
 

 

Introdução de um mecanismo de checkpointing e migração 
em uma infra-estrutura para aplicações distribuídas 

Jeane Cezário1 e Alexandre Sztajnberg1,2 

1Departamento de Informática e Ciência da Computação (DICC) / IME 
2Programa de Pós-Graduação em Eletrônica (PEL) / FEN 

Universidade do Estado do Rio de Janeiro (UERJ)  
Rio de Janeiro, RJ - Brasil 

{jeane, alexszt}@ime.uerj.br

Abstract. Highly distributed environments are characterized by the 
heterogeneity and availability variation of resources. Applications with non-
functional requirements running in such environments require mechanisms to 
(i) monitor resource state and (ii) manage component distribution based on 
the state of the monitored resources in order to optimize its execution. The 
ZeliGrid middleware, a grid-based infrastructure, provides such mechanisms 
using contracts. In runtime ZeliGrid evaluates if a contract is being respected 
and decides if the diverse components remain executing in their current node 
or if they have to be reinitiated in another node, with more resources. In this 
work we introduce a mechanism for state persistence (checkpointing) and 
migration of the components, integrated to ZeliGrid, aiming to maintain the 
application running according to its non-functional requirements, with no 
need to reinitiate its components when a reconfiguration occurs. 

Resumo. Ambientes altamente distribuídos são caracterizados pela 
heterogeneidade e variação da disponibilidade de seus recursos. Aplicações 
com requisitos não-funcionais executando em tais ambientes requerem 
mecanismos para (i) monitorar o estado dos recursos e (ii) gerenciar a 
distribuição de componentes, baseado no estado dos recursos monitorados, 
com o objetivo de otimizar a sua execução. O middleware ZeliGrid, uma 
infra-estrutura baseada em grades computacionais, provê estes mecanismos 
através de contratos. Durante a execução da aplicação ZeliGrid avalia se o 
contrato está sendo respeitado e dinamicamente decide se os diversos 
componentes continuam executando nos nós atuais ou se devem ser 
reiniciados em outro nó, com mais recursos. Neste trabalho introduzimos um 
mecanismo de persistência do estado (checkpointing) e migração dos 
componentes da aplicação, integrado à ZeliGrid, com o objetivo de manter a 
aplicação executando segundo seus requisitos não-funcionais, sem a 
necessidade de reiniciar seus componentes quando ocorre uma 
reconfiguração. 

1. Introdução 
Ambientes altamente distribuídos, formados por nós de processamento ou clusters 
ligados por redes, geralmente sob administração de entidades diferentes, são 
caracterizados pela heterogeneidade e variação da disponibilidade de seus recursos. Por 

SBC 2008 189



 

 

exemplo, a capacidade de processamento e memória, e enlaces de rede (banda passante 
e atraso) podem se apresentar muito diferentes. Além disso, em geral não se pode 
realizar a reserva de recursos ou controlar, o tempo todo, a alocação dos mesmos, a 
menos que haja aderência a políticas de alocação e escalonamento restritivas. Assim 
sendo, os recursos disponíveis para uma aplicação distribuída pode variar muito durante 
sua execução. 

 Aplicações com requisitos não-funcionais executando em tais ambientes 
requerem mecanismos para (i) descrever seus requisitos de qualidade e recursos 
requeridos; (ii) monitorar o estado dos recursos utilizados e os recursos disponíveis, e 
(iii) gerenciar a distribuição de componentes, baseado no estado dos recursos 
monitorados, com o objetivo de otimizar a sua execução. Por exemplo, uma aplicação 
pode requerer uma determinada capacidade de processamento e memória disponíveis 
para a execução de seus componentes ou, ainda, enlaces com atrasos máximos 
observados para executar com a qualidade requerida. 

