
Sistema operacional embarcado eCos com suporte
a SMP para o processador Nios II

Maikon Adiles Fernandez Bueno1, Christiane Regina Soares Brasil1, Eduardo Marques1

1Instituto de Ciências Matemáticas e de Computação - Universidade de São Paulo (USP)
Caixa Postal 668 – 13560-970 – São Carlos – SP – Brazil

Abstract. The objective of this work consists on the exploration of the resources
offered by FPGAs for the development of a multiprocessed platform with the
purpose of parallel execution of tasks for robotic purpose. In this way, the eCos
operating system was modified, with the addition of new characteristics to sup-
port of the Symmetric Multiprocessing model, using three soft-Core Altera Nios
II processors. This platform was analyzed and validated through the execution
of parallel algorithms, emphasizing aspects of performance and flexibility com-
pared to other architectures.

Resumo. O propósito deste trabalho consiste no aproveitamento dos recursos
oferecidos pela FPGA para o desenvolvimento de uma plataforma multipro-
cessada com a finalidade de execução paralela de tarefas para a robótica.
Deste modo, o sistema operacional eCos foi modificado, com a agregação
de novas funcionalidades, para permitir o suporte do modelo Multiprocessa-
mento Simétrico, utilizando três processadores soft-core Nios II da Altera. Esta
plataforma foi analisada e validada por meio da execução de algoritmos para-
lelos, enfatizando aspectos de desempenho e flexibilidade em relação a outras
arquiteturas.

1. Introdução
A computação reconfigurável está marcando o desenvolvimento de hardware nos últimos
anos, e tornou-se um novo paradigma para a execução de tarefas em aplicações diferen-
ciadas. A tecnologia FPGA (Field Programmable Gate Array) tem evoluı́do significativa-
mente, alcançando elevados nı́veis de densidade, maior desempenho, e menor custo. Atu-
almente, as FPGAs podem possuir um conjunto com mais de 300.000 elementos lógicos
e uma freqüência de 500MHz [Altera 2004] [Altera 2006]. Esse avanço torna a FPGA
cada vez mais equiparável à tecnologia ASIC (Application Specific Integrated Circuit), a
qual por muitos anos tem liderado a fabricação de dispositivos.

Com o avanço tecnológico, as FPGAs apresentam nı́veis de desempenho cada vez
maiores, e muitos recursos são disponibilizados pelos fabricantes. O aumento de sua
capacidade lógica motiva a utilização de vários tipos de soluções para explorar as carac-
terı́sticas fı́sicas oferecidas. Uma dessas soluções baseia-se na utilização de processadores
especı́ficos ou mesmo de propósito geral implementados em FPGAs. Esses processadores
são conhecidos como soft processors, e eventualmente são elaborados por meio de dia-
gramas esquemáticos ou linguagens de descrição de hardware.

Uma placa de FPGA pode suportar diversos soft processors simultaneamente.
Essa arquitetura é conhecida como multiprocessador e permite a ampliação no número
de processos em execução paralela, aumentando o desempenho do sistema.

764

O sistema operacional possui a tarefa de controlar a execução dos processos nessa
plataforma, fornecendo métodos de sincronização para a exclusão mútua e ordenação de
eventos entre processos. Com isso, diversos algoritmos podem ser paralelizados, de modo
a utilizar a capacidade oferecida pela FPGA.

Deste modo, a expansão de ambientes propı́cios para execução de algorit-
mos, especificamente algoritmos utilizados em robótica móvel, podem oferecer grandes
benefı́cios na relação de flexibilidade alcançada com software e desempenho em tarefas
implementadas em hardware.

Com esse intuito, o principal objetivo deste trabalho consiste no projeto de um
sistema operacional capaz de suportar uma arquitetura multiprocessada em FPGA, sendo
capaz de gerenciar seus recursos de modo transparente. Para tanto, foi utilizando o sis-
tema operacional eCos (embedded Configurable operating system), no qual algumas fun-
cionalidades inerentes ao modelo SMP foram implementadas. A arquitetura base para
execução de processos utilizando o eCos foi composta por três processadores Nios II,
interligados por meio do barramento Avalon, com compartilhamento de memória, entre
outros periféricos.

Este trabalho, desenvolvido no Laboratório de Computação Reconfigurável
ICMC/USP, contribui para aferir a possibilidade de utilização de algoritmos da robótica
na arquitetura descrita, assim como, também para atingir maior desempenho em tarefas
executadas em FPGA, aumentando a aplicabilidade da computação reconfigurável.

