aberto. Todas as caracteristicas basicas de wsmsistperacional como escalonador de
processos colaborativo e preemptivo com niveisriaeigades, alocacdo de memoria e
semaforos estdo disponiveis nele. Seu diferenc@keecer uma estrutura simples e
eficiente.

Em Marcondes et al (2006) é descrito o desenventmdo EPOS, um sistema
operacional orientado a aplicacdo e baseado em aenfes, com énfase na
portabilidade. O projeto foi concebido utilizandeetarprogramacéo e programacao
orientada a aspectos. Como resultado foi obtidosisbema operacional que pode ser
executado em uma grande variedade de arquiteturas.

4 Desenvolvimento

Esta secdo apresenta o desenvolvimento, utilizacésultados deste trabalho sendo
gue o desenvolvimento do protétipo esta divididseguinte forma: (a) GenosOs - € 0
sistema operacional base com codigo independent@o@ee sem nenhum suporte a
dispositivos que deverdo ser implementados em fowhea componentes; (b)
Componentes - sdo as unidades de software quenprfov&ionalidades ao sistema em
forma dedrivers ou rotinas especializadas; (c) Genos - é a paute aprange a
ferramenta e com ele o usuario interage. Ao cnamnovo projeto, é feita uma copia do
GenosOS para o diretério de trabalho do usuériosdédgiéncia o usuario escolhe para
gual SoC ele esta desenvolvendo. O passo seguinteséolha dos componentes que
irAo compor o seu projeto e a implementacéo doeaplp. A relacdo entre as partes
citadas pode ser vista na figura 1 e sao descrissecoes seguintes.

Ambiente de desenvolvimento X]

componente Aplicativo

J Aplicativo
Sistema

operacional

&r:}.ba;s{}

componente
s

componente
y O~

componente

componente

Figura 1: Arquitetura da ferramenta

O sistema foi construido utilizando a linguagem+QGz+a biblioteca QT que
prové classes para construir a interface graficaréas classes de uso geral como
manipuladores de arquivos e listas entre outros.

4.1 Sistema operacional base - GenosOS

O sistema operacional base, ou simplesmente GengeO& a estrutura inicial do
sistema a ser desenvolvido e constitui a parte nfmigerna™ do trabalho,
caracterizando-se como o alicerce de todo o pr@eser desenvolvido pelo usuério
final. As subsecdes a seguir descrevem as es@déis e implementacdo do mesmao.

Foram definidos os seguintes requisitos paratersa (a) o0 GenosOS deve ser
um nucleo multitarefa, ou seja, com suporte a ex@wwe processos concorrentes, e

SBC 2008 181

1 :I.' Anais do XXVIII Congresso da SBC 122 18 de julho
ﬂ.I.I:‘ WSO - Workshop de Sistemas Operacionais Belém do Pard, PA

para isso, deve prover funcdes para “iniciar tafefa “finalizar tarefas”. Deve ter
também um escalonador de processos que suportedpdes; (b) o sistema deve
disponibilizar algum mecanismo para implementaduséo muatua e sincronizacdo de
tarefas, como por exemplo, seméaforos, possibildandgerenciamento de recursos
compartilhados; (c) quanto a memoria, embora o ARIMMI-S ndo possua uma MMU
com protecdo de memoria, o nucleo deve oferecarasotde alocacdo dinamica de
memodria, como “alocar memoria™ e “liberar memdri@l) este ndcleo deve ainda fazer
toda a inicializacdo do sistema como: inicializapilaa de cada modo de operacéo, e
executar as chamadas de inicializagédo do SoC, aoenpes e tarefas das aplicacoes e,
(f) a linguagem utilizada é C e as ferramentas d@@onjunto de desenvolvimento
GNU.

Como ponto de partida para implementacdo do GeddsiQutilizado o sistema
operacional FreeRTOS. Esta alternativa mostroudelpois o FreeRTOS apresenta
cbédigo aberto (BERRY,2006), com uma série de car@ticas que atende aos
requisitos deste trabalho. Portanto, 0 GenosOSaadaptacdo do projeto FreeRTOS
gue apresenta uma gama de funcionalidades e assta aom uma reduzida utilizagéo
dos recursos de hardware. Pelo fato dele supartessoprocessadores, o projeto é bem
dividido nas rotinas internas. Todo o codigo depetel de plataforma é separado.

