

GENOS-OS: Um sistema operacional base para a
construção de sistemas embarcados

Filipe Renaldi, Antonio Carlos Tavares, Mauro Marcelo Mattos

Departamento de Sistemas e Computação
Universidade Regional de Blumenau (FURB) – Blumenau, SC – Brasil

{filipe,tavares,mattos}@inf.furb.br

Resumo. Este trabalho apresenta a especificação e implementação de um
ambiente de desenvolvimento para sistemas embarcados baseados no
processador ARM7. O sistema engloba um sistema operacional embarcado,
um método de desenvolvimento utilizando componentes além do próprio
software do ambiente de desenvolvimento. O sistema operacional é baseado
no núcleo do FreeRTOS que oferece uma estrutura base onde o desenvolvedor
o expande conforme suas necessidades através de componentes reutilizáveis.
O resultado é um ambiente que provê várias facilidades de construção de
software de sistemas embarcados como gerenciamento de projeto e
compilação.

1. Introdução

Um Sistema Embarcado (SE) é um computador de propósito específico encapsulado no
dispositivo que ele controla, geralmente projetado para fins específicos, com dimensões
reduzidas, com recursos (processamento, memória, barramentos, periféricos) limitados,
executa tarefas pré-definidas e está presentes nos mais diversos objetos do cotidiano
como telefones celulares, televisões, automóveis, brinquedos e tantos outros
equipamentos de consumo.

 Os avanços na área de microeletrônica permitiram a integração de um grande
número de componentes em um único chip. Os System-on-a-chip (SoC), como são
conhecidos, têm em seu encapsulamento um computador completo: processador,
memória e periféricos. Um exemplo de SoC é o LPC2106 (produzido pela Philips) que
conta com um processador ARM7TDMI-S e diversos dispositivos como memória
RAM, memória flash, várias interfaces seriais, relógio de tempo real, temporizadores,
interface JTAG, entre outros (PHILIPS, 2003).

 A especificidade de cada projeto exige um alto nível de modularidade dos
componentes de sistemas operacionais para que sejam adaptáveis as características
acima apresentadas. Assim, a utilização de diferentes sistemas operacionais embarcados
para diferentes projetos pode trazer um atraso de desenvolvimento pela curva de
aprendizagem do programador. Além disso, as pressões de mercado demandando
reduzido time-to-market, fazem do software (sistema operacional e aplicação) uma parte
sensível no projeto de sistemas embarcados.

 Este trabalho descreve uma ferramenta voltada para o desenvolvimento de
software de sistemas embarcados utilizando componentes, de forma a prover eficiência
na reutilização de código uma vez que o ambiente pode ser expandido com os
componentes do próprio usuário. Assim sendo, o objetivo deste trabalho foi o de criar

SBC 2008 179

uma plataforma de desenvolvimento de software para sistemas embarcados com base
em um sistema operacional embarcado modular construído com a agregação de
componentes.

 O trabalho está organizado em cinco seções. A primeira seção provê a
introdução do trabalho apresentando ainda o escopo e objetivos do mesmo. Na seção
dois, está a fundamentação teórica, onde são apresentados conceitos relacionados ao
desenvolvimento de software baseado em componentes. A seção três apresenta alguns
trabalhos correlatos. A seção quatro descreve a arquitetura do sistema e a seção cinco
descreve o processo de normalização de interfaces e apresenta um estudo de caso. Na
última seção, são apresentadas as considerações finais.

2 Desenvolvimento baseado em componentes

Um componente é definido como uma unidade de software que encapsula em si o
projeto e implementação, oferecendo-o através de interfaces. A motivação no uso de
componentes relaciona reutilização com enfoque em tempo de desenvolvimento e
consistência no código, uma vez que se trabalha sempre na melhor solução encontrada.

 Nos componentes, as interfaces são pontos de interação com o sistema e outros
componentes. Um componente pode ter “interfaces oferecidas" (ou fornecidas), onde os
serviços de um componente são acessados, e “interfaces requeridas" (ou dependentes),
onde são conectados outros componentes necessários. Quanto às características, os
componentes devem incluir os seguintes requisitos (GIMENES e HUZITA; 2005): (a)
as interfaces fornecidas de um componente devem ser identificadas e definidas
separadamente; (b) as interfaces requeridas também devem ser definidas explicitamente.
Essas interfaces definem os serviços necessários de outros componentes, para que um
componente possa completar seus próprios serviços; (c) o componente deve interagir
com outros componentes apenas através de suas interfaces. Um componente deve
garantir o encapsulamento de seus dados e processos; (e) componentes devem fornecer
informações sobre propriedades não funcionais, como por exemplo desempenhos.

