SBC
2008

Anais do XXVIII Congresso da SBC
WSO - Workshop de Sistemas Operacionais

12 a 18 de julho
Belém do Para, PA

Introduciao de um mecanismo de checkpointing e migracao

em uma infra-estrutura para aplicacoes distribuidas

Jeane Cezario' e Alexandre Sztajnbergl’2

'Departamento de Informatica e Ciéncia da Computacio (DICC) / IME
2Programa de Pos-Graduacao em Eletronica (PEL) / FEN
Universidade do Estado do Rio de Janeiro (UERJ)

Rio de Janeiro, RJ - Brasil

{jeane, alexszt}@ime.uerj.br

Abstract. Highly distributed environments are characterized by the
heterogeneity and availability variation of resources. Applications with non-
functional requirements running in such environments require mechanisms to
(i) monitor resource state and (ii) manage component distribution based on
the state of the monitored resources in order to optimize its execution. The
ZeliGrid middleware, a grid-based infrastructure, provides such mechanisms
using contracts. In runtime ZeliGrid evaluates if a contract is being respected
and decides if the diverse components remain executing in their current node
or if they have to be reinitiated in another node, with more resources. In this
work we introduce a mechanism for state persistence (checkpointing) and
migration of the components, integrated to ZeliGrid, aiming to maintain the
application running according to its non-functional requirements, with no
need to reinitiate its components when a reconfiguration occurs.

Resumo. Ambientes altamente distribuidos sdo caracterizados pela
heterogeneidade e variagdo da disponibilidade de seus recursos. Aplicagcoes
com requisitos ndo-funcionais executando em tais ambientes requerem
mecanismos para (i) monitorar o estado dos recursos e (ii) gerenciar a
distribui¢do de componentes, baseado no estado dos recursos monitorados,
com o objetivo de otimizar a sua execu¢do. O middleware ZeliGrid, uma
infra-estrutura baseada em grades computacionais, prové estes mecanismos
através de contratos. Durante a execugdo da aplicagdo ZeliGrid avalia se o
contrato esta sendo respeitado e dinamicamente decide se os diversos
componentes continuam executando nos nos atuais ou se devem ser
reiniciados em outro no, com mais recursos. Neste trabalho introduzimos um
mecanismo de persisténcia do estado (checkpointing) e migracdo dos
componentes da aplicagdo, integrado a ZeliGrid, com o objetivo de manter a
aplicacdo executando segundo seus requisitos ndo-funcionais, sem a
necessidade de reiniciar seus componentes quando ocorre uma
reconfigura¢ao.

1. Introducao

Ambientes altamente distribuidos, formados por ndés de processamento ou clusters
ligados por redes, geralmente sob administracdo de entidades diferentes, sdo
caracterizados pela heterogeneidade e variagdo da disponibilidade de seus recursos. Por

SBC 2008

189

1 :I" Anais do XXVIII Congresso da SBC 122 18 de julho
g.I. o] WSO - Workshop de Sistemas Operacionais Belém do Pard, PA

exemplo, a capacidade de processamento e memoria, € enlaces de rede (banda passante
e atraso) podem se apresentar muito diferentes. Além disso, em geral ndo se pode
realizar a reserva de recursos ou controlar, o tempo todo, a alocacdo dos mesmos, a
menos que haja aderéncia a politicas de alocagdo e escalonamento restritivas. Assim
sendo, os recursos disponiveis para uma aplicacao distribuida pode variar muito durante
sua execugao.

Aplicagdes com requisitos nao-funcionais executando em tais ambientes
requerem mecanismos para (i) descrever seus requisitos de qualidade e recursos
requeridos; (i1) monitorar o estado dos recursos utilizados e os recursos disponiveis, €
(i) gerenciar a distribuicdo de componentes, baseado no estado dos recursos
monitorados, com o objetivo de otimizar a sua execu¢do. Por exemplo, uma aplicacao
pode requerer uma determinada capacidade de processamento e memoria disponiveis
para a execuc¢ao de seus componentes ou, ainda, enlaces com atrasos maximos
observados para executar com a qualidade requerida.

