M Anaig do XXVIl Congresso da SBC 30 de junho a 06 de julho de 2007
- e WSO o 1Y Workshop de Sistemas Operacionais Riz de Janeira, R

Técnicas de Emulago de peragdes de Ponto Flutuante em
Sistemas Operacionais Modernos

Lucas C. Villa Real' , Edson T. Midorikawa? , Marcelo K. Zuffo!

I Escola Politécnica da Universidade de Sao Paulo
LSI - Laboratorio de Sistemas Integraveis

{l'ucasvr, nkzuffo}@si . usp. br

2Escola Politécnica da Universidade de Sao Paulo
LAHPC - Laboratoério de Arquitetura e Computacao de Alto Desempenho

edson. m dori kawa@ol i . usp. br

Abstract. The diversity of platforms based on dedicated processors with diffe-
rent computation capabilities has motivated a great effort in the software market

to make it possible to use modern operating systems on such devices. These ef-
forts include the adequation and generalization of many internal sub-systems,
such as memory and process management and timers. This article presents an
analysis of the features available today in low level software to emulate floating
point operations on FPU-less hardware, focusing the study on the implementa-
tion of the GCC compiler and on the Linux kernel port for ARM processors.

Resumo. A diversidade de plataformas baseadas em processadores dedicados
e com diferentes poderes computacionais propiciou um grande esfor¢o no mer-
cado de software para tornar pdsgl o seu uso em sistemas operacionais mo-
dernos. Estes esforgos incluem a ade@ueg a generalizefp de sub-sistemas

de gerenciamento de ménm, processos, timers e diversos outros. Este traba-
Iho apresenta uma aatise do suporte existente hoje em softwai@sidns para
emular operages de ponto flutuante em arquiteturaéordotadas de uma uni-
dade de processamento deste tipo, com um estudo focado no compilador GCC
e no kernel Linux para processadores ARM.

1. Introducao

No mercado de sistemas embarcados, a demanda por computadores dedica-
dos e especializados fez crescer a indUstria de sistemas integrados em urohimico
(SoC) [Lahiri et al. 2000] nos Gltimos anos. Neste processo surgiram diversas variantes
de processadores com diferentes capacidades computacionais, como unidades desprovi-
das de gerenciamento de memoéria, DSPs dedicados ou suporte estendido de gerencia-
mento de energia para lidar com a economia de recursos. Muitos deles apresentaram
também variantes quanto a existéncia ou nao de uma unidade de processamento de ponto
flutuante (FPU), visto que muitas aplicacdes dedicadas nao lidam com este tipo de dado.

Integram hoje essa variedade de processadores nomes conhecidos como o Alpha,
ARM, MIPS, PowerPC, S390 e SPARC, presentes em diversos eletronicos de consumo
comoset-top-boxgscelulares e terminais de cartdao de crédito, entre out®arantir o

Na linha x86, os processadores desprovidos de FPU foram apenas o Intel i386/i486SX e o Cyrix
486DLC, que delegavam todo o processamento de ponto flutuante ao co-processador 387.

828

Anais do XXVIl Congresso da SBC 30 de junho a 08 de julho de 2007
2BC 200 WSO o IV Workshop de Sistemas Operacionaiz Riz de Janesiro, R

suporte a essa variedade de processadores sem FPU tornarmseyasftor importante
para que um sistema operacional moderno se adequle as plataformas embarcadas e tenha
uma maior aceitacao entre seus usuarios e desenvolvedores.

Entretanto, ao considerar que a maior parte das linguagens de programacao per-
mite o tratamento de dados em ponto flutuareai§), torna-se dificil garantir que qual-
quer software ou algoritmo que se deseja rodar nesta plataforma seja desprovido de tais
instrucdes — salvo casos nos quais eles tenham sido escritos especialmente para este hard-
ware [lordache and Tang 2003]. Essa garantia torna-se ainda mais dificil quando o pro-
cessador prevé, em seu conjunto de instrucdes, extensoes para lidar com ponto flutuante,
deixando, entretanto, sua implementacao a cargo dos fabricantes de hardware, que podem
adota-las ou nao.

O tratamento deste problema & especialmente importante quando se deseja geren-
ciar a distribuicao e a instalacao de pacotes binarios de software para este tipo de hard-
ware, visto que uma mesma familia de processadores pode ter variantes com e sem FPU.
Desta forma, torna-se necessario detectar ou simular as instru¢des de ponto flutuante,
evitando a parada do programa que as apresentou devido a execucao de uma instrucao
desconhecida. Este € o ponto principal abordado por este trabalho, que se organiza con-
forme apresentado na proxima secao.