2. Processadores em FPGA - Nios II
Processadores de propósito geral, na forma de ASICs, têm sido embutidos em placas de
FPGA projetadas atualmente. Esses tipos de processadores são chamados de hard proces-
sors. Os processadores implementados em FPGAs utilizando computação reconfigurável
são conhecidos como soft processors.

As principais fabricantes de FPGA Altera [Altera 2005] e Xilinx [Xilinx 2005],
disponibilizam três linhas de processadores implementados em FPGA, PicoBlaze, Mi-
croBlaze e Nios II, utilizado neste projeto.

Nios II consiste em um processador de 32-bits RISC de propósito geral, desen-
volvido para atender uma grande escala de dispositivos embarcados. As principais carac-
terı́sticas do Nios II são: conjunto de instruções, espaço de endereçamento e data path de
32-bits; 32 registradores de propósito geral; 32 fontes de interrupções externas; instruções
dedicadas ao cálculo de multiplicações com 64-bits e 128-bits; acesso a uma variedade
de periféricos on-chip, e interfaces para acesso a memórias e periféricos off-chip; oferece
cerca de 2 GBytes de espaço de endereçamento; e customização de até 256 instruções.

O fabricante oferece três linhas de processadores, com caracterı́sticas diferentes:
Nios II/f (versão rápida), Nios II/e (versão econômica) e Nios II/s (versão padrão).

As versões Nios II/s e Nios II/f oferecem ainda respectivamente 5 e 6 estágios de
pipeline, predições de salto estático e dinâmico. Ambas possuem cache de instruções e
somente a versão Nios II/f possui cache de dados, todas parametrizáveis. A versão Nios
II/e não possui muitas caracterı́sticas para o aumento de desempenho, entretanto possui
um tamanho menor em elementos lógicos (LE - Logic Elements), podendo ser utilizado
em quantidade maior em uma FPGA para o aumento do desempenho.

765

3. embedded Configurable operating system - eCos

A proposta oferecida por este trabalho, consiste na implementação de funcionalidades
no sistema operacional eCos (embedded Configurable operating system) que habilitem o
multiprocessamento utilizando o processador Nios II.

O eCos é um sistema operacional de tempo real, sob a licença pública
geral - GPL (General Public License), desenvolvido para atender aplicações
embarcadas. Possui um sistema configurável permitindo a parametrização
de seus recursos para satisfazer requisitos especı́ficos de uma determinada
aplicação[Hat 2003] [Veer and Dallaway 2001] [Garnett et al. 2003] [Massa 2002].

O eCos tem sido muito difundido e atualmente suporta muitas arquiteturas, in-
cluindo o processador Nios II. Apesar de comportar simultaneamente vários proces-
sadores em plataformas distintas, essa caracterı́stica ainda não está empregada para o
processador em questão.

4. Implementação do sistema

4.1. O hardware

A proposta inicial de hardware para avaliação da arquitetura (Figura 1), consiste em
três processadores Nios II/s, uma memória SDRAM, um Timer, três componentes JTAG
UARTs e um componente Mutex.

Figure 1. Arquitetura do sistema.

A plataforma utilizada foi a placa DE2, introduzida no mercado pela Altera, a qual
possui grande capacidade lógica para implementação de sistemas lógicos programáveis.
Sua principal finalidade é atender o mercado universitário, principalmente pela quantidade
de funções disponibilizadas e pelo preço reduzido do produto. A FPGA utilizada pela
placa consiste em Cyclone II 2C35, a qual possui capacidade 33.216 elementos lógicos,
com osciladores de 50MHz e 27MHz para fontes de clock [de2 2006].

766

4.2. Processadores

Nesse modelo existem três processadores Nios II/s com mesma capacidade de processa-
mento. Todos podem executar as threads e rotinas do sistema operacional. As distinções
concentram-se na execução do processo de boot e das rotinas de interrupção de tempo.

A CPU1 é responsável por iniciar o sistema operacional e deixar o ambiente
preparado para o inı́cio da execução dos demais processadores.

4.3. Interrupções

Na arquitetura de validação proposta, os principais componentes que geram interrupções
são as ligações inter-CPUs, a interface JTAG UART e o Timer, apresentadas na Tabela 1.