 Uma vez que o componente serve de “matéria-prima”, sua documentação é
imprescindível. Um componente, pelo menos, deve incluir uma especificação, um
relatório de validação que o qualifica no ambiente para o qual foi projetado e
propriedades não funcionais. Ainda quanto aos benefícios com a reutilização, Gimenes
e Huzita (2005): destacam: (a) redução de custo e tempo de desenvolvimento; (b)
gerenciamento de complexidade, uma vez que o software é subdividido em partes
(componentes); (c) desenvolvimento paralelo, dado ao fato de cada componente ser
independente dentro do seu domínio; (d) aumento da qualidade, sabendo-se que foram
previamente utilizados e testados; (e) facilidade de manutenção, novamente
argumentando-se sua independência.

3 Trabalhos correlatos

Existem no mercado uma significativa quantidade de sistemas operacionais
embarcados, cada qual com suas características.

 Sing et al (2004) propõem um método de geração de sistemas operacional
embarcado baseado nas aplicações. A geração parte da identificação dos recursos
solicitados pelo aplicativo. Os serviços de Sistema Operacional (SO) são então
agregados de forma a construir um núcleo, de acordo com a necessidade do aplicativo

SBC 2008 180

que nele executará, gerando-se ao final um SO específico para a aplicação.

 O FreeRTOS (BARRY, 2006) é um sistema operacional multitarefa de código
aberto. Todas as características básicas de um sistema operacional como escalonador de
processos colaborativo e preemptivo com níveis de prioridades, alocação de memória e
semáforos estão disponíveis nele. Seu diferencial é oferecer uma estrutura simples e
eficiente.

 Em Marcondes et al (2006) é descrito o desenvolvimento do EPOS, um sistema
operacional orientado a aplicação e baseado em componentes, com ênfase na
portabilidade. O projeto foi concebido utilizando meta-programação e programação
orientada a aspectos. Como resultado foi obtido um sistema operacional que pode ser
executado em uma grande variedade de arquiteturas.

4 Desenvolvimento

Esta seção apresenta o desenvolvimento, utilização e resultados deste trabalho sendo
que o desenvolvimento do protótipo está dividido da seguinte forma: (a) GenosOs - é o
sistema operacional base com código independente de SoC e sem nenhum suporte a
dispositivos que deverão ser implementados em forma de componentes; (b)
Componentes - são as unidades de software que provêm funcionalidades ao sistema em
forma de drivers ou rotinas especializadas; (c) Genos - é a parte que abrange a
ferramenta e com ele o usuário interage. Ao criar um novo projeto, é feita uma cópia do
GenosOS para o diretório de trabalho do usuário. Na seqüência o usuário escolhe para
qual SoC ele está desenvolvendo. O passo seguinte é a escolha dos componentes que
irão compor o seu projeto e a implementação do aplicativo. A relação entre as partes
citadas pode ser vista na figura 1 e são descritas nas seções seguintes.

Figura 1: Arquitetura da ferramenta

 O sistema foi construído utilizando a linguagem C++ e a biblioteca QT que
provê classes para construir a interface gráfica e várias classes de uso geral como
manipuladores de arquivos e listas entre outros.

4.1 Sistema operacional base - GenosOS

O sistema operacional base, ou simplesmente GenosOS, provê a estrutura inicial do
sistema a ser desenvolvido e constitui a parte mais “interna”' do trabalho,
caracterizando-se como o alicerce de todo o projeto a ser desenvolvido pelo usuário
final. As subseções a seguir descrevem as especificações e implementação do mesmo.

