

Sistema de Aquisição de Dados via USB usando Interface
Genérica de Áudio

Jader Garcia da Silveira1, Rômulo Silva de Oliveira1

1Dep. de Automação e Sistemas – Universidade Federal de Santa Catarina (UFSC)
Caixa Postal 476 – 88040-900 – Florianópolis – SC – Brasil

jadergs@gmail.com, romulo@das.ufsc.br

Abstract. USB (Universal Serial Bus) is one of the most popular interface
standards for external computer devices. Among USB possible uses we have
the connection between real-time data acquisition boards and desktop
computers. This paper shows how it is possible to achieve data transference
between device and computer up to 890 kbytes/s by making careful use of the
generic device-drivers originally developed for audio devices. At the same
time, function HID was used to support the exchanging of control data
between the computer and the data acquisition board.

Resumo. A USB (Universal Serial Bus) é um dos padrões de interface para
periféricos externos ao computador mais populares já criados. Entre os usos
possíveis da USB, está a conexão de placas de aquisição de dados em tempo
real a computadores convencionais. Este artigo mostra como é possível obter
uma transferência de dados entre dispositivo e computador de até 890
kbytes/s através do bom aproveitamento dos drivers genéricos para
dispositivos de som. Em paralelo, a função HID foi usada para suportar que
alguns dados de controle sejam trocados entre o computador e a placa de
aquisição de dados.

1. Introdução
 A USB (Universal Serial Bus) é um dos padrões de interface para periféricos
externos ao computador mais populares já criados. Ela interconecta um mestre chamado
de host e escravos que são os dispositivos ou periféricos.

 Entre os usos possíveis da USB, há a conexão de placas de aquisição de dados
em tempo real a computadores convencionais. Por exemplo, no contexto dos processos
de soldagem, no qual este trabalho originou-se, busca-se uma solução para aquisição de
dados que consiga operar nas velocidades necessárias, disponibilizando os dados em um
computador convencional, onde ferramentas gráficas e estatísticas podem ser usadas
posteriormente na análise dos dados coletados. Uma solução típica inclui uma placa de
aquisição de dados microprocessada, colocada junto ao equipamento de soldagem, a
qual inclui transdutores e realiza condicionamento de sinal e linearizações, além de
possuir a capacidade de comunicação via USB. Também inclui um computador
convencional, executando o sistema operacional Windows.

 O objetivo deste artigo é descrever o funcionamento da USB no contexto de
promover um meio de comunicação direto entre computador convencional e placa de
aquisição de dados. Essa comunicação, no caso de um fluxo contínuo, deve alcançar

SBC 2008 199

taxas de transferência de, no mínimo, 100 kbytes/s. O foco principal deste trabalho foi a
utilização de device drivers nativos do sistema operacional, especificamente do sistema
de som, no desenvolvimento de uma solução capaz de realizar aquisição de dados em
tempo real via interface USB. O foco principal deste trabalho foi a utilização das
interfaces genéricas do USB para a conexão de periféricos de áudio no desenvolvimento
de uma solução capaz de realizar aquisição de dados em tempo real via interface USB.
O objetivo inicial do sistema era a aquisição de dados em processos de soldagem a arco.
Entretanto, houve também a implementação de uma função bidirecional de troca de
dados intermitentes entre computador e placa de aquisição de dados, através do USB.

2. Sistema de Aquisição de Dados para Processos de Soldagem
O conceito atual de soldagem é baseado apenas na união de peças, assegurando na
junta, a continuidade das propriedades físicas e químicas. Para ocorrer a soldagem, é
preciso transferir energia para a zona da junta do material de base. Com metais, isso
pode ser feito com arco voltaico (ou arco elétrico) [CIMM 2007].