Para criar o GenosOS, foi elaborada uma vers&ereERTOS exclusiva para a
arquitetura ARM7. Todos os coédigos referentes arosutprocessadores foram
removidos e 0s arquivos re-arranjados. Além dissajefinido o fluxo do sistema que
representa a interacdo com o restante do projetd, Somponentes e Aplicativo ndo
fazem parte do ndcleo do GenosOS, eles sdo agreegaelo usuario durante o
desenvolvimento de um projeto.

O fluxo do sistema compreende: (a) a fungdart faz as inicializagbes do
processador como definir as pilhas para cada madmpkracdo; (b) a chamada
vSocSetupHardware@ue € uma funcdo implementada nos arquivos do &a@e
estara disponivel no projeto apds o usuario selacio modelo desejado na paleta de
SoCs. Esta funcéo tem o objetivo de definir os rpatéos do SoC; (c) a chamada
vComponentSetupTasksfaz as inicializacbes dos componentes. Essa clangdad
conveniente para uma melhor organizacao e predssiyeis esquecimentos por parte
do desenvolvedor durante a implementacdo do aplicatd) o GenosOS invoca a
funcdovProgramSetupTasksfue é chamada para iniciar as tarefas do aplicakiy
usuario; (e) a chamadd askStartScheduler€yia a tarefaltle” e em seguida invoca a
inicializacdo do escalonador; (f) o inicio das idides do escalonador é efetivado com
a inicializacao do relégio do sistema atraves @daradarSocSetupTimerinterrupt()

Conforme a figura 2 foi formalizada uma estrutdea diretérios para poder
separar os arquivos do SoC, componentes e progr@natiretorio components que
parte do diretério raiz, acomodara os arquivos atdiguracdes dos componentes em
uso. Em program estardo todos os arquivos pertinentes ao aplmasendo que
program.c contém a chamada principatProgramSetupTasks() Os diretorios
componente soc dentro desrc e include conterdo os arquivos relacionados aos
componentes e ao SoC, respectivamente. O dirat@idoainda contera dois arquivos
importantes que serdo gerados pelo Genos, sado(ajesviakefile - arquivo com as
definicbes de compilacdo, e (b) script.ld - scuwiot ligador com as definicdes de
memoria da placa do sistema embarcado.

SBC 2008 182

1 :I" Anais do XXVIII Congresso da SBC 122 18 de julho
g.I. o] WSO - Workshop de Sistemas Operacionais Belém do Pard, PA

4.2 A estrutura do sistema

Esta subsecdo apresenta os principais aspectogqddemra do GenosOS. Séao
considerados: a inicializacdo do sistema, o pracdescriacao/destruicéo de tarefas, os
estados das tarefas, 0 mecanismo de alocacdo dérimenescalonamento.

=1 [Ecomponents
& [Eprogram
~Iprogram.c
“Jprogram.h
5] [Einclude
= [&Esrc = |E5 component
= [E5 component ~lcomponent.h
“Jcomponent.c @ [gsoc
B-E3soc “larm.h
“Jarm. c ~JGenos0s.h
~/boot .s ~lGenos0sConfig. h
“Jlist.c “Jlist.h
~main.c “Imacro.h
— mem. “Jqueue.h
“Jgueue.c “Isemphr.h
“task.c “task.h

Figura 2: Estrutura de diretérios do GenosOS

O GenosOS inicia definindo o tamanho da pilhasabiditando as interrupcdes
para cada modo conforme pode ser visto na figyes3linguagenassembly A partir
da linha 2 até a linha 6 sdo criadas as variawts @ tamanho da pilha de cada modo
de operacdo. Em seguida (linhas 9 a 15) sdo defintbmo variaveis, os valores do
CPSR de cada modo e mais duas variaveis que rafaesed bit de estado das
interrupcdes no CPSR.

T **+ Tamanho da piiha
2 .set UND_STACK_SIZE,

3 .set ABT_STACK_SIZE,

4 .set FIO0_STACK_SIZE.

5 .set IRO_STACK_SIZE. 0OXO

B .set SVC_STACK_SIZE, 0x00000400

7

8 **+ Definicdo padréo

9 .set MODE_USR, 0Ox1@

18 .set MODE_FIQ, 0x11

11 .set MODE_TRQ, 0Ox12

12 .set MODE_SVC, 0x13 5

13 .set MODE_ABT., 0x17 * A

14 .set MODE_UND, 0x1E * Unde *
13 .set MODE_SYS5, Ox1F ’

16 *** Bits de interrup

17 .equ I_BIT, 0Ox80

18 .equ F_BIT, 0x40

19

28 _start:

21

22 ldr ré, .LCB

23 msr CPSR_c, #MODE_UND|I_BIT|F_BIT /* Undefined Instruction Mode *
24 mov sp, r@

25 sub r@, r@, #FUND_STACK_SIZE

26 msr CPSR_c. #MODE_ABT|I_BIT|F_BIT /*

27 mowv sp, ro

28 sub ré, ro, #FABT_STACK_SIZE

29 msr CPSR_c, #MODE_FIQ|I_BIT|F_BIT /*

30 mov sp, r@

31 sub ro, r@, #FIO_STACK_SI1ZE

32 msr CPSR_c, #MODE_IRQ|I_BIT|F_BIT /*

33 mov sp, r@

34 sub r@, r@, #IRO_STACK_SIZE

35 msr CPSR_c, #MODE_SVC|I_BIT|F_BIT /* Supervisor Mode *
36 mowv sp, ro

37 sub ré, ro, #SVC_STACK_SIZE

38 msr CPSR_c, #MODE_SYS|I_BIT|F_BIT /*

39 mowv sp, ro

40

Figura 3: Boot do Genos-Os.

Na linha 20 esta o rotulsstart que marca o inicio do codigo a ser executado
guando o sistema for ligado e sera atribuido aor et excecdo na posicao set Na
linha 22 o registrador RO receli&s que € uma variavel que contém o endereco do topo
da memdéria RAM definido em tempo de ligacdo do gddEm seguida o processador
entra em cada modo de operacgao e inicializa a,plnduindo um endereco da RAM

SBC 2008 183

1 :I" Anais do XXVIII Congresso da SBC 122 18 de julho
g.I.I} WSO - Workshop de Sistemas Operacionais Belém do Pard, PA

no registrado6P que é privado para cada modo, ou seja, ele ndsesto sobrescrito.
Ao final, as pilhas estardo de acordo com a figifeg. Resta ao GenosOS entrar em
modo supervisor e efetuar a chamadan() dando continuidade na inicializagao (agora
escrito em linguagem de programacéao C) e entrayparacao (figura 4b).

Topo da meméria RAM

Pilha do modo
Undefined

Pilha do modo
Abort

Pilha do modo
FIQ

Pilha do modo
IRQ

Pilha do modo msr CPSR_c, #MODE_SVC|I_BIT|F_BIT
Supervisor
mov ro, #0

mov rl, #0

OB W N =

—

bl main
Figura 4: (a) Localizacao das pilhas (b) chamada main()

Encerrado o processo de inicializacdo, o nlclé®d gonto para criar tarefas.
Uma tarefa é declarada como uma simples funcdmmoato: void vFunction(void
*pvParameters & sua criacdo da-se pela chamada xTaskCreate().

A funcdoxTaskCreate(executa as seguintes acodes: (a) alocacdo de naemori
para o descritor de tarefssKTCB; (b) alocacdo de memoria para a pilha da tafeja;
preenchimento do descritor de tarefa com as infodes passadas por parametro; (d)
inicializagdo da pilha com o contexto da tarefdatma a simular que a tarefa ja estava
sendo executada. Isto € necessario para que @madal possa extrair o contexto da
tarefa ao iniciar a mesma,; (e) insercéo da tarafissta “tarefas prontas para executar”;
(f) se a tarefa que esta sendo criada tem a paieidnaior que a tarefa que esta sendo
executada, a nova tarefa inicia imediatamente.

Para a remocao de uma tarefa, é utilizado a fuxtaskDelete()que executa as
seguintes acgdes: (a) a tarefa é removida da liatafas prontas para executar”; (b) a
tarefa € inserida na lista “tarefas para seremitaaas”; (c) é verificado se a tarefa
esperava por algum evento e em caso afirmativo didpeé removido da lista de
eventos; (d) caso a tarefa a ser removida é aatareé esta sendo executada, o
escalonador é chamado para selecionar outra faaedeser executada. A lista de

“tarefas para serem terminadas” € supervisionada faeefa do sisteméadle que
termina de remover os recursos alocados pelassaaegerem removidas.