 Foram definidos os seguintes requisitos para o sistema: (a) o GenosOS deve ser
um núcleo multitarefa, ou seja, com suporte a execução de processos concorrentes, e

SBC 2008 181

para isso, deve prover funções para “iniciar tarefas” e “finalizar tarefas”. Deve ter
também um escalonador de processos que suporte prioridades; (b) o sistema deve
disponibilizar algum mecanismo para implementar exclusão mútua e sincronização de
tarefas, como por exemplo, semáforos, possibilitando o gerenciamento de recursos
compartilhados; (c) quanto à memória, embora o ARM7TDMI-S não possua uma MMU
com proteção de memória, o núcleo deve oferecer rotinas de alocação dinâmica de
memória, como “alocar memória”' e “liberar memória”; (d) este núcleo deve ainda fazer
toda a inicialização do sistema como: inicializar a pilha de cada modo de operação, e
executar as chamadas de inicialização do SoC, componentes e tarefas das aplicações e,
(f) a linguagem utilizada é C e as ferramentas são do conjunto de desenvolvimento
GNU.

 Como ponto de partida para implementação do GenosOS foi utilizado o sistema
operacional FreeRTOS. Esta alternativa mostrou-se viável pois o FreeRTOS apresenta
código aberto (BERRY,2006), com uma série de características que atende aos
requisitos deste trabalho. Portanto, o GenosOS é uma adaptação do projeto FreeRTOS
que apresenta uma gama de funcionalidades e ainda assim com uma reduzida utilização
dos recursos de hardware. Pelo fato dele suportar outros processadores, o projeto é bem
dividido nas rotinas internas. Todo o código dependente de plataforma é separado.

 Para criar o GenosOS, foi elaborada uma versão do FreeRTOS exclusiva para a
arquitetura ARM7. Todos os códigos referentes a outros processadores foram
removidos e os arquivos re-arranjados. Além disso, foi definido o fluxo do sistema que
representa a interação com o restante do projeto. SoC, Componentes e Aplicativo não
fazem parte do núcleo do GenosOS, eles são agregados pelo usuário durante o
desenvolvimento de um projeto.

 O fluxo do sistema compreende: (a) a função start faz as inicializações do
processador como definir as pilhas para cada modo de operação; (b) a chamada
vSocSetupHardware() que é uma função implementada nos arquivos do SoC e que
estará disponível no projeto após o usuário selecionar o modelo desejado na paleta de
SoCs. Esta função tem o objetivo de definir os parâmetros do SoC; (c) a chamada
vComponentSetupTasks() faz as inicializações dos componentes. Essa chamada é
conveniente para uma melhor organização e previne possíveis esquecimentos por parte
do desenvolvedor durante a implementação do aplicativo; (d) o GenosOS invoca a
função vProgramSetupTasks() que é chamada para iniciar as tarefas do aplicativo do
usuário; (e) a chamada vTaskStartScheduler() cria a tarefa “Idle” e em seguida invoca a
inicialização do escalonador; (f) o início das atividades do escalonador é efetivado com
a inicialização do relógio do sistema através da chamada vSocSetupTimerInterrupt().

 Conforme a figura 2 foi formalizada uma estrutura de diretórios para poder
separar os arquivos do SoC, componentes e programas. O diretório components, que
parte do diretório raiz, acomodará os arquivos de configurações dos componentes em
uso. Em program estarão todos os arquivos pertinentes ao aplicativo, sendo que
program.c contém a chamada principal vProgramSetupTasks(). Os diretórios
component e soc dentro de src e include conterão os arquivos relacionados aos
componentes e ao SoC, respectivamente. O diretório raiz ainda conterá dois arquivos
importantes que serão gerados pelo Genos, são eles: (a) Makefile - arquivo com as
definições de compilação, e (b) script.ld - script do ligador com as definições de
memória da placa do sistema embarcado.

SBC 2008 182

4.2 A estrutura do sistema

Esta subseção apresenta os principais aspectos de arquitetura do GenosOS. São
considerados: a inicialização do sistema, o processo de criação/destruição de tarefas, os
estados das tarefas, o mecanismo de alocação de memória e escalonamento.

Figura 2: Estrutura de diretórios do GenosOS

 O GenosOS inicia definindo o tamanho da pilha e desabilitando as interrupções
para cada modo conforme pode ser visto na figura 3 (em linguagem assembly). A partir
da linha 2 até a linha 6 são criadas as variáveis com o tamanho da pilha de cada modo
de operação. Em seguida (linhas 9 a 15) são definidos, como variáveis, os valores do
CPSR de cada modo e mais duas variáveis que representam o bit de estado das
interrupções no CPSR.