 Neste contexto, é importante que os componentes distribuídos de uma aplicação 
em execução possam ser relocados ou migrados para outro nó, motivados pela 
inferência de que uma falha está na iminência de ocorrer na rede ou em um nó de 
processamento, por alguma falha do componente, ou simplesmente porque o estado 
atual dos recursos não atende mais aos requisitos não-funcionais contratados. Para 
tornar a migração de componentes viável é importante a presença de um mecanismo de 
checkpointing, que permita salvar periodicamente o estado de um componente e retomar 
sua execução em outro nó da grade a partir do ponto salvo no último checkpoint. 

 O middleware ZeliGrid [Granja 2006], uma infra-estrutura de suporte para 
aplicações distribuídas baseada em grades computacionais, desenvolvido em nosso 
grupo, provê uma parte dos mecanismos mencionados através do conceito de contratos. 
Um contrato expressa, em alto-nível, uma política para a seleção/alocação de recursos e 
componentes, bem como descreve uma máquina de estados para a reconfiguração da 
aplicação. Durante a execução da aplicação, ZeliGrid monitora os recursos selecionados 
para a aplicação, e avalia se o contrato está sendo respeitado. Dinamicamente, ZeliGrid 
decide se os diversos componentes continuam executando nos nós atuais ou se devem 
ser reiniciados em outros nós, que atendam aos requisitos do contrato.  

 Neste trabalho introduzimos um mecanismo de checkpointing, com persistência 
do estado, integrado ao ZeliGrid. O objetivo é adicionar ao middleware a capacidade de 
manter a aplicação executando segundo seus requisitos não-funcionais, sem a 
necessidade de reiniciar seus componentes, limitação da versão atual. Assim, quando 
ZeliGrid detectar a necessidade da migração de um componente, o mesmo será 
reiniciado em um nó apto, e retomará sua execução a partir do estando do último 
checkpoint.  

 Os mecanismos de checkpointing e restauração propostos são baseados no 
mecanismo de serialização de objetos da plataforma Java. Estes são integrados a uma 
versão especializada do mecanismo de migração presente na arquitetura do middleware, 
permitindo recuperar as informações necessárias para restauração dinâmica do estado da 
instância do componente que deve ser restaurado. Desta forma melhoramos o 
desempenho do procedimento de reconfiguração de aplicações de ZeliGrid e provemos 
alguma tolerância à falhas ocorridas na execução dos componentes da aplicação. 

SBC 2008 190



 

 

 O restante do texto está organizado da seguinte forma. Na Seção 2 introduzimos 
o middleware ZeliGrid. Na Seção 3, apresentamos algumas técnicas de checkpointing 
utilizadas em contextos similares ao nosso. Na Seção 4 apresentamos a proposta de 
implementação e a arquitetura da técnica de criação de checkpoints integrada ao 
ZeliGrid e discutimos a solução adotada. Por fim, na Seção 5, concluímos o texto, 
fazendo observações finais sobre o trabalho.  

2. ZeliGrid  
ZeliGrid [Granja 2006] é um middleware que oferece suporte à execução para 
aplicações distribuídas com requisitos não-funcionais dinâmicos em um ambiente de 
grades computacionais através de serviços que permitem à aplicação: (i) definir seus 
requisitos não-funcionais; (ii) descobrir os recursos disponíveis na grade e selecionar os 
nós da grade cujos recursos disponíveis melhor atendam sua necessidade de execução, 
(iii) implantar e executar componentes distribuídos; e provê ainda um (iv) serviço de 
reconfiguração, que possibilita à aplicação ter seus componentes dinamicamente 
adaptados quando os recursos disponíveis em algum nó utilizado pela aplicação já não 
atende às especificações de seus requisitos não-funcionais. 

 ZeliGrid integra em uma arquitetura de suporte (i) o Globus Toolkit [Globus (B) 
2007], um middleware de serviços para Grades Computacionais que provê a base para 
os serviços de execução remota; e (ii) o Network Weather Service [Obertelli 2007], que 
coleta informações sobre diversos tipos de recursos computacionais presentes em 
sistemas distribuídos, realizando medições e previsões sobre a disponibilidade destes 
recursos.  