4.3 A estrutura de componentes no GenosOS

Os componentes contém informacées como nome, veaséior, SoC compativel e

descricao para que o usuario possa reconhecé-la@ddponente deve conter de forma
explicita as suas interfaces oferecidas e quandeseério, as interfaces requeridas.
Uma interface constitui uma funcdo que podera sada por outro componente ou
pelos programas do usuério. Além disso, um comgdengodera conter configuracdes
atribuidas em tempo de compilacéo, garantindotfléckade ao componente sem exigir
recursos extras em tempo de execucdo. Uma corg@urdevera ter nome, tipo

esperado, valor padrdo e descricdo. Cada inte(tdesecida ou requerida) e estrutura

SBC 2008 184

1 :I" Anais do XXVIII Congresso da SBC 122 18 de julho
g.I.I} WSO - Workshop de Sistemas Operacionais Belém do Pard, PA

devera ser documentada tendo em vista prover g@gsude utilizagdo do componente
para o programador que vier a fazer uso. Os cormpemeleverdo ser escritos na
linguagem de programacéo C.

Um componente € descrito através de um arquivdefiaicdo. Neste arquivo
estaréo todas as informacdes pertinentes ao comgoc@mo nome, versao, autor, SoC
compativel e descricdo. Deve constar ainda no\argle definicdo, os nomes de todos
os arquivos fontes que fazem parte do componesiteprdiguracdes que o componente
oferece e as interfaces oferecidas e requeridas.d2ainterfaces requeridas foi criada
uma técnica chamada normalizacdo. Essa técnica peower uma camada de ligacao
entre a interface oferecida de um componente comteaface requerida de outro
componente. A técnica é necessaria, pois hem seumpreomponente ira encontrar
uma interface com 0 mesmo nome e parametros neEsssa

Um componente é definido como um diretério contemmin arquivo texto
chamadacomponent.confEste arquivo contém todas as informacdes do coemge. A
especificacdo do arquivo € mostrada no exempligdeaf5.

1 [E]l[General]

2 Name=mensageiro

3 Description="Envia mensagens através de outro componente (serial, LCD, etc)."

4 ShortDescription="Componente que manda mensagens"

5 Arch=Arm7

6 Soc=*

7 Group=software
Author=Filipe

9 Version=1.0

10

11 [[Api]

12 apibf=enviaMsg(char *msg)

13

14 [-] [Api-dependent]

15 apif=enviaString|char *str)

16

17 [-] [Api-dependent-user]

18 apib=

19

20] [ArmFiles]

21 filef=mensageiro.c

22

23 [-] [HeaderFiles]

24 filef=mensageiro.h

Figura 5: Component.conf

A partir da linha 1, onde é definido o nome dadsede configuracdo geral a
linha 9, séo feitas as descri¢cdes basicas do caenpoma respectiva ordem: nome do
componente, descricdo, descricdo breve para skradéd na “dica’ da paleta de
componentes do ambiente de desenvolvimento, atengd do componente tendo-se
em vista futuras versdes que suportem outras atqras, modelo do SoC que pode ser
um asterisco representando independéncia de Sofo gro qual o componente se
caracteriza, autor do componente e versdo. A seedmmeApi, na linha 11, € onde
sao definidas as interfaces oferecidas pelo conmpen€ada interface vem a seguir
representada pela palawapiN onde N > 0. Um exemplo pode ser visto na linha 12.A
secdo de nom&pi-dependentna linha 14, é onde sao definidas as interfaagsearidas
pelo componente. Cada interface vem a seguir repi@sa pela palavrapiN onde
N =0. Um exemplo pode ser visto na linha 15.

A secadApi-dependent-usdtinha 17) nunca é preenchida em tempo de criacédo
do componente. Nesta secdo estardo as configurdeSemterfaces requeridas apos
passarem pela normalizacdo que sera descrita miaiste com um estudo de caso. Na
secaoHeaderFilessédo definidos os arquivos de cabecalho e em segsdarquivos
fontes nas secdArmkFiles (arquivos que ndo suportaithumb Modg e ThumbFiles
(arquivos que podem ser compiladosAmm ou Thumb mode

SBC 2008 185

1 :I" Anais do XXVIII Congresso da SBC 122 18 de julho
g.I. o] WSO - Workshop de Sistemas Operacionais Belém do Pard, PA

5 Estudo de caso

Esta secdo apresenta um estudo de caso demonstrdndoionamento da técnica de
normalizacdo que permite a um componente utilizaservicos de outro componente
mesmo que a interface requerida de um componemidemdia sido definida com o

mesmo nome e parametros disponiveis em uma ingerf#ferecida de outro

componente. O objetivo é permitir uma maior confjpiédade entre componentes.