Componente Processadores/Prioridade
CPU1 CPU2 CPU3

(master)
Timer 0 - -

JTAG UART 1 0 0
inter-CPUs - 31 31

Table 1. Principais IRQs da arquitetura de validação.

O componente Timer emite uma interrupção a cada perı́odo de tempo pré-
configurado em momento de projeto. Nesta arquitetura o perı́odo de clock é 1 ms. A
CPU1 é o único processador que recebe eventos do Timer, e deve gerenciar a execução
das tarefas do sistema relacionadas ao tempo. Com a centralização desse controle na
CPU1, os demais processadores ficam livres para executar outras tarefas do sistema, sem
preocupar-se com o tratamento da interrupção.

O componente JTAG UART é responsável pela interface entre o processador Nios
II e o host. A utilização desse componente é obrigatório, e deve ser instanciado apenas
um por processador.

A comunicação entre os processadores estabelecida consiste na faculdade de
interrupção dos processadores escravos, pelo mestre. Essa interrupção é utilizada para
sinalizar a necessidade de troca da thread corrente em execução. Isto pode ocorrer quando
o tempo de execução dessa thread expira, ou quando existe outra com maior prioridade
que deve ser executada naquele momento.

4.4. Memória

A memória de aplicações Nios II, em sistemas monoprocessados ou multiprocessados, é
dividida nas seguintes seções: .text, .rodata, .rwdata, heap e stack, as quais são associa-
das a endereços fixos na memória, para cada processador. A divisão proposta para este
projeto, consiste em um único conjunto contendo essas seções, conforme a Figura 2.

A seção .text, responsável pelo armazenamento do código executável, é única, de
modo que todos os processadores podem compartilhar. Cada processador não deve exe-
cutar programas diferentes em seções separadas, mas sim, executar os códigos de threads
disparadas em um programa principal. Todo o multiprocessamento está diretamente rela-
cionado à execução das threads de uma única aplicação. Assim, as seções .rodata e
.rwdata, que armazenam respectivamente os dados constantes e variáveis do programa,
também são fixas e únicas.

767

Figure 2. Disposição da memória.

Para a área de heap, existe um ponteiro (heap1) no linker script que aponta para
o fim da região .rwdata. Esse ponteiro determina o inı́cio da área de memória reservada
à heap. Não existe um limite determinado para a área heap, sua extensão é determinada
pelo inı́cio da área da pilha, indicada pelo ponteiro cyg interrupt stack base no linker
script.

No modelo implementado, cada processador possui sua própria seção stack. O
registrador sp tem seu endereço decrementado a cada valor inserido na pilha. No momento
de boot, a CPU recebe uma fatia de espaço, com tamanho fixo, utilizado para essa seção,
de modo que o endereço inicial de sp está associado ao limite superior reservado à seção
stack. Neste projeto, a fatia de memória reservada para a pilha de cada processador,
consiste em um tamanho constante de 512 KB. Esse tamanho pode ser configurado para
um valor menor, dependendo do número de processadores presentes no sistema.

O primeiro processador que executa o código do sistema operacional reserva a
primeira fatia a partir do final da memória. Os valores são armazenados na pilha com
endereço decrescente.

O intervalo de memória de 0x00100020 a 0x00200020 está reservado para a
execução de uma aplicação de jump nos processadores slave, a qual desvia a execução
para o inı́cio da memória onde estão posicionadas as instruções de inicialização do sis-
tema operacional.

4.5. Sincronização
A base para implementação de primitivas de sincronização, normalmente consiste na
instrução Test-and-set, a qual realiza uma leitura e escrita em uma área de memória ato-
micamente, disponibilizada por alguns processadores. Essa instrução é necessária para os
métodos de exclusão mútua presentes no eCos, e seu suporte não é oferecido no proces-
sador Nios II.

Para a resolução desse problema, este projeto contempla a implementação de uma
macro que realiza essa operação. A atomicidade é garantida por meio de um mutex, com-
ponente presente no hardware do sistema, que é utilizado somente para esse propósito.