 Arcos voltaicos são estabelecidos por meio de um circuito elétrico que é fechado
no momento em que o eletrodo encosta no material de base. Estabelecendo-se um arco
desse tipo, em sua extensão é possível medir tensões elétricas que variam entre 0 e 40
V, dependendo do processo. Tensão elétrica provavelmente é a principal variável de
medida em um processo de soldagem a arco, pois muitas observações e conclusões
podem ser feitas a partir dos gráficos gerados. Uma demonstração disso é o fato de a
tensão aumentar quase em proporção direta com o comprimento de arco, praticamente
sem se importar com a corrente, pois as maiores quedas de tensão residem nas interfaces
entre o meio metálico e o ar, o que é tema para uma discussão mais profunda. Essa
proporcionalidade permite utilizar o próprio arco como sensor de altura, por exemplo.

3. USB - Universal Serial Bus
A USB, sigla para Universal Serial Bus, é o padrão de interface para periféricos
externos ao computador provavelmente mais popular dos já criados. Um sistema USB é
composto por hardware mestre e escravo. O mestre é chamado de host e o escravo
denomina-se dispositivo ou simplesmente periférico. Todas as transferências USB são
administradas e iniciadas pelo host. Mesmo que um dispositivo queira enviar dados, é
necessário que o host envie comandos específicos para recebê-los.

 Há três classes de dispositivos USB: low-speed, full-speed e high-speed. As
duas primeiras pertencem às especificações 1.x e a última à 2.0. Há uma pequena
diferença entre os dispositivos high-speed e os anteriores que é a divisão de tempo. Os
primeiros utilizam quadros divididos em 1 ms, chamados de frame enquanto o último
usa uma base de 125 ms denominada de microframe. As velocidades máximas de
transferência para cada tipo de dispositivo são: 1,5 Mbits/s (low-speed), 12 Mbits/s
(full-speed) e 480 Mbits/s (high-speed). Low-speed (1,5 Mbits/s), Full-speed (12
Mbits/s) e High-speed (480 Mbits/s). [Axelson 2005]

3.1. Comunicações USB

As comunicações USB podem ser classificadas em dois tipos principais: as de aplicação
e as de enumeração. As trocas de dados de aplicação são o verdadeiro papel de um meio
de conexão de dispositivos. É a forma de comunicação que se espera ocorrer quando um

SBC 2008 200

periférico é desenvolvido e é somente ela a utilizada depois que o periférico USB está
devidamente preparado pelo sistema operacional.

 A fase de preparação, conhecida como enumeração, a grosso modo, acontece
logo depois de quando o dispositivo USB é fisicamente conectado ao computador.
Nesse momento, o sistema operacional realiza vários pedidos ao dispositivo para que
suas características de funcionamento sejam reconhecidas. O sistema operacional, com
a obtida noção do periférico USB, atribui-lhe um endereço e seleciona a configuração
mais apropriada de acordo com certos critérios. Com mensagens de confirmação do
dispositivo indicando que essas duas últimas operações foram corretamente aceitas, a
enumeração é finalizada e o sistema fica pronto para o uso.

 A especificação USB define quatro tipos de transferências USB: de controle
(control), interrupta (interrupt), isócrona (isochronous) e massiva (bulk). As
transferências de controle servem normalmente para as fases de SETUP, STATUS e
CONFIGURAÇÃO do dispositivo USB. Na prática, além das funções mais importantes
passarem por esse canal, é por onde as configurações e interfaces são selecionadas.

 Transferências interrupta são geradas pelo dispositivo. O dispositivo deve
requerer atenção do host para poder começar a enviar os dados. O tempo entre essa
requisição de atenção e a resposta do host, configurado no descritor USB, é limitado a
255 ms nos dispositivos low-speed e full-speed. A interface HID deste trabalho utiliza
transferência interrupta para enviar dados ao host.

 Isócrona: é o tipo de transferência utilizada para fluxos contínuos. Ela dispensa
retransmissões (em caso de erro) e é executada periodicamente gerando velocidade
praticamente constante. Essa taxa quase constante de transmissão é possível devido à
garantia de largura de banda que existe para as isócronas, por responsabilidade do
sistema operacional. Um fato importante para este trabalho é que, mesmo que não haja
correções de erros de transmissão, eles são detectáveis através de CRC.

 Massiva: esse é o tipo de transferência que pen-drives, impressoras, scanners,
câmeras digitais, entre outros, utilizam. As conexões massivas, como diz o próprio
nome, servem para os maiores volumes de dados da USB. Contudo, devido à ausência
de garantia de largura de banda, a velocidade varia bastante.