Neste contexto, ¢ importante que os componentes distribuidos de uma aplicagdo
em execu¢do possam ser relocados ou migrados para outro nd, motivados pela
inferéncia de que uma falha esta na iminéncia de ocorrer na rede ou em um nod de
processamento, por alguma falha do componente, ou simplesmente porque o estado
atual dos recursos ndo atende mais aos requisitos nao-funcionais contratados. Para
tornar a migracdo de componentes viavel ¢ importante a presenga de um mecanismo de
checkpointing, que permita salvar periodicamente o estado de um componente e retomar
sua execugdo em outro nd da grade a partir do ponto salvo no ultimo checkpoint.

O middleware ZeliGrid [Granja 2006], uma infra-estrutura de suporte para
aplicagdes distribuidas baseada em grades computacionais, desenvolvido em nosso
grupo, prové uma parte dos mecanismos mencionados através do conceito de contratos.
Um contrato expressa, em alto-nivel, uma politica para a selecdo/alocagao de recursos e
componentes, bem como descreve uma maquina de estados para a reconfiguragdo da
aplicacdao. Durante a execugdo da aplicacdo, ZeliGrid monitora os recursos selecionados
para a aplicacdo, e avalia se o contrato estd sendo respeitado. Dinamicamente, ZeliGrid
decide se os diversos componentes continuam executando nos nds atuais ou se devem
ser reiniciados em outros nds, que atendam aos requisitos do contrato.

Neste trabalho introduzimos um mecanismo de checkpointing, com persisténcia
do estado, integrado ao ZeliGrid. O objetivo ¢ adicionar ao middleware a capacidade de
manter a aplicacdo executando segundo seus requisitos ndo-funcionais, sem a
necessidade de reiniciar seus componentes, limitagdo da versdo atual. Assim, quando
ZeliGrid detectar a necessidade da migracdo de um componente, 0 mesmo serd
reiniciado em um nd apto, e retomard sua execugdo a partir do estando do ultimo
checkpoint.

Os mecanismos de checkpointing e restauracdo propostos sdo baseados no
mecanismo de serializagdo de objetos da plataforma Java. Estes s3o integrados a uma
versao especializada do mecanismo de migragdo presente na arquitetura do middleware,
permitindo recuperar as informagdes necessarias para restauragdo dindmica do estado da
instancia do componente que deve ser restaurado. Desta forma melhoramos o
desempenho do procedimento de reconfiguragdo de aplicagdes de ZeliGrid e provemos
alguma tolerancia a falhas ocorridas na execu¢ao dos componentes da aplicacao.

SBC 2008 190

1 :I" Anais do XXVIII Congresso da SBC 122 18 de julho
g.I. o] WSO - Workshop de Sistemas Operacionais Belém do Pard, PA

O restante do texto esta organizado da seguinte forma. Na Secao 2 introduzimos
o middleware ZeliGrid. Na Secdo 3, apresentamos algumas técnicas de checkpointing
utilizadas em contextos similares ao nosso. Na Secdo 4 apresentamos a proposta de
implementagdo e a arquitetura da técnica de criacdo de checkpoints integrada ao
ZeliGrid e discutimos a solu¢dao adotada. Por fim, na Secdo 5, concluimos o texto,
fazendo observacgdes finais sobre o trabalho.

2. ZeliGrid

ZeliGrid [Granja 2006] ¢ um middleware que oferece suporte a execucdo para
aplicacdes distribuidas com requisitos ndo-funcionais dindmicos em um ambiente de
grades computacionais através de servigos que permitem a aplicacdo: (i) definir seus
requisitos ndo-funcionais; (ii) descobrir os recursos disponiveis na grade e selecionar os
nos da grade cujos recursos disponiveis melhor atendam sua necessidade de execucao,
(ii1) implantar e executar componentes distribuidos; e prové ainda um (iv) servigo de
reconfigura¢do, que possibilita a aplicagdo ter seus componentes dinamicamente
adaptados quando os recursos disponiveis em algum né utilizado pela aplicagdo ja ndo
atende as especificagdes de seus requisitos nao-funcionais.