MGR

Usuário das Aplicações

CoG kit / JNDIMIRC

SLAPD/GIIS

NWS / GRIS

Recursos

MGRP

Contrato

Máquinas   
disponíveisConjunto de  medições

Medições de  cada recurso Submissão de 
processos

GRAM

Comando para
Início dos processos

Máquinas 
aptas

MCRE

Consultas

Controle/ 
Configurações

API
Interface

 
Figura 1. Arquitetura de suporte  

 Sobre esta arquitetura de suporte foi desenvolvida (i) uma arquitetura de 
controle, composta por quatro módulos e (ii) uma interface gráfica que permite ao 
usuário de ZeliGrid configurar e monitorar o funcionamento das aplicações distribuídas. 
A Figura 1 apresenta a arquitetura atual de ZeliGrid, onde podem ser identificados os 
módulos desenvolvidos: o MIRC (módulo de interpretação de regras de contratos); o 
MGR (módulo de gerência de recursos); o MGRP (módulo de gerência remota de 
processos); e o MCRE (módulo de controle e reconfiguração de experimentos), Na 
próxima subseção apresentamos brevemente os serviços e a arquitetura. Maiores 
detalhes em [Granja 2006]. 

SBC 2008 191



 

 

2.1 Serviços de ZeliGrid 
Descoberta e indexação de recursos. O módulo MGR é responsável pela descoberta, 
gerência e avaliação dos recursos. Para isso, ele oferece aos outros módulos, funções 
para a busca de recursos registrados em servidores NWS e MDS distribuídos pelos nós 
da grade. Dados sobre recursos estáticos (como arquitetura da CPU) são coletados pelo 
MDS (Monitoring and Discovery System), disponível no Globus Toolkit [Globus (A) 
2007]. Dados sobre recursos dinâmicos (por exemplo, disponibilidade de tempo de 
CPU) são coletados através de sensores NWS. Além de realizar medições sobre 
recursos locais a cada nó, estes sensores interagem para realizar medições sobre o 
desempenho da rede (como tempo de roundtrip de pequenos pacotes TCP, por 
exemplo). O MDS é integrado ao NWS, conforme descrito em [Wolski 2007], através 
de um servidor LDAP (sldap [OpenLDAP 2007]), que age como um repositório de 
informações, coletando dados do NWS e fornecendo-os ao MDS. O módulo MGR 
também recebe do MIRC o contrato interpretado e avalia que nós da grade estão aptos 
para execução dos componentes, segundo as especificações dos perfis do contrato. 

Contrato. ZeliGrid permite que a aplicação defina um contrato contendo requisitos 
não-funcionais. Na versão atual, um contrato possui dois perfis, e cada perfil possui 
uma lista de atributos, que descreve os requisitos não-funcionais da aplicação. No 
primeiro perfil são descritos os requisitos ideais para execução dos componentes da 
aplicação, enquanto o segundo perfil representa os requisitos mínimos para garantir seu 
funcionamento. O módulo MIRC é responsável pelo parsing e interpretação do contrato 
logo no início de suas atividades.  

Implantação remota de processos. O módulo MGRP, responsável por submeter a 
aplicação para execução, consulta o MICR para obter a lista de máquinas aptas e, de 
acordo com os comandos do módulo MCRE, utiliza o GRAM para submeter os 
componentes para as máquinas remotas. O GRAM (Globus Resource Allocation 
Manager) [Globus (B) 2007] é a ferramenta do Globus responsável pelo controle da 
execução remota dos processos. Este serviço oferece uma API de suporte à submissão e 
implantação dos processos na Grade, além de gerenciar os recursos necessários à 
execução das aplicações. 

Configuração e gerência da aplicação. O módulo MCRE é responsável pelo controle 
das aplicações executando em ZeliGrid. Este módulo permite a descrição da 
configuração da aplicação, possibilitando ao usuário especificar, entre outras 
informações, o número de máquinas necessárias para a execução do experimento e a 
localização dos servidores NWS e MDS a serem utilizados. Além disso, o MCRE 
utiliza funções disponibilizadas pelo MGR e pelo MGRP para coordenar a execução dos 
componentes da aplicação, realizar sua submissão para execução remota e também 
controlar a realização do processo de reconfiguração, bloqueando, cancelando e 
reativando componentes.  