 A largura de banda é determinada pelo host. Na fase de enumeração, 90% da
banda é reservada para as transferências periódicas (vide interrupta e isócrona) e 10% é
disputada entre as transferências de controle e massiva. Isso em full-speed. Em high-
speed, a divisão é de 80% para periódicas e 20% para o resto.

 Por haver dispositivos bastante comuns, tal como o caso das impressoras, foram
criadas as chamadas “Classes de Dispositivos USB” que, a princípio, serviriam para
fornecer drivers genéricos para os fabricantes, em vez de todos precisarem escrever
novos drivers para cada periférico. Há especificações para algumas classes, mas a
disponibilidade dos drivers genéricos depende do sistema operacional. As classes de
dispositivos USB previstas são para áudio, smart card, comunicações, segurança de
conteúdo, atualização de firmware de dispositivo, dispositivo de interface humana
(HID), ponte IrDA, armazenamento em massa, impressora, scanner e câmera, teste e
medida e vídeo.

SBC 2008 201

 A sigla para Human Interface Device é a classe USB que foi criada para lidar
com periféricos de entrada tais como mouses e teclados. A HID também pode enviar
comandos aos periféricos, tal como num joystick que possua force-feedback.
Dispositivos HID não necessariamente precisam ser interfaces humanas; apenas devem
seguir o padrão USB para funcionar. Todos os dados compõem-se de estruturas
denominadas reports. O host envia e recebe dados estruturados nessa forma através de
transferências de controle e interruptas. A velocidade máxima de transferência é de 800
bytes/s para dispositivos low-speed, 64 kbytes/s para full e 24 Mbytes/s para high.

4. Considerações sobre Emprego de USB em Sistemas de Aquisição de
Dados
Os drivers são responsáveis pela abstração de comandos e dados, normalmente de
dispositivos físicos, para que aplicativos possam manipulá-los independentemente de
conhecimento do hardware. De mesma forma, para acessar dispositivos USB, cada um
deve ter um driver correspondente. Normalmente, para alguns dispositivos conhecidos,
o sistema operacional provê drivers próprios dos fabricantes ou genéricos. Exemplos
são os conhecidos pendrives que, do ponto de vista do sistema operacional são tratados
como dispositivos de armazenamento em massa (mass-storage device) genéricos,
dispensando a necessidade de instalações com intervenção do usuário.

 Já aqueles dispositivos que não se encaixam em classes genéricas, ou que
forneçam recursos não previstos pelo sistema operacional, devem ser acompanhados de
drivers específicos. Neste caso, por exemplo, o descritor de dispositivo da USB tem o
código 0xFF no campo bDeviceClass para indicar ao sistema que um driver específico
precisa ser instalado. Assim, o descritor de configuração pode ser escrito mais
facilmente e personalizado de acordo com o fabricante do dispositivo, mas ainda assim
respeitando o padrão USB.

 É necessário decidir qual tipo de driver utilizar para acessar a interface USB
com o propósito de aquisição de dados em tempo real. Essa decisão considera vários
fatores, como o tipo de transferência USB (isócrona, de controle, interrupta ou
massiva), o firmware da placa de aquisição de dados e o aplicativo no computador.
Utilizar um driver HID é bastante conveniente devido a sua disponibilidade nativa no
sistema operacional, mas insuficiente em velocidade para a aquisição de dados em
tempo real. Por outro lado, a conexão isócrona da USB possui características adequadas
para o objetivo considerado, mas falta um driver para ela. [EMBEDDEDRELATED
2007]

 Existem soluções de drivers genéricos para qualquer dispositivo USB. Uma é o
USBIO [THESYCON 2007] da empresa Thesycon Software & Services GmbH e a
outra é o Lib-USB [LIBUSB 2007]. Os drivers genéricos costumam ser compostos de
um arquivo .SYS, que é o driver propriamente dito, e outro .DLL, que disponibiliza os
recursos da camada de driver para os aplicativos. O Lib-USB, de distribuição livre,
existe em versões para Linux e para Windows, porém não suporta conexões USB
isócronas. O USBIO é pago e custa 2500 euros.