ZeliGrid integra em uma arquitetura de suporte (i) o Globus Toolkit [Globus (B)
2007], um middleware de servigos para Grades Computacionais que prové a base para
os servicos de execugdo remota; e (ii) o Network Weather Service [Obertelli 2007], que
coleta informagdes sobre diversos tipos de recursos computacionais presentes em
sistemas distribuidos, realizando medicdes e previsdes sobre a disponibilidade destes
recursos.

| Usuario das Aplicagdes |

|

| Interface |
)| J y API
| MIRC F——| MCRE | | CoGkit/JNDI |

Controle/
Configuracdes

SLAPD/GIIS onsulias
— MGRP
Magquinas Maquinas
disponiveis aptas Comando para

Conjunto de | medigcbes -
) ¢ Inicio dos processos

Medicdes de| cada recurso Submissao de
— rocessos
Recursos P

Figura 1. Arquitetura de suporte

Sobre esta arquitetura de suporte foi desenvolvida (i) uma arquitetura de
controle, composta por quatro médulos e (ii) uma interface grafica que permite ao
usuario de ZeliGrid configurar e monitorar o funcionamento das aplicag¢des distribuidas.
A Figura 1 apresenta a arquitetura atual de ZeliGrid, onde podem ser identificados os
moddulos desenvolvidos: o MIRC (mddulo de interpretacdo de regras de contratos); o
MGR (modulo de geréncia de recursos); o MGRP (mddulo de geréncia remota de
processos); ¢ o MCRE (modulo de controle e reconfiguracdo de experimentos), Na
proxima subse¢do apresentamos brevemente os servicos e a arquitetura. Maiores
detalhes em [Granja 2006].

SBC 2008

191

1 :I" Anais do XXVIII Congresso da SBC 122 18 de julho
g.I. o] WSO - Workshop de Sistemas Operacionais Belém do Pard, PA

2.1 Servicos de ZeliGrid

Descoberta e indexagdo de recursos. O moédulo MGR ¢ responséavel pela descoberta,
geréncia e avaliacdo dos recursos. Para isso, ele oferece aos outros mddulos, funcgdes
para a busca de recursos registrados em servidores NWS e MDS distribuidos pelos nos
da grade. Dados sobre recursos estaticos (como arquitetura da CPU) sao coletados pelo
MDS (Monitoring and Discovery System), disponivel no Globus Toolkit [Globus (A)
2007]. Dados sobre recursos dinamicos (por exemplo, disponibilidade de tempo de
CPU) sdo coletados através de sensores NWS. Além de realizar medigdes sobre
recursos locais a cada nd, estes sensores interagem para realizar medigdes sobre o
desempenho da rede (como tempo de roundtrip de pequenos pacotes TCP, por
exemplo). O MDS ¢ integrado ao NWS, conforme descrito em [Wolski 2007], através
de um servidor LDAP (sldap [OpenLDAP 2007]), que age como um repositdrio de
informagdes, coletando dados do NWS e fornecendo-os ao MDS. O médulo MGR
também recebe do MIRC o contrato interpretado e avalia que nos da grade estdo aptos
para execugdo dos componentes, segundo as especificagdes dos perfis do contrato.

Contrato. ZeliGrid permite que a aplicagdo defina um contrato contendo requisitos
ndo-funcionais. Na versdo atual, um contrato possui dois perfis, e cada perfil possui
uma lista de atributos, que descreve os requisitos nao-funcionais da aplicagdo. No
primeiro perfil sdo descritos os requisitos ideais para execucdo dos componentes da
aplicacdo, enquanto o segundo perfil representa os requisitos minimos para garantir seu
funcionamento. O modulo MIRC ¢ responsavel pelo parsing e interpretacdo do contrato
logo no inicio de suas atividades.