 A política adotada por ZeliGrid procura implantar os componentes da aplicação 
em nós que atendem o primeiro perfil. Se não existirem nós que atendam ao perfil ideal, 
nós que atendam pelo menos o segundo perfil são utilizados.  

 Durante a execução da aplicação, o MCRE, monitora periodicamente, segundo 
um intervalo de tempo configurado pelo usuário, os atributos de cada nó (utilizados ou 
não) e os avalia em relação aos perfis. Quando um componente está executando em um 

SBC 2008 192



 

 

nó que deixa de atender os requisitos especificados pelo perfil ideal, e existe um outro 
nó que atenda este perfil, o componente é reiniciado neste outro nó. Caso contrário, o 
segundo perfil do contrato é então avaliado para identificar se o componente pode 
continuar executando, ainda que no perfil mínimo, no mesmo nó, ou se também precisa 
ser reiniciado em outro nó apto para o segundo perfil. Se não existirem nós que atendam 
a algum dos dois perfis, um componente pode ser retirado de execução e aguardar que 
um nó apto fique disponível ou a aplicação é terminada por falta de recursos. O 
intervalo de tempo em que ocorrem as tentativas de reconfiguração da aplicação pode 
ser configurado pelo usuário através da interface gráfica do ZeliGrid.  

 O procedimento de reconfiguração consiste, então, em (i) suspender a execução 
do componente-alvo, (ii) localizar um nó cujos recursos computacionais disponíveis 
sejam capazes de atender a um dos perfis e (iii) implantar o componente neste nó, 
quando encontrado, e reiniciar completamente sua execução.  

 Algumas aplicações distribuídas, do tipo bag-of-tasks, ou aplicações de teste 
podem abrir mão da persistência do estado de componentes que serão migrados. O 
componente original é simplesmente reinstanciado. Entretanto, aplicações mais 
complexas precisam manter a consistência de seus componentes durante a 
reconfiguração, o que pode ser obtido através do salvamente do estado em checkpoints e 
posterior uso do último estado salvo durante a recuperação do componente. Além disso, 
não havendo a persistência do estado do componente toda computação já realizada 
durante sua execução será perdida.  

3. Checkpointing 
Em ambientes altamente distribuídos, como as grades computacionais, o emprego de 
checkpointing, aliado à migração de processos, apresenta vantagens [Lopes 2005]: 

• balanceamento de carga: as aplicações podem ser movidas para máquinas com 
recursos ociosos, otimizando a utilização dos recursos disponíveis;  

• tolerância à falhas: em caso de falha, o estado anteriormente salvo pode ser usado 
para reiniciar a execução da aplicação em outro nó; 

• reconfiguração: se um nó torna-se indisponível ou, se seus recursos não atendem 
mais à demanda da aplicação, esta pode ser movida para outro nó.  

 A recuperação por retrocesso baseada em checkpointing é uma técnica adotada 
por vários ambientes de grades computacionais, como o Integrade [Camargo 2006] e o 
OurGrid [Silva 2006] e por sistemas de middleware como o Condor[Condor 2007]. 

 As técnicas de checkpointing encontradas na literatura utilizam meios 
sofisticados para permitir a captura do estado de execução dos processos componentes 
da aplicação. As técnicas mais utilizadas são (i) pré-compiladores que inserem código 
adicional em pontos do código-fonte em que o checkpoint deve atuar ([Camargo 2006], 
[Ellahi 2006]) e (ii) mecanismos de captura dos dados da pilha de execução de 
aplicações desenvolvidas em linguagens como C ([Camargo 2006]), ou informações de 
estado dos processos na JVM ([Ellahi 2006], [Wang 2001]), para checkpointing de 
aplicações Java. 