O primeiro componente € 0 comp-yamn controlador de interface serial nativo
para o0 SoC LPC2106. O arquivo de definicdo do corapte_comp-uanpode ser visto
na figura 11. Este componente oferece 3 interfagcaist sendChar(char byteyoid
sendString(char *str, int lengthg char getChar(void)além de uma chamada de
inicializag&o:void compuartinit(void)

O segundo componente é 0 mensageinm componente de software que
oferece apenas uma interfaserfdMsg(char *msg)e contém uma interface requerida
chamadaenviaPorOutroComp(char *m3g Este componente envia uma mensagem
utilizando outro componente que pode ser um cadal dedisplay de cristal liquido
(LCD), memoria, interface serial, etc. Para estenglo, 0 componente_mensageiro
utilizard o componente_comp-uafila figura 6a pode ser vista sua descrigdo. Ao
adicionarem-se 0s componentes no projeto, ambosggiados para uma estrutura de
diretérios pré-definida.

1] [General]

1 EI;[‘C_'"'S.:‘I; 2 | Arch=Arn7
2 reheara 3 | Author=Filipe
3 Author=Filipe

4 | Description=Este componente manda mensagens através de outro componente.
4 Description=driver serial para o 1pc2106 s | ¢ e
5 | Group=serial Fotpmi0t-enre
6 Name=comp_uart 6 | Name=nensageiro
7 ShortDeS(-rlptlun:drlver serial 7 | ShortDescription=Componente que manda mensagens
8 | Soc=lpc2106 g Soc=* A
9 | Version=1.0 Version=1.
10 10
11 G [Api] 11 Gl [Api]
12 apifO=void sendString(char *str, int length) 12 | apil=sendMsg(char *msg)
13 apil=void sendChar(char byte) 13
14 api2=char getChar(void) 14 [=] [Api-dependent)
15 api3=void comp_uartlnit(void) 15 | api0=sendPorOutroComp(char *msg)
16 16
17 &) [AmmFiles]) 17 [[ArmFiles)
i: fileO=comp_uart.c 18 | fileO=mensageiro.c

19
g'; g":";f rFiles] " 20 [-] [HeaderFiles)

tiabmconp uart. 21 | fileO=mensageiro.h

Figura 6: (a) DefinicAo do componente comp-uart ___; (b) definicdo do componente
mensageiro .

Para o componente_mensaggeionecessario resolver a pendéncia da interface
requerida e isto é feito no arquivo de descri¢c&alipado agora dentro do diretorio do
projeto. Para tanto, a secApi-dependent-usegera utilizada. Uma entrada nesta secao
tem o formato api= “paréametrolparametroZparametro3 onde: (i) N=0 e
corresponde & mesma entrada na ségialependent(ii) o par@metrolé o nome do
componente que esta sendo utilizado; (iiparametro2¢é a funcdo que esta sendo
utilizada do componente gmrametrol (iv) o parametro3¢é o formato da chamada que
sera utilizada pelo componente requisitante (paste e@xemplo, 0 mensageiro).

Observe-se que os nomes dos argumentos serdoesardggronde N=0 e o
programador deve adequar os parametros na furggoudilizada (figura 6b).

SBC 2008 186

1 :I" Anais do XXVIII Congresso da SBC 122 18 de julho
g.I. o] WSO - Workshop de Sistemas Operacionais Belém do Pard, PA

Para 0 componente__mensageirema solugdo poderia ser:cdmp-
uart;sendString(arg0, strlen(arg0));enviaPorOutro@p(arg0y. A técnica de
normalizagao age em tempo de compilagao utilizancemando# defineda linguagem
C, ou seja, guandmensageiro.dor compilado e o compilador encontrar a chamada
enviarPorOutroComp(mggesta sera substituida mendString(msg, strlen(strjjue €
uma chamada real. Apenas havevarheadquando existir a necessidade de adequacgéo
dos parametros.

Para que o componente encontre as declaragcdeshanzada correta, ao se
desenvolver um componente que tenha interfacesene@s, o programador deve
colocar um#include de um arquivo chamadmmponents.hO Genos cria o arquivo

chamadocomponents.te adiciona todos os cabecalhos de todos os comigsndo
projeto nele. O arquivgen-mensageiro.hontém o# definepara substituir a chamada

da interface requerida pela chamada real extraimlaamduivo de definicdo do
componente. Dessa forma, tanto a declaracdo qaaritamada da funcéo utilizada pela
interface requerida é encontrada em tempo de cagdul Todo este processo é feito
através do Genos de forma visual e automatizagiarfi7a).