O mutex em hardware é um componente utilizado para exclusão mútua em sis-

768

temas com diversos processadores Nios II. Somente um processador por vez acessa o
mutex por meio de instruções stwio e ldwio. O componente possui os campos VALUE
e OWNER. Quando VALUE tem valor zero, o mutex pode ser escrito por qualquer pro-
cessador, incrementando esse valor. Quando um processador consegue escrever um valor
no campo VALUE, seu CPU-ID é gravado no campo OWNER e somente esse proces-
sador terá direito de escrita nesse componente. Para um processador conseguir acesso,
ele primeiramente tenta escrever um valor, e depois verifica se adquiriu a propriedade do
componente por meio do campo OWNER. Se OWNER tem o valor de seu ID, significa
que ele pode acessar a área de código em questão. Caso contrário não tem acesso.

Esse componente foi utilizado neste sistema operacional para implementar a
instrução Test-and-set (macro TAS). No momento da execução da macro, todas as
interrupções do processador corrente são desabilitadas, evitando que o mutex se torne
propriedade de um processador que está atendendo uma interrupção. Posteriormente, o
mutex é consultado, aguardando a liberação caso esteja ocupado. O valor atual da variável
passada para a macro é armazenado e atualizado para 1. O valor antigo é retornado, o mu-
tex é liberado e as interrupções são novamente habilitadas.

4.6. Sistema operacional

4.6.1. Boot

A inicialização do processador para o carregamento do sistema operacional é realizado
no momento que o processo é carregado na memória. Um sinal é enviado ao processador
para começar a executar.

A seqüência de inicialização do eCos está programada em assembly no arquivo
vector.s. Após a compilação do sistema operacional juntamente com a aplicação, a parte
binária relacionada a esse arquivo é disposta na memória logo após a seção do controle
de interrupções. Assim, esse código é o primeiro executado pelo processador quando o
processo é carregado.

A seguinte seqüência de inicialização do sistema operacional é executada:

1. Inicialização da cache e pilha: A cache de dados é inicializada para remover todas
as referências anteriores, evitando incoerência de dados. Entretanto, esse proce-
dimento não é necessário para o processador Nios II/s (padrão), que não possui
cache de dados. A inicialização da cache não é utilizada neste projeto. Após esse
passo, cada CPU recebe um espaço na memória destinado à pilha. O particiona-
mento é realizado com um tamanho fixo de 512 KB para cada processador. O
bloco com endereço de ordem mais significativa é reservado ao primeiro proces-
sador que executa esse processo, a CPU master. A pilha é iniciada a partir do
endereço limite superior reservado para o processador.

2. Chaveamento das CPUs: Todos os processadores, com exceção da CPU mas-
ter, ficam em espera ociosa até o momento de continuarem executando. A CPU
master executa o restante da inicialização normalmente, ativando o escalonador
e liberando as outras CPUs para execução. O controle de qual processador pode
executar é realizado por meio de uma variável, na qual cada bit corresponde ao
CPU-ID de um determinado processador. Um bit habilitado indica que a CPU,
cujo CPU-ID correspondente à sua posição, deve sair da espera ociosa e continuar

769

a execução. A CPU master libera a execução do restante das CPUs somente após
a ativação do escalonador.

3. Inicialização do eCos: Os objetos do sistema operacional são criados (escalona-
dor, interrupção, clock, entre outros), as rotinas para atendimento de interrupção
de tempo são associadas às IRQs correspondentes, e uma chamada é realizada à
função cyg start.

4. Inı́cio da execução da aplicação: Quando a função cyg start é chamada, a
rotina principal (cyg user start1) da aplicação é invocada fazendo inicializações,
criando threads e primitivas de sincronização e, se necessário, instalando roti-
nas de interrupção. Após sua execução, o escalonador é iniciado, habilitando as
interrupções e liberando os demais processadores para a execução.

5. SMP Startup: Realiza a inicialização de algumas variáveis relacionadas ao pro-
cessador que está em execução, instala as rotinas de atendimento à interrupção
inter-CPUs correspondente à IRQ 31 e inicia a execução das threads criadas pelo
processador master.

4.6.2. Escalonamento

O eCos possui dois algoritmos de escalonamento implementados atualmente, dentre os
quais um algoritmo especı́fico pode ser utilizado de acordo com a configuração desejada.
Os dois métodos de escalonamento são bitmap e MLQ (multi-level queue). Atualmente,
o SMP é suportado utilizando somente o algoritmo MLQ, utilizado neste projeto.

O sistema operacional recebe uma interrupção de tempo (tick) a cada 1 ms. Essa
interrupção é utilizada para o controle dos elementos de tempo real do eCos (Counters,
Clocks, Alarms e Timers), como também do escalonamento das threads (timeslice).

