f = Anais do XXVIl Congresso da SBC 30 de junho a 06 de julho de 2007
e e WSO o IV Workshop de Sistemas Operacionais Rio de Janeiro, R

Sistema operacional embarcado eCos com suporte
a SMP para o processador Nios 11

Maikon Adiles Fernandez Bueno', Christiane Regina Soares Brasil!, Eduardo Marques'

"nstituto de Ciéncias Matematicas e de Computagio - Universidade de Sdo Paulo (USP)
Caixa Postal 668 — 13560-970 — Sao Carlos — SP — Brazil

Abstract. The objective of this work consists on the exploration of the resources
offered by FPGAs for the development of a multiprocessed platform with the
purpose of parallel execution of tasks for robotic purpose. In this way, the eCos
operating system was modified, with the addition of new characteristics to sup-
port of the Symmetric Multiprocessing model, using three soft-Core Altera Nios
Il processors. This platform was analyzed and validated through the execution
of parallel algorithms, emphasizing aspects of performance and flexibility com-
pared to other architectures.

Resumo. O propdsito deste trabalho consiste no aproveitamento dos recursos
oferecidos pela FPGA para o desenvolvimento de uma plataforma multipro-
cessada com a finalidade de execucdo paralela de tarefas para a robdtica.
Deste modo, o sistema operacional eCos foi modificado, com a agregacdo
de novas funcionalidades, para permitir o suporte do modelo Multiprocessa-
mento Simétrico, utilizando trés processadores soft-core Nios Il da Altera. Esta
plataforma foi analisada e validada por meio da execucdo de algoritmos para-
lelos, enfatizando aspectos de desempenho e flexibilidade em relacdo a outras
arquiteturas.

1. Introducao

A computacao reconfiguravel estd marcando o desenvolvimento de hardware nos dltimos
anos, e tornou-se um novo paradigma para a execucao de tarefas em aplicacoes diferen-
ciadas. A tecnologia FPGA (Field Programmable Gate Array) tem evoluido significativa-
mente, alcancando elevados niveis de densidade, maior desempenho, € menor custo. Atu-
almente, as FPGAs podem possuir um conjunto com mais de 300.000 elementos 16gicos
e uma freqiiéncia de SOOMHz [Altera 2004] [Altera 2006]. Esse avanco torna a FPGA
cada vez mais equiparavel a tecnologia ASIC (Application Specific Integrated Circuit), a
qual por muitos anos tem liderado a fabricacdo de dispositivos.

Com o avanco tecnoldgico, as FPGAs apresentam niveis de desempenho cada vez
maiores, € muitos recursos sao disponibilizados pelos fabricantes. O aumento de sua
capacidade l6gica motiva a utilizacdo de vérios tipos de solucdes para explorar as carac-
teristicas fisicas oferecidas. Uma dessas solugdes baseia-se na utilizagdo de processadores
especificos ou mesmo de proposito geral implementados em FPGAs. Esses processadores
sdao conhecidos como soft processors, e eventualmente sao elaborados por meio de dia-
gramas esquematicos ou linguagens de descricdo de hardware.

Uma placa de FPGA pode suportar diversos soft processors simultaneamente.
Essa arquitetura € conhecida como multiprocessador e permite a ampliagdo no nimero
de processos em execugao paralela, aumentando o desempenho do sistema.

764

ff\;-"'f-\ Anais do XXVIl Congresso da SBC 30 de junhe a 06 de julho de 2007
- e e WSO o IV Workshop de Sistemas Operacionais Rio de Janeiro, R

O sistema operacional possui a tarefa de controlar a execucao dos processos nessa
plataforma, fornecendo métodos de sincronizagdo para a exclusdo mutua e ordenacdo de
eventos entre processos. Com isso, diversos algoritmos podem ser paralelizados, de modo
a utilizar a capacidade oferecida pela FPGA.

Deste modo, a expansdo de ambientes propicios para execucdo de algorit-
mos, especificamente algoritmos utilizados em robdtica mével, podem oferecer grandes
beneficios na relagdo de flexibilidade alcancada com software e desempenho em tarefas
implementadas em hardware.

Com esse intuito, o principal objetivo deste trabalho consiste no projeto de um
sistema operacional capaz de suportar uma arquitetura multiprocessada em FPGA, sendo
capaz de gerenciar seus recursos de modo transparente. Para tanto, foi utilizando o sis-
tema operacional eCos (embedded Configurable operating system), no qual algumas fun-
cionalidades inerentes ao modelo SMP foram implementadas. A arquitetura base para
execucdo de processos utilizando o eCos foi composta por trés processadores Nios II,
interligados por meio do barramento Avalon, com compartilhamento de memoria, entre
outros periféricos.

Este trabalho, desenvolvido no Laboratério de Computagdo Reconfigurdvel
ICMC/USP, contribui para aferir a possibilidade de utilizacdo de algoritmos da robdtica
na arquitetura descrita, assim como, também para atingir maior desempenho em tarefas
executadas em FPGA, aumentando a aplicabilidade da computacdo reconfiguravel.