 O uso de drivers genéricos apresenta vantagens em relação a drivers
personalizados que bem se adequam ao trabalho desenvolvido:

• independência de plataforma pois existem drivers para classes genéricas;

SBC 2008 202

• 100% Plug-and-Play pois não há intervenção do usuário;

• o tempo de desenvolvimento do dispositivo é reduzido por eliminar a necessidade de
criar um novo driver;

• a cada nova versão do Windows, o driver já será digitalmente assinado;

• já existe documentação sobre a utilização dos drivers genéricos, principalmente para
classes totalmente arraigadas no meio computacional, como áudio; e

• permite que os desenvolvedores focalizem-se no dispositivo e no aplicativo do
computador em vez de se preocupar com o meio de comunicação (no caso, USB).

 Para a parte de comando digital, já estava definido, desde o princípio, que uma
interface HID seria adequada. O sistema operacional já oferece suporte a ela. Já para a
aquisição, desejava-se transferência USB isócrona devido ao seu poder de garantia de
velocidade. As classes de dispositivos que se encaixam nesse perfil isócrono são as de
áudio e de vídeo. Preferiu-se a de áudio porque a de vídeo não seria suportada em
algumas versões do Windows. Com isso em mente, bastaria escrever um descritor USB
que se apresentasse como um microfone (Figura 1).

 Isto feito, conseguiu-se um dispositivo USB de duas interfaces: uma HID e outra
de ÁUDIO. Assim, o dispositivo é totalmente Plug-and-Play. A princípio, deve ser
compatível com todas as versões do Windows a partir do 98. O que restou era realizar
testes preliminares para se assegurar de que utilizar drivers genéricos de áudio do
sistema operacional garantissem perfeição ao conduzir os dados da placa de aquisição
de dados para o aplicativo no computador. A ponte entre a USB e a camada de
aplicação é formada por uma estrutura de drivers, os quais são chamados de “Kernel-
Mode WDM5 Audio Components” de acordo com a Microsoft, mas nem todos são
sempre utilizados ([MSDN2007a], [MSDN 2007b], [MSDN 2007c]).

Figure 1. Estrutura dos drivers de áudio USB

SBC 2008 203

 O importante é que a captura de “som” via USB não passe pelo KMixer, o que já
é feito por padrão. Esse driver faz a mistura de canais de fluxo de mídia do sistema
operacional e poderia ocasionar distorção dos dados, o que é inadmissível tratando-se
de um sistema de aquisição. Para reprodução de som, a passagem pelo KMixer é
obrigatória. Com o DirectX, é possível pular o KMixer. Deve-se, então, haver atenção a
esse detalhe caso se deseje implementar um canal endpoint de controle de sinais via
sistema de som.

5. Configuração da USB para Aquisição de Dados
Com o objetivo de completar o sistema de aquisição, foi criado um software para
explorar, via USB, os recursos disponibilizados pela placa de aquisição de dados. Como
já foi mencionado, além da função de aquisição, uma outra, de trocas de dados
intermitentes (HID), foi também desenvolvida.

 A princípio, o software deveria utilizar somente a função de aquisição para gerar
gráficos na tela. Entretanto, houve a possibilidade de implementar o código de acesso à
interface HID, então ambas as funções da placa de aquisição de dados puderam ser
exploradas no aplicativo. Com a função HID, o programa poderia prover maneiras de
enviar e receber dados esporádicos, tais como botões liga-desliga e LEDs, se fosse o
caso, para alterar e obter estados da placa de aquisição de dados.

5.1. Aquisição de Dados

Neste trabalho, quando se refere à parte do sistema de aquisição no computador, fala-se
sobre sistema de som ou sistema de áudio. Ao mencionar essas expressões, deve-se
diretamente pensar no acesso ao dispositivo USB. Como já discutido, a estrutura de
multimídia do Windows foi utilizada como canal entre o hardware USB e a camada de
aplicativo. Então, imaginando-se um mapa entre o sistema de aquisição e o sistema de
som, as funções do programa resumem-se em: acessar dispositivos de som; obter os
dados de som; desenhar gráficos na tela. Para implementar essas funções no computador
nenhuma biblioteca nova precisa ser utilizada. Os sistemas de som são muito difundidos
no meio computacional.