SBC 2008 193



 

 

4. Integração de checkpointing ao ZeliGrid 
Em nosso trabalho, consideramos inicialmente utilizar os mecanismos de checkpoint do 
Globus, base de ZeliGrid. Entretanto, o suporte oferecido é limitado à persistência de 
recursos como STDIN e STDOUT. Assim, optamos por investigar o uso da serialização de 
objetos [Sun 2008] da plataforma Java para realizar o salvamento do estado de um 
componente, transformado o mesmo em um fluxo, gravando o mesmo em uma memória 
persistente a cada intervalo de checkpoint. As próximas seções apresentam e discutem 
esta abordagem. 

 O mecanismo de serialização permite transformar um objeto em um fluxo de 
bits, que pode ser usado para transportar o objeto por uma conexão de rede, por 
exemplo, ou persisti-lo em uma memória não volátil, como um arquivo em disco. Da 
mesma forma, um objeto serializado pode ser reconstituído em uma nova instância. 
Desta forma, podemos fazer com que um objeto continue existindo mesmo após o 
encerramento da aplicação que o originou. A API de serialização de Java provê estes 
mecanismos [Sun 2008].  

 Nossa abordagem consiste em ser o menos intrusivo possível em ZeliGrid e no 
código da aplicação do usuário. Porém, este deverá adotar uma disciplina de 
programação, agregando o mecanismo de checkpointing através de herança em Java e 
aderindo a um padrão de codificação de componente. Esta prática é adotada em outros 
frameworks, onde se deseja que um módulo de software seja aderente a um modelo de 
componentes, com algumas características pré-determinadas. Por exemplo, J2EE, .NET, 
CORBA, RMI, etc.  

 Assim, (i) os módulos MGRP e MCRE de ZeliGrid devem ser adaptados para 
carregar e iniciar um componente parametrizado pela imagem serializada de seu estado, 
o mecanismo de migração é especializado; e (ii) o código do usuário deve estender a 
classe abstrata Checkpoint do módulo de checkpointing e aderir a uma disciplina de 
programação.  

4.1. Arquitetura do módulo de checkpointing 
A Figura 2 apresenta o módulo de checkpointing, na forma de um pacote Java, bem com 
a classe Thread e a interface Serializable, utilizadas. As Figuras 3 e 4 apresentam 
diagramas de seqüência com as interações entre as classes da Figura 2 e as classes dos 
módulos de ZeliGrid no salvamento e restauração de um componente, respectivamente. 

1. A classe Aplicação, fornecida pelo programador, deve estender a classe abstrata 
Checkpoint, implementando em seu método run() todo o processamento a ser 
realizado durante sua execução. O método main() desta classe cria uma instância da 
classe Aplicação, e uma instância da classe SingleJobExecutor, que recebe como 
parâmetro a primeira (1:). Em seguida, ainda no método main() a thread da instância 
da classe SingleJobExecutor é ativada (ativando-se seu método run()), (2:).  

2. Ao ter seu método run() ativado classe SingleJobExecutor instancia a classe 
Temporizer, passando a referência ao objeto da classe Aplicação (3:), recebida no 
passo 1, e inicia duas threads: a do objeto Aplicação e a do Temporizer (4: e 5:). 

3. A thread do objeto da classe Temporizer, iniciado no passo 2, controla o intervalo 
de tempo em que um checkpoint é gerado. Esse intervalo de tempo é configurável 

SBC 2008 194



 

 

pelo usuário, através da interface gráfica do ZeliGrid. No momento de checkpoint a 
thread da Aplicação é suspensa pela thread de Temporizer, o objeto é serializado, 
persistido, e em seguida a thread da Aplicação é reativada (6:, 7: e 8:).  

4. CheckpointHandler contém os métodos para serializar (saveState) e recuperar 
(restoreState) o estado do objeto que representa a classe da aplicação.  