2. Processadores em FPGA - Nios 11

Processadores de proposito geral, na forma de ASICs, tém sido embutidos em placas de
FPGA projetadas atualmente. Esses tipos de processadores sao chamados de hard proces-
sors. Os processadores implementados em FPGAs utilizando computacio reconfigurdvel
sao conhecidos como soft processors.

As principais fabricantes de FPGA Altera [Altera 2005] e Xilinx [Xilinx 2005],
disponibilizam trés linhas de processadores implementados em FPGA, PicoBlaze, Mi-
croBlaze e Nios II, utilizado neste projeto.

Nios II consiste em um processador de 32-bits RISC de proposito geral, desen-
volvido para atender uma grande escala de dispositivos embarcados. As principais carac-
teristicas do Nios II sdo: conjunto de instrugdes, espaco de enderecamento e data path de
32-bits; 32 registradores de propoésito geral; 32 fontes de interrupgdes externas; instrucoes
dedicadas ao célculo de multiplicagdes com 64-bits e 128-bits; acesso a uma variedade
de periféricos on-chip, e interfaces para acesso a memorias e periféricos off-chip; oferece
cerca de 2 GBytes de espaco de enderecamento; e customizacao de até 256 instrucoes.

O fabricante oferece trés linhas de processadores, com caracteristicas diferentes:
Nios II/f (versao répida), Nios Il/e (versao econdmica) e Nios I1/s (versao padrdo).

As versoes Nios II/s e Nios II/f oferecem ainda respectivamente 5 e 6 estagios de
pipeline, predicdes de salto estdtico e dindmico. Ambas possuem cache de instrugdes e
somente a versdao Nios II/f possui cache de dados, todas parametrizaveis. A versao Nios
II/e ndo possui muitas caracteristicas para o aumento de desempenho, entretanto possui
um tamanho menor em elementos 16gicos (LE - Logic Elements), podendo ser utilizado
em quantidade maior em uma FPGA para o aumento do desempenho.

765

IV Workshop de Sistemas Operacionais

f"\"/_-'\ Anais do XXVIl Congresso da SBC
- SBC 2007 ™. b1V

30 de junho a 06 de julho de 2007
Rio de Janeiro, R

3. embedded Configurable operating system - eCos

A proposta oferecida por este trabalho, consiste na implementacdo de funcionalidades
no sistema operacional eCos (embedded Configurable operating system) que habilitem o
multiprocessamento utilizando o processador Nios II.

O eCos € um sistema operacional de tempo real, sob a licenca publica
geral - GPL (General Public License), desenvolvido para atender aplicacdes
embarcadas. Possui um sistema configurdvel permitindo a parametrizacao
de seus recursos para satisfazer requisitos especificos de uma determinada
aplicacao[Hat 2003] [Veer and Dallaway 2001] [Garnett et al. 2003] [Massa 2002].

O eCos tem sido muito difundido e atualmente suporta muitas arquiteturas, in-
cluindo o processador Nios II. Apesar de comportar simultaneamente varios proces-
sadores em plataformas distintas, essa caracteristica ainda ndo estd empregada para o
processador em questao.

4. Implementacao do sistema

4.1. O hardware

A proposta inicial de hardware para avaliagdo da arquitetura (Figura 1), consiste em
trés processadores Nios 1I/s, uma memodria SDRAM, um Timer, trés componentes JTAG
UARTSs e um componente Mutex.

FPGA
| APLICAGAD
SDRAM | SISTEMA OPERACIONAL - eCos
1
i L
CPU1 CPU2 CPU3
Nios Il [| Niosli Nios Il
Tl ¥ TF
L1 1
TIMER
+ . P
7 ! : Mutex
JTAG UART JTAG UART | JTAG UART
CONTROLADOR JTAG
Cabo
HOST HUSB - Blaster
SERVIDOR JTAG
Nios Il
Terminal Nios Il IDE

Figure 1. Arquitetura do sistema.

A plataforma utilizada foi a placa DE2, introduzida no mercado pela Altera, a qual
possui grande capacidade l6gica para implementacao de sistemas ldgicos programaveis.
Sua principal finalidade € atender o mercado universitario, principalmente pela quantidade
de fun¢des disponibilizadas e pelo preco reduzido do produto. A FPGA utilizada pela
placa consiste em Cyclone II 2C35, a qual possui capacidade 33.216 elementos 16gicos,
com osciladores de S0MHz e 27MHz para fontes de clock [de2 2006].

766

f = Anais do XXVIl Congresso da SBC 30 de junho a 06 de julho de 2007
e e WSO o IV Workshop de Sistemas Operacionais Rio de Janeiro, R

4.2. Processadores

Nesse modelo existem trés processadores Nios II/s com mesma capacidade de processa-
mento. Todos podem executar as threads e rotinas do sistema operacional. As distingdes
concentram-se na execucao do processo de boot e das rotinas de interrupg¢ao de tempo.