5.2. Operação do Sistema de Som

O funcionamento básico de gravação de som no Windows é de forma assíncrona, ou
seja, não depende estritamente do tempo, mas sim da quantidade de dados que se obtém.
Depois de acessar o dispositivo, o Windows aciona o sistema de som para iniciar a
recepção dos dados representativos de amplitude de som e colocá-los em buffers.

 Quando um buffer estiver carregado, o Windows chama o aplicativo e
provavelmente haverá algum processamento com esses dados. Há algumas maneiras de
chamar o aplicativo para avisá-lo de que um buffer está pronto. A opção mais simples é
o programa ler um flag ligado pelo Windows até que um buffer fique carregado. Essa
opção certamente provoca alta carga de CPU, o que é completamente indesejado já que
se trata de um sistema de aquisição com restrições temporais. A segunda opção é
registrar o aplicativo como interceptador de mensagens do Windows

 A terceira opção, a mais comum a partir dos Windows de 32 bits, consiste em
criar uma thread suspensa com a lógica de processamento de som. A thread é ativada

SBC 2008 204

quando o Windows dispara um evento (CALLBACK) avisando o aplicativo de que o
buffer está pronto. Ela realiza as tarefas com aquele buffer e entra em suspensão à
espera de novos eventos. O aplicativo fica livre, sem processamento, enquanto o
Windows não o chama novamente. Com disparada vantagem, esta última opção foi a
utilizada. Uma explicação visual do que a terceira opção faz é sintetizada na Figura 2.

 O aplicativo deve apenas iniciar a gravação, esperar pelas chamadas de sistema
e desenhar os gráficos. A tarefa de obtenção dos dados da placa de aquisição de dados é
totalmente do sistema operacional aliado aos drivers do sistema de áudio.

Figure 2. Resumo de funcionamento da captura de dados

 O procedimento de captura exige que pelo menos um buffer seja entregue ao
sistema operacional (enquanto outra fica livre) para que, depois de preenchido, os dados
sejam transferidos para o aplicativo. A operação acontece de forma cíclica. Um dos
buffers sempre deve estar livre para que a thread possa lê-lo e desenhar os gráficos.
Depois disso e do sistema operacional entregar de volta um buffer cheio, aquele que
estava em uso pela thread é preparado e adicionado no lugar do anterior. A solução
adotada para dividir as tarefas de obtenção de dados e de desenho dos gráficos, através
de thread, exige a utilização de dois deles, no mínimo. O sistema de som admite
incontáveis buffers, mas há de se ponderar entre o consumo de memória RAM e o
desempenho de captura. Realizou-se medições nesse aspecto e os procedimentos e
resultados estão na próxima seção.

6. Medições no Protótipo
Tratando-se de um sistema de aquisição de dados em tempo real, com o qual pesquisas
serão realizadas e inferências teóricas sobre fenômenos diversos serão feitas baseadas
nos sinais registrados, ainda era necessário executar a etapa de testes e de validação dos
resultados para corrigir erros de planejamento e de implementação e para levantar
aspectos relativos às limitações de operação. Uma razão a mais para realizar testes sobre
o sistema de aquisição é a sua forma de implementação, a qual foi feita utilizando os
drivers de dispositivos de som nativos do sistema operacional, o que é incomum.

 Os testes estiveram focalizados no percurso desde um sinal aplicado na placa de
aquisição de dados até a exibição das amplitudes na tela do computador, visando
observar três aspectos: tempo real de atualização de telas; erros grosseiros de captura; e
continuidade de telas. A imagem obtida do aplicativo de aquisição desenvolvido neste

SBC 2008 205

projeto mostra o resultado que se esperava e o que se obteve com um sinal de onda
quadrada de 5 kHz injetado na entrada analógica da placa de aquisição de dados.