 
Figura 2. Diagrama de Classes  

5. CheckpointHandler.saveState() é invocado pela thread de Temporizer, no momento 
de checkpoint. Esse método contém todo código responsável por serializar e 
persistir a aplicação do usuário.  

 
Figura 3. Diagrama de Seqüência – Salvamento de Estado 

6. CheckpointHandler.restoreState() é o método responsável por recuperar o objeto 
serializado e passar sua referência para a classe SingleJobExecutor, que realiza 
novamente as ações descritas no item 2, mas utilizando como parâmetro o objeto 

SBC 2008 195



 

 

reconstruído a partir do arquivo com a imagem serializada do objeto Aplicação 
(seqüência do diagrama da Figura 4). Dessa maneira, a execução do componente é 
reiniciada a partir do estado salvo no último checkpoint.  

 
Figura 4: Diagrama de Seqüência – Restauração de Estado  

 Observe-se que os passos 5 e 6 são parte da especialização do mecanismo de 
migração de ZeliGrid. Ao identificar que um componente precisa ter sua execução 
reiniciada em outro nó, o método restoreState() é executado em um nó diferente 
daquele onde o método saveState() salvou o estado. 

4.2 Avaliação preliminar 
A modularidade da arquitetura de ZeliGrid facilitou a integração do mecanismo de 
checkpointing e migração. Além da adaptação do módulo de interface para especificar o 
intervalo de checkpoint, outra modificação significativa se deu no processo de 
reconfiguração. Este processo é controlado pela classe SingleJobMonitor do módulo 
MCRE de ZeliGrid, que agora verifica se o usuário deseja ou não usar checkpointing e 
se o componente a ser carregado já passou por algum checkpoint. Na carga inicial do 
componente o objeto original é utilizado. Caso contrário, a imagem serializada no 
último checkpoint é utilizada. Neste caso, a classe SingleJobRestorer é submetida para 
execução remota e invoca o método CheckpointHandler.restoreState(), que restaura a 
execução do componente a partir de uma referência ao arquivo que contém o último 
checkpoint. 

 Atualmente estamos aperfeiçoando o código que adapta o mecanismo de 
reconfiguração do MCRE, para que nos casos em que ocorre checkpointing dos 
componentes da aplicação, a classe SingleJobRestorer seja submetida para execução 
remota, no lugar da classe original do usuário, permitindo assim a restauração da 
execução da aplicação, conforme descrito no parágrafo anterior.  

 Em paralelo, estamos definido o sistema de diretórios para manter as imagens 
serializadas de checkpoint dos componentes. Trabalhamos com duas possibilidades (i) 
assumir que os nós da grade compartilham, através de um sistema de arquivos 
distribuídos ou serviço centralizado, o diretório em que as imagens serão salvas ou (ii) 
transferir ponto-a-ponto os arquivos necessários à restauração da execução da aplicação 
utilizando o utilitário GridFTP, do Globus, permitindo a realização de operações de 

SBC 2008 196



 

 

transferência de arquivo entre os nós da grade com segurança. A solução centralizada é 
simples e pode ser robusta se projetada para ser tolerante a falhas. Mas, apresenta 
problemas potenciais de escalabilidade. A solução distribuída, em que a imagem 
serializada de um componente é transmitida do nó que não está mais apto para um outro 
nó, tende a ser mais complexa e não permite a recuperação do componente se o nó de 
origem efetivamente falhar. Porém, deve escalar melhor. Para realizar os testes, estamos 
utilizando neste primeiro momento a primeira opção. 

5. Conclusões  
A técnica de checkpointing proposta, utilizando a serialização de objetos, embora 
simples, impõe ao desenvolvedor a disciplina de programação, mencionada na Seção 
4.1. Estamos também cientes de algumas limitações desta técnica. Por exemplo, usando 
a serialização de objetos não é possível determinar que trechos do código do 
componente foram executados até o momento de checkpoint, dado que a pilha de 
execução não é salva. Isto permitiria “saltar” instruções já processadas. Mesmo assim, 
segundo demonstram testes iniciais, aplicações cujo processamento baseia-se em 
estruturas de repetição (loops) funcionam bem, como por exemplo, aplicações 
científicas. 