Figura 3: Boot do Genos-Os.

 Na linha 20 está o rótulo start que marca o início do código a ser executado
quando o sistema for ligado e será atribuído ao vetor de exceção na posição do reset. Na
linha 22 o registrador R0 recebe .L6 que é uma variável que contém o endereço do topo
da memória RAM definido em tempo de ligação do código. Em seguida o processador
entra em cada modo de operação e inicializa a pilha, atribuindo um endereço da RAM

SBC 2008 183

no registrador SP que é privado para cada modo, ou seja, ele não está sendo sobrescrito.
Ao final, as pilhas estarão de acordo com a figura 4(a). Resta ao GenosOS entrar em
modo supervisor e efetuar a chamada main() dando continuidade na inicialização (agora
escrito em linguagem de programação C) e entrar em operação (figura 4b).

 Figura 4: (a) Localização das pilhas (b) chamada main()

 Encerrado o processo de inicialização, o núcleo está pronto para criar tarefas.
Uma tarefa é declarada como uma simples função no formato: void vFunction(void
*pvParameters) e sua criação dá-se pela chamada xTaskCreate().

 A função xTaskCreate() executa as seguintes ações: (a) alocação de memória
para o descritor de tarefa (tskTCB); (b) alocação de memória para a pilha da tarefa; (c)
preenchimento do descritor de tarefa com as informações passadas por parâmetro; (d)
inicialização da pilha com o contexto da tarefa de forma a simular que a tarefa já estava
sendo executada. Isto é necessário para que o escalonador possa extrair o contexto da
tarefa ao iniciar a mesma; (e) inserção da tarefa na lista “tarefas prontas para executar”;
(f) se a tarefa que está sendo criada tem a prioridade maior que a tarefa que está sendo
executada, a nova tarefa inicia imediatamente.

 Para a remoção de uma tarefa, é utilizado a função xTaskDelete(), que executa as
seguintes ações: (a) a tarefa é removida da lista “tarefas prontas para executar”; (b) a
tarefa é inserida na lista “tarefas para serem terminadas”; (c) é verificado se a tarefa
esperava por algum evento e em caso afirmativo o pedido é removido da lista de
eventos; (d) caso a tarefa a ser removida é a tarefa que está sendo executada, o
escalonador é chamado para selecionar outra tarefa para ser executada. A lista de
“tarefas para serem terminadas” é supervisionada pela tarefa do sistema Idle que
termina de remover os recursos alocados pelas tarefas a serem removidas.

4.3 A estrutura de componentes no GenosOS

Os componentes contêm informações como nome, versão, autor, SoC compatível e
descrição para que o usuário possa reconhecê-lo. Um componente deve conter de forma
explícita as suas interfaces oferecidas e quando necessário, as interfaces requeridas.
Uma interface constitui uma função que poderá ser usada por outro componente ou
pelos programas do usuário. Além disso, um componente poderá conter configurações
atribuídas em tempo de compilação, garantindo flexibilidade ao componente sem exigir
recursos extras em tempo de execução. Uma configuração deverá ter nome, tipo
esperado, valor padrão e descrição. Cada interface (oferecida ou requerida) e estrutura

SBC 2008 184

deverá ser documentada tendo em vista prover instruções de utilização do componente
para o programador que vier a fazer uso. Os componentes deverão ser escritos na
linguagem de programação C.

 Um componente é descrito através de um arquivo de definição. Neste arquivo
estarão todas as informações pertinentes ao componente como nome, versão, autor, SoC
compatível e descrição. Deve constar ainda no arquivo de definição, os nomes de todos
os arquivos fontes que fazem parte do componente, as configurações que o componente
oferece e as interfaces oferecidas e requeridas. Para as interfaces requeridas foi criada
uma técnica chamada normalização. Essa técnica tenta prover uma camada de ligação
entre a interface oferecida de um componente com a interface requerida de outro
componente. A técnica é necessária, pois nem sempre um componente irá encontrar
uma interface com o mesmo nome e parâmetros necessários.

 Um componente é definido como um diretório contendo um arquivo texto
chamado component.conf. Este arquivo contém todas as informações do componente. A
especificação do arquivo é mostrada no exemplo da figura 5.