A CPUI1 ¢é responsavel por iniciar o sistema operacional e deixar o ambiente
preparado para o inicio da execucao dos demais processadores.
4.3. Interrupcoes

Na arquitetura de validacdo proposta, os principais componentes que geram interrupgoes
sdo as ligacoes inter-CPUs, a interface JTAG UART e o Timer, apresentadas na Tabela 1.

[Componente [Processadores/Prioridade

CPU1 CPU2 | CPU3
(master)

Timer 0 - -
JTAG UART 1 0 0
inter-CPUs - 31 31

Table 1. Principais IRQs da arquitetura de validacao.

O componente 7imer emite uma interrup¢do a cada periodo de tempo pré-
configurado em momento de projeto. Nesta arquitetura o periodo de clock € 1 ms. A
CPUI € o unico processador que recebe eventos do Timer, e deve gerenciar a execugao
das tarefas do sistema relacionadas ao tempo. Com a centralizacdo desse controle na
CPU1, os demais processadores ficam livres para executar outras tarefas do sistema, sem
preocupar-se com o tratamento da interrupcao.

O componente JTAG UART ¢ responsavel pela interface entre o processador Nios
IT e o host. A utilizagdo desse componente é obrigatério, e deve ser instanciado apenas
um por processador.

A comunicagdo entre os processadores estabelecida consiste na faculdade de
interrupcao dos processadores escravos, pelo mestre. Essa interrupgdo € utilizada para
sinalizar a necessidade de troca da thread corrente em execugao. Isto pode ocorrer quando
o tempo de execucdo dessa thread expira, ou quando existe outra com maior prioridade
que deve ser executada naquele momento.

4.4. Memoria

A memoria de aplicagdes Nios II, em sistemas monoprocessados ou multiprocessados, €
dividida nas seguintes se¢Oes: .text, .rodata, .rwdata, heap e stack, as quais sao associa-
das a enderecos fixos na memoria, para cada processador. A divis@o proposta para este
projeto, consiste em um tnico conjunto contendo essas se¢des, conforme a Figura 2.

A secdo .text, responsavel pelo armazenamento do codigo executdvel, € unica, de
modo que todos os processadores podem compartilhar. Cada processador ndo deve exe-
cutar programas diferentes em sec¢des separadas, mas sim, executar os codigos de threads
disparadas em um programa principal. Todo o multiprocessamento estd diretamente rela-
cionado a execugdo das threads de uma Unica aplicacdo. Assim, as secdes .rodata e
.rwdata, que armazenam respectivamente os dados constantes e varidveis do programa,
também sao fixas e unicas.

767

f o Anais do XXVIl Congresso da SBC 30 de junho a 06 de julho de 2007
= e e WSO o IV Workshop de Sistemas Operacionais Rio de Janeiro, R

. e {ms-m-} 0x0080000C
i TcPuz
P CcPU3
stack
heap
0x0020002C
0x00100020
rwdata
rodata
text 0x00000000

Figure 2. Disposicao da memdria.

Para a 4rea de heap, existe um ponteiro (__heapl) no linker script que aponta para
o fim da regido .rwdata. Esse ponteiro determina o inicio da area de memoria reservada
a heap. Nao existe um limite determinado para a area heap, sua extensao € determinada
pelo inicio da 4rea da pilha, indicada pelo ponteiro cyg_interrupt_stack_base no linker
script.

No modelo implementado, cada processador possui sua propria se¢ao stack. O
registrador sp tem seu endereco decrementado a cada valor inserido na pilha. No momento
de boot, a CPU recebe uma fatia de espago, com tamanho fixo, utilizado para essa secao,
de modo que o endereco inicial de sp estd associado ao limite superior reservado a se¢ao
stack. Neste projeto, a fatia de memoria reservada para a pilha de cada processador,
consiste em um tamanho constante de 512 KB. Esse tamanho pode ser configurado para
um valor menor, dependendo do nimero de processadores presentes no sistema.

O primeiro processador que executa o codigo do sistema operacional reserva a
primeira fatia a partir do final da memodria. Os valores sdo armazenados na pilha com
endereco decrescente.

O intervalo de memoéria de 0x00100020 a 0x00200020 estd reservado para a
execucdo de uma aplicacdo de jump nos processadores slave, a qual desvia a execugao
para o inicio da memodria onde estdo posicionadas as instru¢des de inicializa¢do do sis-
tema operacional.

4.5. Sincronizacao

A base para implementacdo de primitivas de sincroniza¢do, normalmente consiste na
instrucdo Test-and-set, a qual realiza uma leitura e escrita em uma area de memoria ato-
micamente, disponibilizada por alguns processadores. Essa instru¢do € necessaria para os
métodos de exclusdo mutua presentes no eCos, € seu suporte nao € oferecido no proces-
sador Nios II.

Para a resolucao desse problema, este projeto contempla a implementagao de uma
macro que realiza essa operagdo. A atomicidade € garantida por meio de um mutex, com-
ponente presente no hardware do sistema, que € utilizado somente para esse proposito.