Y Genes - Normalizacao da fungao mensageiro.c . I
Normalizagdo da fungéo #include <mensageiroh>
#include <components.h> #include <mensageiro.h>
Funcgao dependente: enviarMsg(char *msg) : #include <gen-mensageiro.h>
¢ d 3 #include <comp _uart h =
omponente provedor: enviaPorOutroCompl msg ¥
: comp_uarth
comp-uart -
Fungdes disponiveis: H
void sendString| char *str, int length);
icump_uanlnnwc\dj §
| sendChar{char byte) gen-mensageiro h

| sendString({char *str, int length)

| getCharivold) #include <components h>

#include <string h> comp_uartc

Estrutura da fungao dependente #define enviaPorOutroComp(arg0) sendString(arg0, strlen(arg0)}

[enviarMsg(arg0) LS vaid sendString(char #str, nt length)

Definigao substituta [limplementagdo.

| sendString(argQ, str‘len[arq(‘)])

|w” Ok | |€3Cancelar

Figura 7 (a): Normalizacdo da funcdo enviarMsg(); (b): Relacionamento entre
maodulos

A figura 7b apresenta de forma grafica o relacioeato de todas as partes no
exemplo do componente_mensageaitdizando a interface oferecida do componente

comp-uart

5.1 O componente SoC

O suporte a um determinado modelo de SoC é daaeésatde componentes de SoC. O
seu funcionamento € muito semelhante ao compodergeftware. A diferenga esta em
seu objetivo que é prover duas funcbes ao sistema gao: (i) void
vSocSetupTimerinterrupt(_void-)inicia um temporizador para prover uma chamada
regular no determinado intervalo de tempo. A fungéoGenosOS vPreemptiveTick()
devera ser atribuida a esta interrupcéo;vigtile void vSocSetupHardware(void)
faz as inicializag6es necessérias do SoC adouk do sistemaclockdo barramento de
periféricos e quaisquer outras caracteristicascégmes do SoC.

SBC 2008 187

1 :I" Anais do XXVIII Congresso da SBC 122 18 de julho
g.I.I} WSO - Workshop de Sistemas Operacionais Belém do Pard, PA

O componente de SoC deve prover ainda um arq@veabecalho contendo as
definicbes de enderecos dos registradores do sistgiizando a nomenclatura usada
pelos manuais do ARM ou do fabricante do SoC. Assomo existe o arquivo
component.conflue especifica um componente, para um componentgo@ existe o
soc.conf A criagéo e edicdo de um componente de SoC mo<z&h0 feitas utilizando-
se um modulo especifico.

6. Consideragdes finais

O presente trabalho descreveu a estrutura de umaanienta que utiliza o Free-RTOS
como base para o desenvolvimento de software denmss embarcados utilizando
componentes. O objetivo principal foi criar umatpforma de desenvolvimento de
software para sistemas embarcados com base emstamaioperacional embarcado
modular construido com a agregacdo de componentes.

O uso do ambiente com uma metodologia de desemvehtd (componentes)
aliada a uma plataforma base (sistema operaciorajrou-se eficiente, pois todos os
elementos necessarios encontram-se ao alcanceuddousm todos os momentos do
desenvolvimento.

A técnica de normalizagdo teve um resultado pasitiv trabalho adicionando
uma caracteristica relevante de interoperabilidem® o minimo de sobrecarga no
sistema. Para muitas situagfes a sobrecarga € wme,vez que a adequacdo dos
parametros é feita em tempo de compilacao.

Como resultado o GenosOS demonstrou ser um sisteeracional simples e
ao mesmo tempo completo e flexivel podendo supadaos modelos de SoC. O
exemplo utilizado no estudo de caso gerou um aogbimario com o tamanho de
aproximadamente 13 KBytes. Uma compara¢do com artamdo binario dos outros
sistemas operacionais nédo pode ser feita poisrabgd®s ndo seriam as mesmas ou nao
houve acesso ao software.

Referéncias

Barry, R. FreeRTOS - a free RTOS for small embeddatitime systems. 2006.

Gimenes, |.M.de S. Huzita, E.H.M. Desenvolvimentasdado em componentes:
conceitos e técnicas. Ciéncia Moderna, Rio de dar#4 p. 2005.

Philips. Lpc2104/2105/2106 user manual. 2003.

Singh,G.;Biswas,B.S.;Kundu,S.;Mukhopadhaya,A.;WdPaBasu,A. OaSis: an
application specific operating system for an emleedenvironment. Proceedings...,
pp 776-779, 2004. 17th International Conferenc®' b8l Design, IEEE.

Tanenbaum,A.S. Sistemas operacionais modernogiderétfall, Sdo Paulo, 2 ed, 2003.

SBC 2008 188