 Caso o único fator limitante de velocidade de transferência de dados fosse a
USB, poder-se-ia realizar aquisições com volume de dados no total de
aproximadamente 800 kbytes/s. A velocidade máxima alcançada com a conexão
isócrona USB chegou a 890 kbytes/s, mas essa é uma taxa sem garantia. Para 800
kbytes/s, então, uma aquisição de 4 canais a 16 bits poderia ser feita a 100 kHz.

 A lógica de funcionamento do sistema de aquisição é baseada nas mensagens
CALLBACK efetuadas pelo sistema operacional com destino para o aplicativo de
visualização de dados. A USB recebe os dados da placa de aquisição de dados, entrega
para os drivers de som que, por vez deles, despacham vetores para o aplicativo. Esses
vetores têm tamanhos definidos pelo usuário do aplicativo, escolhendo-os de acordo
com a largura da janela de tempo desejada para observar na tela.

 Uma das dúvidas surgidas com a implementação da tela de visualização dos
gráficos de aquisição era sobre a continuidade entre as telas. Ora, cada tela é um vetor.
No fundo queria-se ter certeza de que todos os vetores fossem concatenáveis porque,
apesar de uma imagem da tela representar corretamente um certo tempo de aquisição, é
necessário, além disso, unir todos os vetores representativos das telas em um único para
haver sua posterior gravação em arquivo.

 Deve-se ressaltar que esses mencionados vetores são os buffers do sistema de
som, e não da USB. A USB em conexão isócrona sempre transmite o mesmo número de
bytes em um frame, apesar disso não ocorrer em todos os frames. Os buffers de
recepção do sistema de som são independentes da USB e, inclusive, possuem tamanhos
e tratamentos diferentes. Partiu-se do pressuposto, baseado em testes preliminares, de
que a integridade de dados era garantida se dependesse apenas da USB. Caso houvesse
descontinuidade de telas, provavelmente seria responsabilidade do sistema de som. O
teste seria bem sucedido se a condição de continuidade de telas fosse satisfeita.

 Visando-se testar o sistema, algumas modificações tiveram de ser
implementadas. Na placa de aquisição de dados o programa envia um padrão fixo e
praticamente contínuo de dados. No aplicativo a condição para o êxito no teste é
verificada. Foi incluída uma opção para alterar a quantidade de buffers porque, apesar
desse valor ser ajustável, assumira-se que 2 era suficiente devido ao costume nessa
escolha na maioria dos softwares de acesso ao sistema de som. Ao realizar os primeiros
testes, percebeu-se que a suposição de que 2 buffers era suficiente estava incorreta.

6.1. Testes

A configuração do computador onde os testes ocorreram é: Processador AMD Sempron
64 2800+, 1,6 GHz; Memória RAM: 512 Mbytes; Sistema operacional: Windows XP
com Service Pack 2. Os primeiros testes mostraram que a condição de continuidade de
telas já falhava. O primeiro exemplo foi uma aquisição com janela de tempo de 500 ms
e com 2 buffers de som, no qual 400 aquisições foram perdidas.

 Percebeu-se que quanto menor o tamanho do buffer, mantendo-se a quantidade
deles, maior era a diferença. Esse fato conduziu à suposição de que a perda dos dados
estaria associada a algum excesso de carga de processamento em algum trecho no
caminho percorrido pelos dados nos drivers de som. Por conseqüência, de alguma

SBC 2008 206

forma, o número de buffers do sistema de som também teria alguma relação. O número
de buffers define quantos vetores comporão um buffer circular maior, que o sistema de
som utiliza para compartilhar os dados com a thread de montagem do gráfico do
aplicativo. Pelo mesmo motivo de compartilhamento, o número mínimo é 2. Com isso,
entende-se a razão de haver aumento de perdas de dados com a diminuição da janela de
período: o sistema de som fica incapaz de passar para o aplicativo todos os dados em
tempo hábil antes de reescrever um dos buffers com novos dados da USB.