Implantacdo remota de processos. O modulo MGRP, responsavel por submeter a
aplicagdo para execu¢do, consulta o MICR para obter a lista de maquinas aptas e, de
acordo com os comandos do médulo MCRE, utiliza o GRAM para submeter os
componentes para as maquinas remotas. O GRAM (Globus Resource Allocation
Manager) [Globus (B) 2007] ¢ a ferramenta do Globus responsavel pelo controle da
execucdo remota dos processos. Este servico oferece uma API de suporte a submissao e
implantacdo dos processos na Grade, além de gerenciar os recursos necessarios a
execucao das aplicagdes.

Configuracio e geréncia da aplica¢do. O mdédulo MCRE ¢ responsavel pelo controle
das aplicacdes executando em ZeliGrid. Este moédulo permite a descrigdo da
configuracdo da aplicacdo, possibilitando ao wusudrio especificar, entre outras
informagdes, o numero de maquinas necessarias para a execu¢do do experimento € a
localizagdao dos servidores NWS e MDS a serem utilizados. Além disso, o0 MCRE
utiliza fungdes disponibilizadas pelo MGR e pelo MGRP para coordenar a execucao dos
componentes da aplicagdo, realizar sua submissdo para execucdo remota e também
controlar a realizagdo do processo de reconfiguracdo, bloqueando, cancelando e
reativando componentes.

A politica adotada por ZeliGrid procura implantar os componentes da aplicacao
em nds que atendem o primeiro perfil. Se ndo existirem nés que atendam ao perfil ideal,
nods que atendam pelo menos o segundo perfil sao utilizados.

Durante a execucdo da aplicacdo, o MCRE, monitora periodicamente, segundo
um intervalo de tempo configurado pelo usuario, os atributos de cada né (utilizados ou
ndo) e os avalia em relacdo aos perfis. Quando um componente estd executando em um

SBC 2008

192

1 :I" Anais do XXVIII Congresso da SBC 122 18 de julho
g.I. o] WSO - Workshop de Sistemas Operacionais Belém do Pard, PA

n6 que deixa de atender os requisitos especificados pelo perfil ideal, e existe um outro
nd que atenda este perfil, o componente ¢ reiniciado neste outro n6. Caso contrario, o
segundo perfil do contrato ¢ entdo avaliado para identificar se o componente pode
continuar executando, ainda que no perfil minimo, no mesmo no, ou se também precisa
ser reiniciado em outro nd apto para o segundo perfil. Se ndo existirem nés que atendam
a algum dos dois perfis, um componente pode ser retirado de execucdo e aguardar que
um no6 apto fique disponivel ou a aplicacdo ¢ terminada por falta de recursos. O
intervalo de tempo em que ocorrem as tentativas de reconfiguracdo da aplicacao pode
ser configurado pelo usuario através da interface grafica do ZeliGrid.

O procedimento de reconfiguragdo consiste, entdo, em (i) suspender a execugao
do componente-alvo, (ii) localizar um né cujos recursos computacionais disponiveis
sejam capazes de atender a um dos perfis e (iii) implantar o componente neste no,
quando encontrado, e reiniciar completamente sua execugao.

Algumas aplicacdes distribuidas, do tipo bag-of-tasks, ou aplicacdes de teste
podem abrir mdo da persisténcia do estado de componentes que serdo migrados. O
componente original ¢ simplesmente reinstanciado. Entretanto, aplicacdes mais
complexas precisam manter a consisténcia de seus componentes durante a
reconfigura¢do, o que pode ser obtido através do salvamente do estado em checkpoints e
posterior uso do ultimo estado salvo durante a recuperacdo do componente. Além disso,
nao havendo a persisténcia do estado do componente toda computagdo ja realizada
durante sua execugao sera perdida.