O eCos possui uma constante chamada CYGNUM KERNEL SCHED -
TIMESLICE TICKS, a qual armazena o número de ticks de duração para a execução
de uma thread antes que seja ativado o escalonamento de outra. Neste projeto essa cons-
tante corresponde ao valor 1000, de modo que as threads em execução são trocadas a cada
1 segundo. Essa troca é realizada por meio de interrupção inter-CPUs. A CPU master en-
via um pulso por meio de seu PIO de saı́da com o número correspondente da CPU cuja
thread deve ser trocada.

O kernel foi programado para ativar o timeslice somente quando todas as CPUs
entrarem em execução. Essa decisão de projeto está implementada para evitar proble-
mas de troca de threads no momento em que outra CPU inicia sua execução do sistema
operacional.

4.6.3. Interrupções de hardware

Para o controle de interrupção no eCos, cada vetor de interrupção é associado com uma
ISR (Interrupt Service Rotine), a qual é executada sempre que um evento de hardware
ocorre.

1A função cyg user start() normalmente é utilizada em aplicações para o eCos como substituta ao
main().

770

Entretanto, uma ISR não está apta a executar todos os serviços oferecidos pelo
kernel, somente uma pequena parte deles são disponibilizados às ISRs. Uma ISR não
pode desbloquear um processo. Quando é detectado o final de uma operação de E/S a
ISR pode iniciar a execução de uma DSR (Deferred Service Routine), a qual está apta a
executar mais rotinas do kernel.

Em qualquer evento de interrupção o processador deve executar a função
exception vector presente no vector.s. Seu código binário está posicionado na memória

no exception address do processador master.

Essa função examina os bits dos registradores estatus e ipending, verificando
se a interrupção foi de software ou hardware. No eCos existe um vetor de pon-
teiros para funções chamado hal vsr table, cujos ı́ndices 0 e 1 apontam respectiva-
mente para rotinas de interrupção de software (software exception handler) e hardware
(interrupt handler), declaradas em vector.s.

O eCos possui outro vetor, hal interrup handlers, que armazena a estrutura de
tratamento de interrupções para cada IRQ. A função interrupt handler salva o contexto
de execução e acessa o vetor hal interrup handlers utilizando como ı́ndice o número da
interrupção (IRQ). A função ISR correspondente é executada.

Posteriormente, a função interrupt end é iniciada. Essa rotina constitui parte do
controle de interrupção do kernel. Parte de seu código é protegido pelo chaveamento
do escalonador: cyg scheduler::lock(). A chamada ao cyg scheduler::unlock() inicia a
chamada a todas as DSRs pendentes, inclusive a DSR correspondente à interrupção em
questão.

Após essa seqüência, é realizada uma verificação da necessidade de escalona-
mento de uma nova thread para a execução. O escalonamento pode ocorrer por dois
motivos: tempo de execução da thread alcançado e chegada de uma thread de maior prio-
ridade. Se uma nova thread é selecionada, o contexto da corrente é armazenado em sua
própria pilha, e o contexto da nova thread é carregado. Caso contrário, o contexto da
thread atual salvo antes da execução da interrupção é carregado, de modo que a execução
retorna ao ponto onde foi interrompida.

Quando os processadores recebem uma interrupção cuja IRQ é 31, executam as
funções ISR e DSR responsáveis pela troca de thread devido ao tempo de execução
excedido. Essa interrupção é enviada aos processadores pela CPU master que con-
trola o escalonador. A função DSR, relacionada a essa interrupção, executa a rotina
cyg scheduler timeslice cpu que seleciona uma nova thread para execução. Ao final da
execução de cyg scheduler::unlock(), os contextos são trocados e a nova thread entra em
execução.

4.6.4. Coerência de dados em cache

A utilização de processadores com cache de dados carece de mecanismos que promovam
a coerência dos dados lidos e armazenados na memória. Dos três tipos de processadores,
o Nios II/s foi utilizado neste projeto, mas somente o Nios II/f possui cache de dados.

Neste caso, como não existe nenhum componente da Altera que forneça mecanis-

771

mos para coerência, existem dois métodos que poderiam ser utilizados para evitar que os
dados fossem armazenados ou buscados na cache do processador:

1. Bit 31 dos endereços de memória: O bit mais significativo dos endereços de
memória é utilizado para ativar o cache bypass. Todas as referências a endereços
com esse bit ativado não são buscados e nem armazenados na cache.