O mutex em hardware € um componente utilizado para exclusao mutua em sis-

768

f = Anais do XXVIl Congresso da SBC 30 de junho a 06 de julho de 2007
e e WSO o IV Workshop de Sistemas Operacionais Rio de Janeiro, R

temas com diversos processadores Nios II. Somente um processador por vez acessa o
mutex por meio de instrucdes stwio e ldwio. O componente possui os campos VALUE
e OWNER. Quando VALUE tem valor zero, o mutex pode ser escrito por qualquer pro-
cessador, incrementando esse valor. Quando um processador consegue escrever um valor
no campo VALUE, seu CPU-ID ¢ gravado no campo OWNER e somente esse proces-
sador terd direito de escrita nesse componente. Para um processador conseguir acesso,
ele primeiramente tenta escrever um valor, e depois verifica se adquiriu a propriedade do
componente por meio do campo OWNER. Se OWNER tem o valor de seu ID, significa
que ele pode acessar a drea de c6digo em questdao. Caso contrario nao tem acesso.

Esse componente foi utilizado neste sistema operacional para implementar a
instrugdo Test-and-set (macro TAS). No momento da execugdo da macro, todas as
interrupcdes do processador corrente sdo desabilitadas, evitando que o mutex se torne
propriedade de um processador que estd atendendo uma interrup¢ao. Posteriormente, o
mutex é consultado, aguardando a liberagado caso esteja ocupado. O valor atual da varidvel
passada para a macro € armazenado e atualizado para 1. O valor antigo € retornado, o mu-
tex € liberado e as interrup¢des sdo novamente habilitadas.

4.6. Sistema operacional
4.6.1. Boot

A inicializa¢do do processador para o carregamento do sistema operacional é realizado
no momento que o processo € carregado na memoria. Um sinal € enviado ao processador
para comecar a executar.

A seqiiéncia de inicializacdo do eCos estd programada em assembly no arquivo
vector.s. Ap6s a compilacao do sistema operacional juntamente com a aplicacdo, a parte
bindria relacionada a esse arquivo € disposta na memoria logo apds a se¢do do controle
de interrupcdes. Assim, esse codigo € o primeiro executado pelo processador quando o
processo € carregado.

A seguinte seqiiéncia de inicializa¢do do sistema operacional € executada:

1. Inicializacdo da cache e pilha: A cache de dados € inicializada para remover todas
as referéncias anteriores, evitando incoeréncia de dados. Entretanto, esse proce-
dimento ndo € necessario para o processador Nios II/s (padrdao), que nao possui
cache de dados. A inicializacdo da cache nao € utilizada neste projeto. Apos esse
passo, cada CPU recebe um espaco na memdria destinado a pilha. O particiona-
mento € realizado com um tamanho fixo de 512 KB para cada processador. O
bloco com endereco de ordem mais significativa € reservado ao primeiro proces-
sador que executa esse processo, a CPU master. A pilha € iniciada a partir do
endereco limite superior reservado para o processador.

2. Chaveamento das CPUs: Todos os processadores, com exce¢cdo da CPU mas-
ter, ficam em espera ociosa até o momento de continuarem executando. A CPU
master executa o restante da inicializagdo normalmente, ativando o escalonador
e liberando as outras CPUs para execucdo. O controle de qual processador pode
executar € realizado por meio de uma varidvel, na qual cada bit corresponde ao
CPU-ID de um determinado processador. Um bit habilitado indica que a CPU,
cujo CPU-ID correspondente a sua posicado, deve sair da espera ociosa e continuar

769

f = Anais do XXVIl Congresso da SBC 30 de junho a 06 de julho de 2007
e e WSO o IV Workshop de Sistemas Operacionais Rio de Janeiro, R

a execucao. A CPU master libera a execucdo do restante das CPUs somente apds
a ativagdo do escalonador.

3. Inicializacdo do eCos: Os objetos do sistema operacional sdo criados (escalona-
dor, interrupg¢do, clock, entre outros), as rotinas para atendimento de interrup¢ao
de tempo sdo associadas as IRQs correspondentes, e uma chamada € realizada a
funcgdo cyg_start.

4. Inicio da execucdo da aplicagdo: Quando a funcdo cyg_start é chamada, a
rotina principal (cyg_user_start') da aplicacio é invocada fazendo inicializacdes,
criando threads e primitivas de sincronizac¢do e, se necessdrio, instalando roti-
nas de interrup¢do. Apds sua execucdo, o escalonador € iniciado, habilitando as
interrupcoes e liberando os demais processadores para a execucao.

5. SMP Startup: Realiza a inicializagdo de algumas varidveis relacionadas ao pro-
cessador que estd em execucgdo, instala as rotinas de atendimento a interrup¢ao
inter-CPUs correspondente a IRQ 31 e inicia a execugdo das threads criadas pelo
processador master.

4.6.2. Escalonamento

O eCos possui dois algoritmos de escalonamento implementados atualmente, dentre os
quais um algoritmo especifico pode ser utilizado de acordo com a configuracdo desejada.
Os dois métodos de escalonamento sdo bitmap e MLQ (multi-level queue). Atualmente,
o SMP € suportado utilizando somente o algoritmo MLQ, utilizado neste projeto.