3. Checkpointing

Em ambientes altamente distribuidos, como as grades computacionais, o emprego de
checkpointing, aliado a migragdo de processos, apresenta vantagens [Lopes 2005]:

. Dbalanceamento de carga: as aplicagdes podem ser movidas para maquinas com
recursos ociosos, otimizando a utilizagdo dos recursos disponiveis;

. tolerancia a falhas: em caso de falha, o estado anteriormente salvo pode ser usado
para reiniciar a execucao da aplicagdo em outro no;

. reconfiguracdo: se um nd torna-se indisponivel ou, se seus recursos ndo atendem
mais a demanda da aplicagdo, esta pode ser movida para outro no.

A recuperagdo por retrocesso baseada em checkpointing ¢ uma técnica adotada
por varios ambientes de grades computacionais, como o Integrade [Camargo 2006] € o
OurGrid [Silva 2006] e por sistemas de middleware como o Condor[Condor 2007].

As técnicas de checkpointing encontradas na literatura utilizam meios
sofisticados para permitir a captura do estado de execucdo dos processos componentes
da aplicacdo. As técnicas mais utilizadas sdo (i) pré-compiladores que inserem codigo
adicional em pontos do cddigo-fonte em que o checkpoint deve atuar ([Camargo 2006],
[Ellahi 2006]) e (ii)) mecanismos de captura dos dados da pilha de execucdo de
aplicagdes desenvolvidas em linguagens como C ([Camargo 2006]), ou informagdes de
estado dos processos na JVM ([Ellahi 2006], [Wang 2001]), para checkpointing de
aplicacgdes Java.

SBC 2008 193

1 :I" Anais do XXVIII Congresso da SBC 122 18 de julho
g.I.I} WSO - Workshop de Sistemas Operacionais Belém do Pard, PA

4. Integracio de checkpointing ao ZeliGrid

Em nosso trabalho, consideramos inicialmente utilizar os mecanismos de checkpoint do
Globus, base de ZeliGrid. Entretanto, o suporte oferecido ¢ limitado a persisténcia de
recursos como STDIN € STDOUT. Assim, optamos por investigar o uso da serializacao de
objetos [Sun 2008] da plataforma Java para realizar o salvamento do estado de um
componente, transformado o mesmo em um fluxo, gravando o mesmo em uma memoria
persistente a cada intervalo de checkpoint. As proéximas se¢des apresentam e discutem
esta abordagem.

O mecanismo de serializagdo permite transformar um objeto em um fluxo de
bits, que pode ser usado para transportar o objeto por uma conexdo de rede, por
exemplo, ou persisti-lo em uma memoria ndo volatil, como um arquivo em disco. Da
mesma forma, um objeto serializado pode ser reconstituido em uma nova instancia.
Desta forma, podemos fazer com que um objeto continue existindo mesmo apds o
encerramento da aplicagdo que o originou. A API de serializacdo de Java prové estes
mecanismos [Sun 2008].

Nossa abordagem consiste em ser o0 menos intrusivo possivel em ZeliGrid e no
codigo da aplicacio do usudrio. Porém, este deverd adotar uma disciplina de
programacao, agregando o mecanismo de checkpointing através de heranga em Java e
aderindo a um padrao de codificagdo de componente. Esta pratica ¢ adotada em outros
frameworks, onde se deseja que um modulo de software seja aderente a um modelo de
componentes, com algumas caracteristicas pré-determinadas. Por exemplo, J2EE, .NET,
CORBA, RMI, etc.

Assim, (i) os médulos MGRP e MCRE de ZeliGrid devem ser adaptados para
carregar € iniciar um componente parametrizado pela imagem serializada de seu estado,
o mecanismo de migracdo ¢ especializado; e (ii) o codigo do usuario deve estender a
classe abstrata Checkpoint do modulo de checkpointing e aderir a uma disciplina de
programacao.