2. Instruções ldwio/stwio: Existe um parâmetro de compilação -mbypass-cache que
troca todas as intruções ldw/stw por ldwio/stwio. Essas instruções são interpre-
tadas pelo processador como instruções de acesso a dispostivos de I/O, enquanto
que ldw/stw são utilizadas especificamente para acesso à memória. Na execução
das instruções ldwio/stwio, o processador despreza a existência da cache e envia
os dados, ou requisita-os, diretamente pelo barramento.

5. Resultados

A validação desse projeto de suporte a SMP no eCos foi justificada por meio da
implementação de alguns algoritmos paralelos para a prova de conceito. Dentre os
quais estão o algoritmo PSRS - Parallel Sorting by Regular Sampling e o algoritmo de
multiplicação de matrizes. Nesta seção a execução dos dois algoritmos está descrita.

5.1. O algoritmo PSRS

O PSRS consiste em um algoritmo de ordenação que considera uma arquitetura multipro-
cessada com p processadores [Shi and Schaeffer 1992] [Li et al. 1993].

Os tempos resultantes de execução desse algoritmo nos três processadores são
comparados com os tempos do algoritmo Quicksort em um processador.

Para a implementação, foram utilizados dois vetores de inteiros armazenados na
heap, os quais possuem o mesmo número de elementos. Esses vetores são inicializados
com valores aleatórios, sendo que ambos possuem o mesmo conjunto de elementos.

A memória disponı́vel para o armazenamento dos vetores inicia a partir do
endereço 0x00200020, devido à área reservada para a aplicação de jump. O endereço final
consiste no limite entre a pilha e a heap. Para os testes, a pilha de cada processador está
configurada para 1 KB, a área reservada para a pilha é de 3072 Bytes. A memória possui
8 MB (seu endereço final é 0x00800000), de modo que o inı́cio da área da pilha está no
endereço 0x007FF400. O espaço livre para o armazenamento de dados é (0x007FF400 -
0x00200020) = 0x5FF3E0 (6288352) Bytes. Considerando dois vetores de inteiros, sendo
4 Bytes cada elemento, poderiam ser armazendos 786044 elementos para cada vetor.

São iniciadas três threads, cada uma é executada em um processador. A execução
do algoritmo somente é iniciada quando os três processadores estão iniciados, devido a
ativação do timeslice. Como o evento de timeslice envolve operações de I/O, os resultados
da execução de algoritmos sem sua ativação podem ser muito melhores. Esse planeja-
mento assegura que os resultados obtidos pelo algoritmo Quicksort são compatı́veis com
os resultados do PSRS, com a mesma condição do ambiente.

A estimativa do tempo de execução dos algoritmos foi realizada por meio da
função cyg current time(), a qual retorna o número de ticks corrente da CPU master.
O perı́odo entre cada tick é 1 ms. Sendo assim, visando uma estimativa aproximada,

772

considera-se o retorno da função cyg current time() sendo o tempo do sistema mensu-
rado em milissegundos.

As métricas utilizadas para análise da qualidade do paralelismo são Speedup e
eficiência. O Speedup é utilizado para verificar o ganho de desempenho obtido com o uso
de uma aplicação paralela em relação à aplicação seqüencial mais rápida que executa a
mesma tarefa. A eficiência estima o aproveitamento de tempo do algoritmo paralelo nos
processadores [Quinn 1994].

Os algoritmos Quicksort e PSRS foram executados sobre dois vetores distintos.
Nas estimativas, os tamanhos dos vetores variam de 50 a 700000 elementos. Os experi-
mentos foram executados dez vezes para cada número de elementos. O tempo resultante
é a média dos tempos alcançados nas dez execuções. Os resultados estão apresentados na
Tabela 2.