O sistema operacional recebe uma interrupcao de tempo (tick) a cada 1 ms. Essa
interrupg¢do € utilizada para o controle dos elementos de tempo real do eCos (Counters,
Clocks, Alarms e Timers), como também do escalonamento das threads (timeslice).

O eCos possui uma constante chamada CYGNUM_KERNEL_SCHED -
TIMESLICE _TICKS, a qual armazena o nimero de ticks de duracdo para a execucao
de uma thread antes que seja ativado o escalonamento de outra. Neste projeto essa cons-
tante corresponde ao valor 1000, de modo que as threads em execugdo sao trocadas a cada
1 segundo. Essa troca € realizada por meio de interrupc¢ao inter-CPUs. A CPU master en-
via um pulso por meio de seu PIO de saida com o nimero correspondente da CPU cuja
thread deve ser trocada.

O kernel foi programado para ativar o timeslice somente quando todas as CPUs
entrarem em execucao. Essa decisdo de projeto estd implementada para evitar proble-
mas de troca de threads no momento em que outra CPU inicia sua execucao do sistema
operacional.

4.6.3. Interrupcoes de hardware

Para o controle de interrup¢ao no eCos, cada vetor de interrupgdo € associado com uma
ISR (Interrupt Service Rotine), a qual € executada sempre que um evento de hardware
ocorre.

'A funciio cyg_user_start() normalmente é utilizada em aplicagdes para o eCos como substituta ao
main().

770

f = Anais do XXVIl Congresso da SBC 30 de junho a 06 de julho de 2007
e e WSO o IV Workshop de Sistemas Operacionais Rio de Janeiro, R

Entretanto, uma ISR ndo estd apta a executar todos os servigcos oferecidos pelo
kernel, somente uma pequena parte deles sdo disponibilizados as ISRs. Uma ISR ndo
pode desbloquear um processo. Quando € detectado o final de uma operacdo de E/S a
ISR pode iniciar a execu¢ao de uma DSR (Deferred Service Routine), a qual esta apta a
executar mais rotinas do kernel.

Em qualquer evento de interrupcdo o processador deve executar a funcio
_exception_vector presente no vector.s. Seu codigo bindrio estd posicionado na memoria
no exception address do processador master.

Essa funcido examina os bits dos registradores estatus e ipending, verificando
se a interrup¢do foi de software ou hardware. No eCos existe um vetor de pon-
teiros para fun¢des chamado hal_vsr_table, cujos indices 0 e 1 apontam respectiva-
mente para rotinas de interrup¢ao de software (_software_exception_handler) e hardware
(_interrupt_handler), declaradas em vector.s.

O eCos possui outro vetor, hal_interrup_handlers, que armazena a estrutura de
tratamento de interrup¢oes para cada IRQ. A func¢do _interrupt_handler salva o contexto
de execuc¢ao e acessa o vetor hal_interrup_handlers utilizando como indice o nimero da
interrupcao (IRQ). A funcao ISR correspondente é executada.

Posteriormente, a funcdo _interrupt_end € iniciada. Essa rotina constitui parte do
controle de interrup¢do do kernel. Parte de seu codigo € protegido pelo chaveamento
do escalonador: cyg_scheduler::lock(). A chamada ao cyg_scheduler::unlock() inicia a
chamada a todas as DSRs pendentes, inclusive a DSR correspondente a interrupg¢do em
questao.

ApOs essa seqiieéncia, € realizada uma verificacdo da necessidade de escalona-
mento de uma nova thread para a execugao. O escalonamento pode ocorrer por dois
motivos: tempo de execucado da thread alcangado e chegada de uma thread de maior prio-
ridade. Se uma nova thread € selecionada, o contexto da corrente € armazenado em sua
propria pilha, e o contexto da nova thread é carregado. Caso contrario, o contexto da
thread atual salvo antes da execucdo da interrupg¢do € carregado, de modo que a execugdo
retorna ao ponto onde foi interrompida.

Quando os processadores recebem uma interrup¢ao cuja IRQ € 31, executam as
funcdes ISR e DSR responsdveis pela troca de thread devido ao tempo de execugdo
excedido. Essa interrup¢do € enviada aos processadores pela CPU master que con-
trola o escalonador. A fungcdo DSR, relacionada a essa interrup¢do, executa a rotina
cyg _scheduler_timeslice_cpu que seleciona uma nova thread para execucdo. Ao final da
execucdo de cyg_scheduler::unlock(), os contextos sdo trocados e a nova thread entra em
execucao.

4.6.4. Coeréncia de dados em cache

A utilizagao de processadores com cache de dados carece de mecanismos que promovam
a coeréncia dos dados lidos e armazenados na memoria. Dos trés tipos de processadores,
o Nios II/s foi utilizado neste projeto, mas somente o Nios II/f possui cache de dados.