Figura 5: Component.conf

 A partir da linha 1, onde é definido o nome da seção de configuração geral à
linha 9, são feitas as descrições básicas do componente na respectiva ordem: nome do
componente, descrição, descrição breve para ser utilizada na “dica” da paleta de
componentes do ambiente de desenvolvimento, a arquitetura do componente tendo-se
em vista futuras versões que suportem outras arquiteturas, modelo do SoC que pode ser
um asterisco representando independência de SoC, grupo no qual o componente se
caracteriza, autor do componente e versão. A seção de nome Api, na linha 11, é onde
são definidas as interfaces oferecidas pelo componente. Cada interface vem a seguir
representada pela palavra apiN onde 0≥N . Um exemplo pode ser visto na linha 12.A
seção de nome Api-dependent, na linha 14, é onde são definidas as interfaces requeridas
pelo componente. Cada interface vem a seguir representada pela palavra apiN onde

0≥N . Um exemplo pode ser visto na linha 15.

 A seção Api-dependent-user (linha 17) nunca é preenchida em tempo de criação
do componente. Nesta seção estarão as configurações das interfaces requeridas após
passarem pela normalização que será descrita mais adiante com um estudo de caso. Na
seção HeaderFiles são definidos os arquivos de cabeçalho e em seguida os arquivos
fontes nas seção ArmFiles (arquivos que não suportam Thumb Mode) e ThumbFiles
(arquivos que podem ser compilados em Arm ou Thumb mode).

SBC 2008 185

5 Estudo de caso

Esta seção apresenta um estudo de caso demonstrando o funcionamento da técnica de
normalização que permite a um componente utilizar os serviços de outro componente
mesmo que a interface requerida de um componente não tenha sido definida com o
mesmo nome e parâmetros disponíveis em uma interface oferecida de outro
componente. O objetivo é permitir uma maior compatibilidade entre componentes.

 O primeiro componente é o comp-uart, um controlador de interface serial nativo
para o SoC LPC2106. O arquivo de definição do componente comp-uart pode ser visto
na figura 11. Este componente oferece 3 interfaces: void sendChar(char byte), void
sendString(char *str, int length) e char getChar(void) além de uma chamada de
inicialização: void compuartInit(void).

 O segundo componente é o mensageiro, um componente de software que
oferece apenas uma interface (sendMsg(char *msg)) e contém uma interface requerida
chamada enviaPorOutroComp(char *msg). Este componente envia uma mensagem
utilizando outro componente que pode ser um controlador de display de cristal líquido
(LCD), memória, interface serial, etc. Para este exemplo, o componente mensageiro
utilizará o componente comp-uart. Na figura 6a pode ser vista sua descrição. Ao
adicionarem-se os componentes no projeto, ambos são copiados para uma estrutura de
diretórios pré-definida.

Figura 6: (a) Definição do componente comp-uart ; (b) definição do componente

mensageiro .

 Para o componente mensageiro, é necessário resolver a pendência da interface
requerida e isto é feito no arquivo de descrição localizado agora dentro do diretório do
projeto. Para tanto, a seção Api-dependent-user será utilizada. Uma entrada nesta seção
tem o formato apiN= “parâmetro1;parâmetro2;parâmetro3” onde: (i) 0≥N e
corresponde à mesma entrada na seção Api-dependent; (ii) o parâmetro1 é o nome do
componente que está sendo utilizado; (iii) o parâmetro2 é a função que está sendo
utilizada do componente do parâmetro1; (iv) o parâmetro3 é o formato da chamada que
será utilizada pelo componente requisitante (para este exemplo, o mensageiro).
 Observe-se que os nomes dos argumentos serão sempre argN onde 0≥N e o
programador deve adequar os parâmetros na função a ser utilizada (figura 6b).

SBC 2008 186

 Para o componente mensageiro, uma solução poderia ser: “comp-
uart;sendString(arg0, strlen(arg0));enviaPorOutroComp(arg0)”. A técnica de
normalização age em tempo de compilação utilizando o comando #define da linguagem
C, ou seja, quando mensageiro.c for compilado e o compilador encontrar a chamada
enviarPorOutroComp(msg), esta será substituída por sendString(msg, strlen(str)) que é
uma chamada real. Apenas haverá overhead quando existir a necessidade de adequação
dos parâmetros.