 Entre as atividades a serem realizadas estão os testes para avaliar o desempenho 
do mecanismo de checkpoint e o de migração de componentes, bem como a avaliação 
do uso do mecanismo sobre o tempo total de execução da aplicação. 

 Acreditamos que a utilização de escalonamento de componentes, baseada em 
políticas associadas aos requisitos não-funcionais das aplicações, em conjunto com o 
monitoramento do contexto, já oferecidos por ZeliGrid, aliado ao mecanismo de 
checkpointing proposto, pode tornar mais eficiente a execução de aplicações e o uso de 
recursos computacionais em ambientes altamente distribuídos. 

Agradecimentos. Os autores gostariam de agradecer o apoio parcial da Faperj e CNPq. 
Jeane Cezário gostaria de agradecer o PIBIC UERJ. 

Referências  
Camargo, R. Y., Goldchleger, A., Kon, F., Goldman, A., “Checkpointing BSP parallel 

applications on the InteGrade Grid middleware”, Concurrency and computation-
practice & experience, Hoboken, NJ, EUA, Vol. 18, No. 6, pp. 567-579, 2006. 

Condor Manual. “Condor's Checkpoint Mechanism”, Dezembro, 2007. 
http://www.cs.wisc.edu/condor/manual/v6.8/4_2Condor_s_Checkpoint.html 

Ellahi, T. N., Hudzia, B., McDermott, L., Kechadi, T., “Transparent Migration of Multi-
Threaded Applications on a Java Based Grid”, The IASTED International 
Conference on Web Technologies, Applications, and Services (WTAS 2006), 
Alberta, Canada, Julho, 2006. 

Globus Alliance (A), “MDS 2.2 User´s Guide”, Novembro, 2007. htpp://www-
fp.globus.org/mds/mdsusersguide.pdf  

SBC 2008 197



 

 

Globus Project (B), “The Globus Toolkit Documentation”, http://www.globus.org, 
Setembro, 2007. 

Granja, S. R., Sztajnberg, A., “Zeligrid: uma arquitetura para a implantação de 
aplicações com requisitos não-funcionais dinâmicos em Grades Computacionais”, IV 
WCGA / SBRC 2006, Curitiba, Junho, 2006. 

Lopes, R. F., Silva, F. J. da S., “Migration Transparency in a Mobile Agent Based 
Computational Grid”, Proceedings of the 5th WSEAS Int. Conf. on Simulation, 
Modeling and Optimization, 1st WSEAS International Symposium on GRID 
COMPUTING. Corfu, Greece, pp. 31-36, Agosto, 2005. 

Obertelli, G., “Network Weather Service User´s Guide”, Novembro, 2007. 
http://nws.cs.ucsb.edu/users_guide.html 

OpenLDAP Foundation, “Software Man Pages: slapd”, Novembro, 2007. 
http://www.openldap.org/software/man.cgi?query=slapd 

Silva, H., Siqueira, T. F. de, Dalpiaz, L. R., Jansch-Pôrto, I. E. S., Weber, T. S. 
“Implementação de um Mecanismo de Recuperação por Retorno para o Ambiente de 
Computação OurGrid”, WTF 2006 / SBRC 2006, Curitiba, 2006.  

Sun Microsystems, “Java Object Serialization Specification”, Janeiro, 2008. 
http://java.sun.com/j2se/1.3/docs/guide/serialization/spec/serialTOC.doc.html 

Wang, H., Zeng G., Lin S. “A strong migration method of mobile agents based on 
Java”, The Sixth International Conference on Computer Supported Cooperative 
Work in Design, Ontário, Canadá, pp. 313–318, 2001. 

Wolski, R., “Lecture Notes”, Novembro, 2007. 
http://www.cs.ucsb.edu/~rich/class/cs290I-grid/notes/ 

SBC 2008 198