Neste caso, como ndo existe nenhum componente da Altera que forneca mecanis-

771

ff\;-"'f-\ Anais do XXVIl Congresso da SBC 30 de junhe a 06 de julho de 2007
- e e WSO o IV Workshop de Sistemas Operacionais Rio de Janeiro, R

mos para coeréncia, existem dois métodos que poderiam ser utilizados para evitar que os
dados fossem armazenados ou buscados na cache do processador:

1. Bit 31 dos enderecos de memodria: O bit mais significativo dos enderecos de
memoria € utilizado para ativar o cache bypass. Todas as referéncias a enderecos
com esse bit ativado nao sao buscados e nem armazenados na cache.

2. Instrugdes ldwio/stwio: Existe um parametro de compilagao -mbypass-cache que
troca todas as intrucdes ldw/stw por ldwio/stwio. Essas instru¢des sdo interpre-
tadas pelo processador como instru¢des de acesso a dispostivos de I/0, enquanto
que ldw/stw sdo utilizadas especificamente para acesso a memoria. Na execucgao
das instrucdes ldwio/stwio, o processador despreza a existéncia da cache e envia
os dados, ou requisita-os, diretamente pelo barramento.

5. Resultados

A validagdao desse projeto de suporte a SMP no eCos foi justificada por meio da
implementacdo de alguns algoritmos paralelos para a prova de conceito. Dentre os
quais estdo o algoritmo PSRS - Parallel Sorting by Regular Sampling e o algoritmo de
multiplicacdo de matrizes. Nesta se¢do a execugao dos dois algoritmos esta descrita.

5.1. O algoritmo PSRS

O PSRS consiste em um algoritmo de ordena¢do que considera uma arquitetura multipro-
cessada com p processadores [Shi and Schaeffer 1992] [Li et al. 1993].

Os tempos resultantes de execugdo desse algoritmo nos trés processadores sao
comparados com os tempos do algoritmo Quicksort em um processador.

Para a implementacdo, foram utilizados dois vetores de inteiros armazenados na
heap, os quais possuem o mesmo numero de elementos. Esses vetores sdo inicializados
com valores aleatorios, sendo que ambos possuem o mesmo conjunto de elementos.

A memoria disponivel para o armazenamento dos vetores inicia a partir do
endereco 0x00200020, devido a area reservada para a aplicacdo de jump. O endereco final
consiste no limite entre a pilha e a heap. Para os testes, a pilha de cada processador estd
configurada para 1 KB, a area reservada para a pilha é de 3072 Bytes. A memoria possui
8 MB (seu endereco final ¢ 0x00800000), de modo que o inicio da area da pilha estd no
endereco 0x007FF400. O espaco livre para o armazenamento de dados € (0x007FF400 -
0x00200020) = 0x5FF3EO0 (6288352) Bytes. Considerando dois vetores de inteiros, sendo
4 Bytes cada elemento, poderiam ser armazendos 786044 elementos para cada vetor.

Sao iniciadas trés threads, cada uma € executada em um processador. A execugao
do algoritmo somente € iniciada quando os trés processadores estdo iniciados, devido a
ativacao do timeslice. Como o evento de timeslice envolve operacgdes de 1/0, os resultados
da execugdo de algoritmos sem sua ativacao podem ser muito melhores. Esse planeja-
mento assegura que os resultados obtidos pelo algoritmo Quicksort sdo compativeis com
os resultados do PSRS, com a mesma condi¢ao do ambiente.

A estimativa do tempo de execugdo dos algoritmos foi realizada por meio da
funcdo cyg_current_time(), a qual retorna o numero de ticks corrente da CPU master.
O periodo entre cada tick € 1 ms. Sendo assim, visando uma estimativa aproximada,

772

f = Anais do XXVIl Congresso da SBC 30 de junho a 06 de julho de 2007
e e WSO o IV Workshop de Sistemas Operacionais Rio de Janeiro, R

considera-se o retorno da funcdo cyg_current_time() sendo o tempo do sistema mensu-
rado em milissegundos.

As métricas utilizadas para analise da qualidade do paralelismo sdo Speedup e
eficiéncia. O Speedup € utilizado para verificar o ganho de desempenho obtido com o uso
de uma aplicacdo paralela em relacdo a aplicacdo seqiiencial mais rdpida que executa a
mesma tarefa. A eficiéncia estima o aproveitamento de tempo do algoritmo paralelo nos
processadores [Quinn 1994].

Os algoritmos Quicksort e PSRS foram executados sobre dois vetores distintos.
Nas estimativas, os tamanhos dos vetores variam de 50 a 700000 elementos. Os experi-
mentos foram executados dez vezes para cada niimero de elementos. O tempo resultante
¢ a média dos tempos alcangados nas dez execugdes. Os resultados estdo apresentados na

Tabela 2.
Elementos | Quicksort (ms) | PSRS (ms) | Desvio Padrao | Desvio Padrao | Speedup (S(3)) | Eficiéncia (E(3))
Quick (ms) PSRS (ms)

50 1.9 2 0.32 0.00 0.950 0.317

100 2.6 2.7 0.52 0.48 0.963 0.321
500 12 7.5 0.00 0.53 1.600 0.533
1000 27 16.7 0.00 0.48 1.617 0.539
5000 141.2 89.6 0.42 0.52 1.576 0.525
10000 332.6 207.1 0.52 0.32 1.606 0.535
50000 1868.7 1108.1 0.48 0.57 1.686 0.562
100000 3840.4 2329 0.52 1.33 1.649 0.550
200000 8425.6 4815.7 0.97 1.49 1.750 0.583
300000 13379.3 7500.3 0.48 1.49 1.784 0.595
400000 18152.2 10105.4 0.79 2.46 1.796 0.599
500000 24627 13427.8 0.67 4.32 1.834 0.611
600000 29657 15752 1.15 291 1.883 0.628
700000 35770.8 18972.8 0.42 3.36 1.885 0.628

Table 2. Tempos de execucao dos algoritmos de ordenacao.