2. Organizag@do

O artigo, na secao 3, apresenta os processadores ARM e as caracteristicas dos
seus co-processadores de ponto flutuante, usados como referéncia neste trabalho. Estas
sec¢Oes introduzem termos técnicos e conceitos apresentados no restante do texto e darao
uma base para a compreensao do modelo de implementacao de unidades de FPU em
processadores modernos.

A secao 4 trata de emuladores de ponto flutuante orientados a excec¢oes, disparadas
quando o processador decodifica uma instru¢ao nao suportada pelo mesmo. Este tipo de
evento acarreta a troca de contexto de execucao do processador, que passa a rodar no
modo privilegiado (de sistema), exigindo que a implementacao do emulador se concentre
no kerneldo sistema operacional. A referéncia para esta analise foi o emulador NWFPE
do kernel Linux 2.6.12, com a execuc¢ao de experimentos sendo feita em um processador
ARM XScale (PXA255).

A prbxima secao do artigo lida com a solu¢ao do problema no modo usuéario,
na implementacao do compilador. Nesta situacao, o compilador € instruido a nao gerar
instrucdes de ponto flutuante no codigo objeto, substituindo-as por chamadas para funcdes
internas que as implementam eficientemente através de opera¢des sobre inteiros. Em
tempo de execucao do programa estas fungdes sao resolvidas através de uma biblioteca
dinamica, criada no processo de instalagao do compilador, que se torna uma dependéncia
do executavel gerado. A implementacao de referéncia para esta emulacao foi o codigo do
compilador GCC 3.4.5 para processadores ARM.

Em seguida, nas secOes 6 e 7, sao apresentados resultados de desempenho e
prototipacdes para cada uma das metodologias abordadas. Uma analise dos impactos
de cada uma delas no sistema acompanha a discussao, mostrando os efeitos colaterais
observados e suas origens.

829

Anais do XXVIl Congresso da SBC 30 de junho a 08 de julho de 2007
2BC 200 WSO o IV Workshop de Sistemas Operacionaiz Riz de Janesiro, R

O artigo & entao concluido, na secao 8, apresentando um oegasntecnicas
abordadas e buscando definir questoeded#gnde um sistema operacional que tragam o
menor sobrecusto de implementacao, geréncia e tratamento dos problemas discutidos.

3. A Arquitetura ARM

O ARM & um processador RISC projetado para permitirimplementacdes de hard-
ware muito pequenas e de alto desempenho [Seal 2000]. Em funcao deste foco, os pro-
cessadores da sua familia geralmente apresentam um baixissimo consumo de energia,
sendo este um dos principais motivos pela sua presenca dominante entre os eletronicos de
consumo.

Um processador ARM possui 7 possiveis modos de execucao, que regulam e pro-
tegem o acesso aos diversos recursos do sistema. Sao eles:

e User: modo normal de execucao de programas, executa em modo nao-
privilegiado;

e FIQ: usado no tratamento rapido de interrup¢des, para transferéncias de dados de

alta velocidade,;

IRQ: usado para o tratamento de interrupcdes de proposito geral,

Supervisormodo protegido do sistema operacional;

Abort: usado na implementacao de memoéria virtual e/ou na prote¢cao de memoria;

Undefined:utilizado para a emulacao em software de co-processadores de hard-

ware ausentes;

e Systemexecuta tarefas privilegiadas do sistema operacional (disponivel na arqui-
tetura ARMv4 e superiores).

Quanto aos seus registradores, a arquitetura disponibiliza um total de 31 para
proposito geral. Destes, apenas 16 encontram-se visiveis em um dado instante; o res-
tante € usado para acelerar o processamento de excecdes. Estes registradores dividem-se
nos seguintes grupos:

e Unbanked registers:sao os registradores RO-R7. Eles sempre referenciam o
mesmo endereco de memoria real, independente do modo de execucao do pro-
cessador;

e Banked registerssao os registradores R8-R14. Diferentemente dos registradores
R0O-R7, os enderecos fisicos referenciados ponelgamde acordo com o modo
de execucao do processador. Isto permite que cada modo de execucao mantenha
um conjunto de trabalho individual, ndo compartilhado com os outros modos;

e Program counterassociado ao registrador R15.

z

O conjunto de instrucbes do ARM é dividido em duas partes: uma res-
ponsavel pel@ore, com instrugdes aritméticas, de condigcdes, safitagus load/store
movimentacao de dados, semaforos e de geracao de excecdes, e outra que define um con-
junto de instrucdes para a conversagao com co-processadores, escalavel até um maximo
de 16. Com isso, a arquitetura ganha flexibilidade, permitindo que ela cresca sem que
0 conjunto de instrugcdes se torne muito extenso com a adi¢ao de instrugcdes especializa-
das [Sloss et al. 2004].