Elementos Quicksort (ms) PSRS (ms) Desvio Padrão Desvio Padrão Speedup (S(3)) Eficiência (E(3))
Quick (ms) PSRS (ms)

50 1.9 2 0.32 0.00 0.950 0.317
100 2.6 2.7 0.52 0.48 0.963 0.321
500 12 7.5 0.00 0.53 1.600 0.533
1000 27 16.7 0.00 0.48 1.617 0.539
5000 141.2 89.6 0.42 0.52 1.576 0.525

10000 332.6 207.1 0.52 0.32 1.606 0.535
50000 1868.7 1108.1 0.48 0.57 1.686 0.562
100000 3840.4 2329 0.52 1.33 1.649 0.550
200000 8425.6 4815.7 0.97 1.49 1.750 0.583
300000 13379.3 7500.3 0.48 1.49 1.784 0.595
400000 18152.2 10105.4 0.79 2.46 1.796 0.599
500000 24627 13427.8 0.67 4.32 1.834 0.611
600000 29657 15752 1.15 2.91 1.883 0.628
700000 35770.8 18972.8 0.42 3.36 1.885 0.628

Table 2. Tempos de execução dos algoritmos de ordenação.

De acordo com os resultados alcançados, o algoritmo PSRS tem seu aproveita-
mento relacionado com o número de elementos ordenados. O aumento da quantidade de
elementos ocasionou um aumento nos valores de ı́ndices para Speedup e Eficiência. Os
melhores ı́ndices foram alcançados para conjuntos de valores com os maiores números de
elementos.

Os algoritmos poderiam ter tempos menores de execução se a interrupção de
tempo fosse desabilitada. Entretanto, essa interrupção é necessária para mensurar o
próprio tempo de execução por meio da função cyg current time().

O armazenamento dos dois vetores em memórias on-chip, localizadas na própria
FPGA, também acarretaria menores tempo de execução. Se os elementos lógicos dessa
memória fossem utilizados para compor outros processadores no sistema, isso também
poderia melhorar os tempos de execução.

5.2. O algoritmo de multiplicação de matrizes
Outro algoritmo utilizado para a validação da implementação é a multiplicação de ma-
trizes. Para os testes, duas matrizes quadradas de elementos inteiros foram multiplicadas,
cujo N variou de 5 a 600.

Foi alocado espaço na memória para três matrizes, duas delas foram iniciadas com
valores aleatórios e a terceira é a matriz resultante da multiplicação. O armazenamento

773

Figure 3. Tempos de execução dos algoritmos PSRS e Quick Sort.

é realizado a partir do endereço 0x00200020 e o número N máximo é 600, para evitar
ultrapassar área máxima de 0x5FF3E0 Bytes disponı́vel para armazenamento.

Na execução foram considerados os mesmos fatores descritos para o algoritmo
PSRS. A execução seqüencial somente é iniciada quando os três processadores são ini-
ciados, pois neste momento o timeslice é ativado. Deste modo, o algoritmo seqüencial
possui as mesmas condições de execução do algoritmo paralelo de multiplicação.

Após a execução do algoritmo seqüencial é inicada a multiplicação paralela.
A estimativa de todos os tempos de execução foi realizada por meio da função
cyg current time(), sendo que os algoritmos foram executados dez vezes para cada N,
e os valores considerados consistem em médias dessas execuções. Os resultados estão
apresentados na Tabela 3.

Elementos (N) Multiplicação Multiplicação Desvio Padrão Desvio Padrão Speedup Eficiência
Seqüêncial (ms) Paralela (ms) Seqüêncial (ms) Paralela (ms) (S(3)) (E(3))

5 1 1 0.00 0.00 1.000 0.333
10 3 1 0.00 0.00 3.000 1.000
20 17 9.4 0.00 0.84 1.809 0.603
40 126.6 83.8 1.96 0.42 1.511 0.504

100 2012.2 1288.5 0.42 21.01 1.562 0.521
200 16225.3 9208.2 36.00 365.54 1.762 0.587
300 54829.8 34785.6 0.42 183.02 1.576 0.525
400 129961 86979.4 0.67 48.24 1.494 0.498
500 253897.2 151716 6.75 85.21 1.674 0.558
600 410572.2 184469.4 14.87 6249.82 2.226 0.742

Table 3. Tempos de execução dos algoritmos de multiplicação de matrizes.

De acordo com os resultados obtidos(Figura 4), a variação do speedup e da
eficiência não é crescente de modo contı́nuo para o aumento de N. Entretanto, pode ser
notado que esses valores são maiores para valores maiores de N. Quando N é 600, o
valor de speedup é 2.226 e a eficiência é 0.742, denotando um maior ganho e um maior
aproveitamento dos processadores em relação aos resultados alcançados com o algoritmo

774

de ordenação paralela.