De acordo com os resultados alcangados, o algoritmo PSRS tem seu aproveita-
mento relacionado com o nimero de elementos ordenados. O aumento da quantidade de
elementos ocasionou um aumento nos valores de indices para Speedup e Eficiéncia. Os
melhores indices foram alcancados para conjuntos de valores com os maiores nimeros de
elementos.

Os algoritmos poderiam ter tempos menores de execucdo se a interrup¢do de
tempo fosse desabilitada. Entretanto, essa interrup¢do € necessiria para mensurar o
proprio tempo de execucdo por meio da funcao cyg_current_time().

O armazenamento dos dois vetores em memorias on-chip, localizadas na prépria
FPGA, também acarretaria menores tempo de execugdo. Se os elementos 16gicos dessa
memoria fossem utilizados para compor outros processadores no sistema, isso também
poderia melhorar os tempos de execucao.

5.2. O algoritmo de multiplicacao de matrizes

Outro algoritmo utilizado para a validagdo da implementacdo € a multiplicacdo de ma-
trizes. Para os testes, duas matrizes quadradas de elementos inteiros foram multiplicadas,
cujo N variou de 5 a 600.

Foi alocado espaco na memoria para trés matrizes, duas delas foram iniciadas com
valores aleatdrios e a terceira € a matriz resultante da multiplicacdo. O armazenamento

773

/’\;/_-,_\ Anais do XXVIl Congresso da SBC 30 de junho a 06 de julho de 2007
- e e WSO o IV Workshop de Sistemas Operacionais Rio de Janesiro,)

40000

35000 =

30000

25000 /

20000 /
—=PSPs

15000

10000 /,/

5000 /

a0 100 500 1000 5000 10000 50000 100000 200000 300000 400000 500000 600000 700000
NOmero de elementos

Tempe (ms)

Figure 3. Tempos de execucao dos algoritmos PSRS e Quick Sort.

€ realizado a partir do endereco 0x00200020 e o nimero N méximo € 600, para evitar
ultrapassar area maxima de OxSFF3EO Bytes disponivel para armazenamento.

Na execuc¢do foram considerados os mesmos fatores descritos para o algoritmo
PSRS. A execucdo seqiiencial somente € iniciada quando os trés processadores sao ini-
ciados, pois neste momento o timeslice é ativado. Deste modo, o algoritmo seqiiencial
possui as mesmas condi¢des de execugao do algoritmo paralelo de multiplicagdo.

Ap6s a execugdo do algoritmo seqiiencial € inicada a multiplicacdo paralela.
A estimativa de todos os tempos de execucdo foi realizada por meio da funcdo
cyg_current_time(), sendo que os algoritmos foram executados dez vezes para cada N,
e os valores considerados consistem em médias dessas execucgdes. Os resultados estdao
apresentados na Tabela 3.

Elementos (N) Multiplicacao Multiplicacdo | Desvio Padrao | Desvio Padrao | Speedup | Eficiéncia

Seqiiéncial (ms) | Paralela (ms) | Seqiiéncial (ms) Paralela (ms) (S(3)) (E(3))

5 1 1 0.00 0.00 1.000 0.333
10 3 1 0.00 0.00 3.000 1.000
20 17 9.4 0.00 0.84 1.809 0.603
40 126.6 83.8 1.96 0.42 1.511 0.504
100 2012.2 1288.5 0.42 21.01 1.562 0.521
200 16225.3 9208.2 36.00 365.54 1.762 0.587
300 54829.8 34785.6 0.42 183.02 1.576 0.525
400 129961 86979.4 0.67 48.24 1.494 0.498
500 253897.2 151716 6.75 85.21 1.674 0.558
600 410572.2 184469.4 14.87 6249.82 2.226 0.742

Table 3. Tempos de execucao dos algoritmos de multiplicacao de matrizes.

De acordo com os resultados obtidos(Figura 4), a variacdo do speedup e da
eficiéncia nao é crescente de modo continuo para o aumento de N. Entretanto, pode ser
notado que esses valores sdo maiores para valores maiores de N. Quando N € 600, o
valor de speedup € 2.226 e a eficiéncia é 0.742, denotando um maior ganho e um maior
aproveitamento dos processadores em relacdo aos resultados alcangados com o algoritmo

774

/’\;/_-,._\ Anais do XXVIl Congresso da SBC 30 de junho a 06 de julho de 2007
- e e WSO o IV Workshop de Sistemas Operacionais

Rio de Janeiro, R.J

de ordenacdo paralela.