4.1. Arquitetura do médulo de checkpointing

A Figura 2 apresenta o modulo de checkpointing, na forma de um pacote Java, bem com
a classe Thread e a interface Serializable, utilizadas. As Figuras 3 e 4 apresentam
diagramas de seqiliéncia com as interagdes entre as classes da Figura 2 e as classes dos
modulos de ZeliGrid no salvamento e restauragdo de um componente, respectivamente.

1. A classe Aplicagdo, fornecida pelo programador, deve estender a classe abstrata
Checkpoint, implementando em seu método run() todo o processamento a ser
realizado durante sua execucdo. O método main() desta classe cria uma instancia da
classe Aplicagdo, e uma instancia da classe SingleJobExecutor, que recebe como
parametro a primeira (1:). Em seguida, ainda no método main() a thread da instancia
da classe SingleJobExecutor ¢ ativada (ativando-se seu método run()), (2:).

2. Ao ter seu método run() ativado classe SingleJobExecutor instancia a classe
Temporizer, passando a referéncia ao objeto da classe Aplicagdo (3:), recebida no
passo 1, e inicia duas threads: a do objeto Aplicagcdo e a do Temporizer (4: ¢ 5:).

3. A thread do objeto da classe Temporizer, iniciado no passo 2, controla o intervalo
de tempo em que um checkpoint é gerado. Esse intervalo de tempo ¢ configuravel

SBC 2008

194

Y=2{® Anais do Xxvill Congresso da SBC 12218 de julho
g.I. o] WSO - Workshop de Sistemas Operacionais

Belém do Para, PA

pelo usudrio, através da interface grafica do ZeliGrid. No momento de checkpoint a
thread da Aplicagdo ¢é suspensa pela thread de Temporizer, o objeto ¢ serializado,
persistido, e em seguida a thread da Aplicagdo ¢ reativada (6:, 7: e 8:).

4. CheckpointHandler contém os métodos para serializar (saveState) e recuperar
(restoreState) o estado do objeto que representa a classe da aplicacao.

«Classe Javaw «Interface Javan
& Thread D Serializable
«Classe Javax Aplicagdo
iy (® Aplicacao do Lsuario
i da grade
ilil mcre.checkpoint <=starta=>
“OiFgse I

O Checkpoit | <}

<<instancias =

/ «Classe Javas
«Classe Javas (@ SingleJobExecutor

(3 CheckpointHandler

| T L

«Classe Javaw
«(Classe Java» @ Temporizer
(3 SingleJobRestorer

Figura 2. Diagrama de Classes

5. CheckpointHandler.saveState() ¢ invocado pela thread de Temporizer, no momento
de checkpoint. Esse método contém todo cddigo responsavel por serializar e
persistir a aplicacao do usuério.

Aplicacio: SingleJobExecutar Ternpotizer: CheckpaintHandler:

1:mew Singledob BExecutan)

|__| 2:5ingledob BExecutor. start)
2 new Temponzen)

Ll4: Temponzer.start)

i G Aplicacao. suspend
4Hfplicacao . start) s P o

[}
G.1:=zawe State) D

T Aplicacan.resume)

Figura 3. Diagrama de Seqiiéncia — Salvamento de Estado

6. CheckpointHandler.restoreState() ¢ o método responsavel por recuperar o objeto
serializado e passar sua referéncia para a classe SingleJobExecutor, que realiza
novamente as acdes descritas no item 2, mas utilizando como parametro o objeto

SBC 2008 195

1 :I" Anais do XXVIII Congresso da SBC 122 18 de julho
g.I. o] WSO - Workshop de Sistemas Operacionais Belém do Pard, PA

reconstruido a partir do arquivo com a imagem serializada do objeto Aplicagdo
(seqiiéncia do diagrama da Figura 4). Dessa maneira, a execu¢do do componente ¢
reiniciada a partir do estado salvo no ultimo checkpoint.