 Desse modo, supõe-se que basta utilizar um número adequado de buffers para
evitar qualquer perda de dados. Realizando-se testes com números maiores, chegou-se a
conclusão de que isso é suficiente. Objetivando-se a análise da influência do número de
buffers e do tamanho da janela de tempo de exibição de gráfico sobre a perda de dados,
foi organizado um pequeno ambiente de testes com 24 cenários. Foram combinadas
janelas de tempo com 10 ms, 50 ms, 100 ms, 500 ms, 1 s e 5 s com buffers na
quantidade de 2, 4, 8 e 16. Em cada cenário, a aquisição foi executada durante mais de 1
minuto para, primeiramente, avaliar duas situações: Perdas de dados SEM intervenção
de usuário (aplicativo fica em primeiro plano) e perdas de dados COM intervenção de
usuário (aplicativos paralelos, troca de janelas e similares).

 Os resultados obtidos para a quantidade de pontos perdidos para cada uma das
situações estão resumidos nas tabelas 1 e 2. As perdas foram registradas com base na
diferença máxima obtida durante 1 minuto de execução do aplicativo. Nota-se, como
era esperado, que a utilização de outros aplicativos provoca maiores perdas de dados.

Tabela 1. Perdas de dados sem intervenção (em words)

 2 buffers 4 buffers 8 buffers 16 buffers

10 ms 1000 840 0 0

50 ms 520 0 0 0

100 ms 400 0 0 0

500 ms 400 0 0 0

1 s 480 0 0 0

5 s 480 0 0 0

Tabela 2. Perdas de dados com intervenção (em words)

 2 buffers 4 buffers 8 buffers 16 buffers

10 ms 2920 11960 4720 0

50 ms 1160 680 0 0

100 ms 1040 0 0 0

500 ms 400 0 0 0

1 s 3360 0 0 0

5 s 480 0 0 0

SBC 2008 207

7. Conclusões
Este artigo descreveu o funcionamento da USB como meio de comunicação direto entre
computador convencional e placa de aquisição de dados. A velocidade de transferência
de dados via USB, que deveria garantir, no mínimo, 100 kbytes/s entre dispositivo e
computador, foi de 890 kbytes/s através do bom aproveitamento dos drivers de som. Em
paralelo, a função HID implementada já oferece o suporte para que alguns dados de
controle sejam trocados entre o computador e a placa de aquisição de dados, além da
função de aquisição. Idealmente, o sistema operacional já deveria fornecer device
drivers adaptáveis genéricos para padrões como a USB, que é o que já acontece com o
Windows Vista parcialmente, apenas indispondo de conexões isócronas.

 De qualquer forma, os resultados deste trabalho mostram que, apesar de o
padrão USB ser aparentemente menos flexível do que as antigas interfaces de conexão,
tais como a RS-232, observa-se que a maior demanda de tempo de desenvolvimento de
um sistema USB completo é para o device driver. No entanto, como foi aqui descrito,
esse trabalho pode ser normalmente dispensado se os recursos próprios do sistema
operacional forem bem utilizados.

References
Axelson, J. L. (2005) “USB Complete: Everything You Need to Develop USB

Peripherals”. Lakeview Research, 3ª edition.

CIMM (2007) “Centro de Informação Metal Mecânica: Soldagem”,
http://www.cimm.com.br/cimm/didacticMaterial/soldagem.html, Setembro.

EMBEDDEDRELATED (2007) “LPC2148: What endpoint(s) (bulk or isochronous)
to choose for big amount of data ?”,
http://www.embeddedrelated.com/groups/lpc2000/show/8818.php, Setembro.

LIBUSB (2007) “LisbUsb-Win32”, http://libusb-win32.sourceforge.net/#about,
Setembro.

MSDN (2007) “Recording and Playing Waveform Audio”,
http://msdn.microsoft.com/archive/default.asp?url=/archive/enus/dnarmulmed/html/s
dn_spellit.asp, Setembro.

MSDN (2007) “Kernel-Mode WDM Audio Components”,
http://msdn2.microsoft.com/en-us/library/ms789375.aspx, Setembro.

MSDN (2007) “Wave and DirectSound Components”,
http://msdn2.microsoft.com/en-us/library/ms790062.aspx, Setembro.

THESYCON (2007) “USBIO - Reference Manual”,
http://www.thesycon.com/usbio/usbioman.pdf, Setembro.

SBC 2008 208