450000

400000 4

350000

300000

N

250000

—— Multiplicagao Sequencig
—=— Multiplicagéo Paralela

Tempe (ms)

200000

150000 /
100000 /
77
50000 /
i : : : T / .

5 10 20 40 100 200 300 400 500 600
N

Figure 4. Tempos de execucao dos algoritmos de multiplicacao de matrizes
Seqiiencial e Paralela.

6. Conclusao

Este artigo apresentou a descricdo da implementacdo de suporte a SMP no sistema
operacional eCos para o processador Nios II. Este trabalho foi motivado, entre outros
fatores, pela possibilidade de utilizar a capacidade da FPGA para comportar diversos
processadores executando tarefas paralelamente, especificamente algoritmos inerentes a
robdética, os quais necessitam de mais de um processador Nios II para alcangarem um de-
sempenho aceitavel [Gates 2007]. Em virtude disso, utiliza-se a arquitetura paralela SMP,
a qual apresentou melhores condicdes para implementagdo entre os modelos analisados.

Para validacdo do projeto, foram implementadas algumas aplicagdes parale-
las, dentre as quais estd o algoritmo de ordenacdo paralela PSRS e o algoritmo de
multiplicacdo de matrizes. De acordo com os resultados obtidos, o modelo SMP, com
os trés processadores gerenciados pelo sistema operacional eCos, obteve um rendimento
compativel com o ndmero de elementos utilizados nos algoritmos. No PSRS, quanto
maior o nimero de elementos utilizados, maiores os indices de speedup e eficiéncia
alcancados. Os melhores resultados foram 0.628 para eficiéncia e 1.885 para speedup,
na ordenac¢ao de 700000 elementos. Na multiplicacdo de matrizes os melhores resultados
alcancados foram 0.742 para eficiéncia e 2.226 para speedup com N igual a 600, os quais
demonstram a capacidade de processamento da arquitetura implementada.

Desta forma, este projeto contribui para a utilizacdo da flexibilidade do software
unida ao desempenho alcangado no paralelismo entre diversos processadores implemen-
tados em hardware na FPGA. Tal implementacgdo pode ser utilizada para finalidades diver-
sas, entre as quais podem ser citadas sistemas de robdtica embarcados, cujos algoritmos
carecem de grande capacidade de processamento e de concorréncia no processamento de
sensores.

775

f o Anais do XXVIl Congresso da SBC 30 de junho a 06 de julho de 2007
= e e WSO o IV Workshop de Sistemas Operacionais Rio de Janeiro, R

References

(2006). DE2 Development and Education Board: User Manual. ALTERA Corporation,
San Jose, CA.

Altera (2004). The industry s fastest fpgas. Disponivel em: http://www.altera.com/-
products/devices/stratix2/features/performance/st2-performance.html. Acesso em
marco de 2005.

Altera (2005). Fpga, cpld, and structured asic devices; altera, the leader in programmable
logic. Disponivel em http://www.altera.com. Acesso em fevereiro de 2005.

Altera (2006). Stratix iii fpgas. http://www.altera.com/products/devices/stratix3/st3-
index.jsp. Acesso em fevereiro de 2007.

Garnett, N., Larmour, J., Lunn, A., Thomas, G., and Veer, B. (2003). ecos reference
manual. Disponivel em: http://ecos.sourceware.org/docs-2.0/pdf/ecos-2.0-ref-a4.pdf.
Acesso em fevereiro de 2005.

Gates, B. (2007). A robot in every home. Scientific American.
http://www.sciam.com/article.cfm?chanID=sa006&collD=1&articleID=9312A198-
E7F2-99DF-31DA639D6C4BAS567. Acesso em fevereiro de 2007.

Hat, R. (2003). ecos user guide. Disponivel em: http://ecos.sourceware.org/docs-
2.0/pdf/ecos-2.0-user-guide-a4.pdf. Acesso em fevereiro de 2005.

Li, X., Lu, P, Schaeffer, J., Shillington, J., Wong, P. S., and Shi, H. (1993). On the
versatility of parallel sorting by regular sampling. Parallel Computing, 19(10):1079-
1103.

Massa, A. J. (2002). Embedded Software Development with eCos. Prentice Hall, 1th
edition edition.

Quinn, M. J. (1994). Parallel Computing. McGraw Hill, New York, 2 edition.

Shi, H. and Schaeffer, J. (1992). Parallel Sorting by Regular Sampling. Journal of Parallel
and Distributed Computing, 14(4):361-372.

Veer, B. and Dallaway, J. (2001). The ecos component writer’s guide. Disponivel
em: http://ecos.sourceware.org/docs-2.0/pdf/ecos-2.0-cdl-guide-a4.pdf. Acesso em
fevereiro de 2005.

Xilinx (2005). Xilinx: Programmable logic devices, fpga and cpld. Disponivel em
http://www.xilinx.com. Acesso em fevereiro de 2005.

776