Figure 4. Tempos de execução dos algoritmos de multiplicação de matrizes
Seqüencial e Paralela.

6. Conclusão
Este artigo apresentou a descrição da implementação de suporte a SMP no sistema
operacional eCos para o processador Nios II. Este trabalho foi motivado, entre outros
fatores, pela possibilidade de utilizar a capacidade da FPGA para comportar diversos
processadores executando tarefas paralelamente, especificamente algoritmos inerentes à
robótica, os quais necessitam de mais de um processador Nios II para alcançarem um de-
sempenho aceitável [Gates 2007]. Em virtude disso, utiliza-se a arquitetura paralela SMP,
a qual apresentou melhores condições para implementação entre os modelos analisados.

Para validação do projeto, foram implementadas algumas aplicações parale-
las, dentre as quais está o algoritmo de ordenação paralela PSRS e o algoritmo de
multiplicação de matrizes. De acordo com os resultados obtidos, o modelo SMP, com
os três processadores gerenciados pelo sistema operacional eCos, obteve um rendimento
compatı́vel com o número de elementos utilizados nos algoritmos. No PSRS, quanto
maior o número de elementos utilizados, maiores os ı́ndices de speedup e eficiência
alcançados. Os melhores resultados foram 0.628 para eficiência e 1.885 para speedup,
na ordenação de 700000 elementos. Na multiplicação de matrizes os melhores resultados
alcançados foram 0.742 para eficiência e 2.226 para speedup com N igual a 600, os quais
demonstram a capacidade de processamento da arquitetura implementada.

Desta forma, este projeto contribui para a utilização da flexibilidade do software
unida ao desempenho alcançado no paralelismo entre diversos processadores implemen-
tados em hardware na FPGA. Tal implementação pode ser utilizada para finalidades diver-
sas, entre as quais podem ser citadas sistemas de robótica embarcados, cujos algoritmos
carecem de grande capacidade de processamento e de concorrência no processamento de
sensores.

775

References
(2006). DE2 Development and Education Board: User Manual. ALTERA Corporation,

San Jose, CA.

Altera (2004). The industry s fastest fpgas. Disponı́vel em: http://www.altera.com/-
products/devices/stratix2/features/performance/st2-performance.html. Acesso em
março de 2005.

Altera (2005). Fpga, cpld, and structured asic devices; altera, the leader in programmable
logic. Disponı́vel em http://www.altera.com. Acesso em fevereiro de 2005.

Altera (2006). Stratix iii fpgas. http://www.altera.com/products/devices/stratix3/st3-
index.jsp. Acesso em fevereiro de 2007.

Garnett, N., Larmour, J., Lunn, A., Thomas, G., and Veer, B. (2003). ecos reference
manual. Disponı́vel em: http://ecos.sourceware.org/docs-2.0/pdf/ecos-2.0-ref-a4.pdf.
Acesso em fevereiro de 2005.

Gates, B. (2007). A robot in every home. Scientific American.
http://www.sciam.com/article.cfm?chanID=sa006&colID=1&articleID=9312A198-
E7F2-99DF-31DA639D6C4BA567. Acesso em fevereiro de 2007.

Hat, R. (2003). ecos user guide. Disponı́vel em: http://ecos.sourceware.org/docs-
2.0/pdf/ecos-2.0-user-guide-a4.pdf. Acesso em fevereiro de 2005.

Li, X., Lu, P., Schaeffer, J., Shillington, J., Wong, P. S., and Shi, H. (1993). On the
versatility of parallel sorting by regular sampling. Parallel Computing, 19(10):1079–
1103.

Massa, A. J. (2002). Embedded Software Development with eCos. Prentice Hall, 1th
edition edition.

Quinn, M. J. (1994). Parallel Computing. McGraw Hill, New York, 2 edition.

Shi, H. and Schaeffer, J. (1992). Parallel Sorting by Regular Sampling. Journal of Parallel
and Distributed Computing, 14(4):361–372.

Veer, B. and Dallaway, J. (2001). The ecos component writer´s guide. Disponı́vel
em: http://ecos.sourceware.org/docs-2.0/pdf/ecos-2.0-cdl-guide-a4.pdf. Acesso em
fevereiro de 2005.

Xilinx (2005). Xilinx: Programmable logic devices, fpga and cpld. Disponı́vel em
http://www.xilinx.com. Acesso em fevereiro de 2005.

776