 Para que o componente encontre as declarações e a chamada correta, ao se
desenvolver um componente que tenha interfaces requeridas, o programador deve
colocar um # include de um arquivo chamado components.h. O Genos cria o arquivo
chamado components.h e adiciona todos os cabeçalhos de todos os componentes do
projeto nele. O arquivo gen-mensageiro.h contém o #define para substituir a chamada
da interface requerida pela chamada real extraída do arquivo de definição do
componente. Dessa forma, tanto a declaração quanto a chamada da função utilizada pela
interface requerida é encontrada em tempo de compilação. Todo este processo é feito
através do Genos de forma visual e automatizada (figura 7a).

Figura 7 (a): Normalização da função enviarMsg(); (b): Relacionamento entre

módulos

 A figura 7b apresenta de forma gráfica o relacionamento de todas as partes no
exemplo do componente mensageiro utilizando a interface oferecida do componente
comp-uart.

5.1 O componente SoC

O suporte a um determinado modelo de SoC é dado através de componentes de SoC. O
seu funcionamento é muito semelhante ao componente de software. A diferença está em
seu objetivo que é prover duas funções ao sistema que são: (i) void
vSocSetupTimerInterrupt(void) - inicia um temporizador para prover uma chamada
regular no determinado intervalo de tempo. A função do GenosOS vPreemptiveTick()
deverá ser atribuída à esta interrupção; (ii) volatile void vSocSetupHardware(void) -
faz as inicializações necessárias do SoC como clock do sistema, clock do barramento de
periféricos e quaisquer outras características específicas do SoC.

SBC 2008 187

 O componente de SoC deve prover ainda um arquivo de cabeçalho contendo as
definições de endereços dos registradores do sistema utilizando a nomenclatura usada
pelos manuais do ARM ou do fabricante do SoC. Assim como existe o arquivo
component.conf que especifica um componente, para um componente de SoC existe o
soc.conf. A criação e edição de um componente de SoC no Genos são feitas utilizando-
se um módulo específico.

6. Considerações finais

O presente trabalho descreveu a estrutura de uma ferramenta que utiliza o Free-RTOS
como base para o desenvolvimento de software de sistemas embarcados utilizando
componentes. O objetivo principal foi criar uma plataforma de desenvolvimento de
software para sistemas embarcados com base em um sistema operacional embarcado
modular construído com a agregação de componentes.

O uso do ambiente com uma metodologia de desenvolvimento (componentes)
aliada a uma plataforma base (sistema operacional) mostrou-se eficiente, pois todos os
elementos necessários encontram-se ao alcance do usuário em todos os momentos do
desenvolvimento.

A técnica de normalização teve um resultado positivo no trabalho adicionando
uma característica relevante de interoperabilidade com o mínimo de sobrecarga no
sistema. Para muitas situações a sobrecarga é zero, uma vez que a adequação dos
parâmetros é feita em tempo de compilação.

Como resultado o GenosOS demonstrou ser um sistema operacional simples e
ao mesmo tempo completo e flexível podendo suportar vários modelos de SoC. O
exemplo utilizado no estudo de caso gerou um arquivo binário com o tamanho de
aproximadamente 13 KBytes. Uma comparação com o tamanho do binário dos outros
sistemas operacionais não pode ser feita pois as condições não seriam as mesmas ou não
houve acesso ao software.

Referências

Barry, R. FreeRTOS - a free RTOS for small embedded real time systems. 2006.

Gimenes, I.M.de S. Huzita, E.H.M. Desenvolvimento baseado em componentes:
conceitos e técnicas. Ciência Moderna, Rio de Janeiro. 304 p. 2005.

Philips. Lpc2104/2105/2106 user manual. 2003.

Singh,G.;Biswas,B.S.;Kundu,S.;Mukhopadhaya,A.;Worah,P.;Basu,A. OaSis: an
application specific operating system for an embedded environment. Proceedings...,
pp 776-779, 2004. 17th International Conference on VLSI Design, IEEE.

Tanenbaum,A.S. Sistemas operacionais modernos. Prentice Hall, São Paulo, 2 ed, 2003.

SBC 2008 188