SingleJobManitan SingleJobSubrmitter; SingleJobRestoren ChekpointHandles SingleJobExecutor

1 reconfigure)

2:zubmit CheckpointedTask(
2.1 :zubmit)

FrestoreState() 3. 1new Singledob Executan))

3.2:=et Object()

3.4 SingleJob Executar. start ()

Figura 4: Diagrama de Seqiiéncia — Restaurag¢ao de Estado

Observe-se que os passos 5 ¢ 6 sdo parte da especializagdo do mecanismo de
migracdo de ZeliGrid. Ao identificar que um componente precisa ter sua execugao
reiniciada em outro nd, o método restoreState() ¢ executado em um nd diferente
daquele onde o método saveState() salvou o estado.

4.2 Avaliacio preliminar

A modularidade da arquitetura de ZeliGrid facilitou a integracdo do mecanismo de
checkpointing e migragdo. Além da adaptagdo do modulo de interface para especificar o
intervalo de checkpoint, outra modificacdo significativa se deu no processo de
reconfiguragdo. Este processo ¢ controlado pela classe SingleJobMonitor do méddulo
MCRE de ZeliGrid, que agora verifica se o usuario deseja ou ndo usar checkpointing e
se 0 componente a ser carregado ja passou por algum checkpoint. Na carga inicial do
componente o objeto original ¢ utilizado. Caso contrdrio, a imagem serializada no
ultimo checkpoint ¢ utilizada. Neste caso, a classe SingleJobRestorer ¢ submetida para
execucdo remota e invoca o método CheckpointHandler.restoreState(), que restaura a
execucdo do componente a partir de uma referéncia ao arquivo que contém o ultimo
checkpoint.

Atualmente estamos aperfeicoando o codigo que adapta o mecanismo de
reconfiguragdo do MCRE, para que nos casos em que ocorre checkpointing dos
componentes da aplicagdo, a classe SingleJobRestorer seja submetida para execugdo
remota, no lugar da classe original do usudrio, permitindo assim a restauracdo da
execucao da aplicagdo, conforme descrito no paragrafo anterior.

Em paralelo, estamos definido o sistema de diretérios para manter as imagens
serializadas de checkpoint dos componentes. Trabalhamos com duas possibilidades (i)
assumir que os nés da grade compartilham, através de um sistema de arquivos
distribuidos ou servigo centralizado, o diretério em que as imagens serdo salvas ou (ii)
transferir ponto-a-ponto os arquivos necessarios a restauracao da execucao da aplicagdo
utilizando o utilitario GridFTP, do Globus, permitindo a realizagao de operacdes de

SBC 2008 196

1 :I" Anais do XXVIII Congresso da SBC 122 18 de julho
g.I. o] WSO - Workshop de Sistemas Operacionais Belém do Pard, PA

transferéncia de arquivo entre os nos da grade com seguranca. A solugdo centralizada ¢
simples e pode ser robusta se projetada para ser tolerante a falhas. Mas, apresenta
problemas potenciais de escalabilidade. A solu¢dao distribuida, em que a imagem
serializada de um componente ¢ transmitida do né que ndo estd mais apto para um outro
no, tende a ser mais complexa e ndo permite a recuperacao do componente se o nd de
origem efetivamente falhar. Porém, deve escalar melhor. Para realizar os testes, estamos
utilizando neste primeiro momento a primeira opgao.

5. Conclusoes

A técnica de checkpointing proposta, utilizando a serializagdo de objetos, embora
simples, impde ao desenvolvedor a disciplina de programac¢do, mencionada na Se¢do
4.1. Estamos também cientes de algumas limitagdes desta técnica. Por exemplo, usando
a serializagdo de objetos ndao ¢ possivel determinar que trechos do cddigo do
componente foram executados at¢ o momento de checkpoint, dado que a pilha de
execugdo ndo ¢ salva. Isto permitiria “saltar” instru¢des ja processadas. Mesmo assim,
segundo demonstram testes iniciais, aplicagdes cujo processamento baseia-se em
estruturas de repeticdo (loops) funcionam bem, como por exemplo, aplicacdes
cientificas.

Entre as atividades a serem realizadas estdo os testes para avaliar o desempenho
do mecanismo de checkpoint e o de migragdo de componentes, bem como a avaliagdo
do uso do mecanismo sobre o tempo total de execugdo da aplicagao.

Acreditamos que a utilizacdo de escalonamento de componentes, baseada em
politicas associadas aos requisitos ndo-funcionais das aplica¢cdes, em conjunto com o
monitoramento do contexto, ja oferecidos por ZeliGrid, aliado ao mecanismo de
checkpointing proposto, pode tornar mais eficiente a execugao de aplicacdes e o uso de
recursos computacionais em ambientes altamente distribuidos.

Agradecimentos. Os autores gostariam de agradecer o apoio parcial da Faperj e CNPq.
Jeane Cezario gostaria de agradecer o PIBIC UERJ.

Referéncias

Camargo, R. Y., Goldchleger, A., Kon, F., Goldman, A., “Checkpointing BSP parallel
applications on the InteGrade Grid middleware”, Concurrency and computation-
practice & experience, Hoboken, NJ, EUA, Vol. 18, No. 6, pp. 567-579, 2006.

Condor Manual. “Condor's Checkpoint Mechanism”, Dezembro, 2007.
http://www.cs.wisc.edu/condor/manual/v6.8/4 2Condor s Checkpoint.html

Ellahi, T. N., Hudzia, B., McDermott, L., Kechadi, T., “Transparent Migration of Multi-
Threaded Applications on a Java Based Grid”, The IASTED International
Conference on Web Technologies, Applications, and Services (WTAS 2006),
Alberta, Canada, Julho, 2006.

Globus Alliance (A), “MDS 2.2 User's Guide”, Novembro, 2007. htpp://www-
fp.globus.org/mds/mdsusersguide.pdf

SBC 2008 197

1 :I" Anais do XXVIII Congresso da SBC 122 18 de julho
g.I.I} WSO - Workshop de Sistemas Operacionais Belém do Pard, PA

Globus Project (B), “The Globus Toolkit Documentation™, http://www.globus.org,
Setembro, 2007.

Granja, S. R., Sztajnberg, A., “Zeligrid: uma arquitetura para a implantagdo de
aplicagdes com requisitos nao-funcionais dinamicos em Grades Computacionais”, [V
WCGA / SBRC 2006, Curitiba, Junho, 2006.

Lopes, R. F., Silva, F. J. da S., “Migration Transparency in a Mobile Agent Based
Computational Grid”, Proceedings of the 5th WSEAS Int. Conf. on Simulation,
Modeling and Optimization, 1st WSEAS International Symposium on GRID
COMPUTING. Corfu, Greece, pp. 31-36, Agosto, 2005.

Obertelli, G., “Network Weather Service User’'s Guide”, Novembro, 2007.
http://nws.cs.ucsb.edu/users guide.html

OpenLDAP Foundation, “Software Man Pages: slapd”, Novembro, 2007.
http://www.openldap.org/software/man.cgi?query=slapd

Silva, H., Siqueira, T. F. de, Dalpiaz, L. R., Jansch-Porto, I. E. S., Weber, T. S.
“Implementacdo de um Mecanismo de Recuperagdo por Retorno para o Ambiente de
Computagao OurGrid”, WTF 2006 / SBRC 2006, Curitiba, 2006.

Sun Microsystems, “Java Object Serialization Specification”, Janeiro, 2008.
http://java.sun.com/j2se/1.3/docs/guide/serialization/spec/serial TOC.doc.html

Wang, H., Zeng G., Lin S. “A strong migration method of mobile agents based on
Java”, The Sixth International Conference on Computer Supported Cooperative
Work in Design, Ontario, Canada, pp. 313-318, 2001.

Wolski, R, “Lecture Notes”, Novembro, 2007.
http://www.cs.ucsb.edu/~rich/class/cs290I-grid/notes/

SBC 2008 198