Assim, fica a cargo de cada co-processador definir seu conjunto de instrucoes,
mantendo a arquitetura de instru¢des bastante modular. O ARM disponibiliza 5 instrucdes

830

Anais do XXVIl Congresso da SBC 30 de junho a 08 de julho de 2007
2BC 200 WSO o IV Workshop de Sistemas Operacionaiz Riz de Janesiro, R

como base para este protocolo de comunicacao, que permitararealescrita e lei-

tura de registradores do co-processador, operacdes sobre dados nele armazenados e a
movimentacao de dados entre o co-processador e registradores do ARM. Entre os ace-
leradores de ponto flutuante beneficiados por esta arquitetura estdao o ARM FPA10, o
FPA11 e o VFP, que representam as opc¢des de co-processadores de FPU disponiveis nas
implementacdes de processadores ARM.

A execucao de instrucdes de co-processador funciona com base em um simples
protocolo: ao executar uma delas, o ARM aguarda uma confirmacao (ACK) vinda do co-
processador para que ela possa ser executada. Caso nenhuma resposta seja recebida, uma
trap de instrucao indefinida ocorre, ocasionando a seguinte sequéncia de operacoes:

1. O endereco da proxima instrucado & armazenado no registrador R14 no banco do
modoUndefined

2. O processador entra no modadefined

3. O estado do processador & definido para o0 modo ARM

4. As interrupgcdes normais sao desabilitadast(interrupts ou FIQs, podem ocor-
rer);

5. A execucao é desviada para a funcao definida no vetor de interrupcoes;

6. A instrucao nao suportada é emulada;

7. O fluxo da execucgao continua a partir do endereco salvo previamente.

Nota-se que neste processo as interrup¢oes sao desabilitadas; elas geralmente per-
manecem assim até que o tratadortrdg decodifigue copcodeda instrucao, chame a
rotina pertinente e trate-a. Desta forma, este processo traz uma grande penalidade con-
sigo: o aumento da laténcia no tratamento de requisi¢cdes vindas de periféricos integrados
a plataforma.

4. Emuladores Orientados a Exceges

O NWFPE (NetWinder Floating Point Emulatpré um emulador de operacoes
matematicas com ponto flutuante para processadores ARM [Bambrough 2006]. Sua
implementacao segue a especificacao IEEE 754 [IEEE Standards Committee 754 1985],
dando suporte as operacdes de ponto flutuante com precisdes simples, dupla e dupla esten-
dida. O emulador se situa kernelLinux, funcionando a partir da geracao de excecoes,
conforme a seqgiiéncia de operacdes apresentada na secao anterior.

A rotina configurada no vetor de interrup¢des do ARM Linux para instrucoes in-
definidas verifica, primeiramente, se existe suporte para emulacao da operacao solicitada.
Caso haja, ela repassa a instrucao completa para a fungao de emulacao, que ira processa-
la em software atravées do NWFPE, armazenando o resultado no registrador de destino
informado. Neste ponto, kernelrepassa a execu¢ao para o modo usuario através de uma
nova troca de contexto, e o programa pode continuar a executar do ponto onde parou.

O retorno do emulador é feito através de dois possiveis pontos configurados pelo
kernel Caso a emulagao ocorra com sucesso, a execuc¢ao € desviada para a funcao
ret _fromexception(), e okemelse encarrega de retornar o controle da trap para o
codigo de usuario. Caso o emulador ndo a tenha emulado com sucesso, ele retorna através
da funcad pundefi nstr (), e okernelencerra o processo com ware dump

20 ARM tem dois modos de operacao: o modo ARM e o THUMB, que operam em 32 e 16 bits,
respectivamente.

831

Anais do XXVIl Congresso da SBC 30 de junho a 08 de julho de 2007
2BC 200 WSO o IV Workshop de Sistemas Operacionaiz Riz de Janesiro, R

Na entrada do emulador, o registraddiO apmta para uma area privada do pro-
cesso, onde workspacede ponto flutuante se encontra — € nesta area que o emulador
salva seus registradores durante as diversas chamadas do processo. O lpytebasia
area € usada como urflag para detectar a primeira vez que o processo usa ponto flu-
tuante. Com isso, 0 emulador nao precisa iniciar sua maquina de emulagao novamente,
visto que ja existe um contexto salvo e que pode ser restaurado rapidamente.

Para reduzir os custos de troca de contexto, o NWFPE busca por instrucdes de
ponto flutuante subsequientes a executada, caso ela tenha sido emulada com sucesso. Esse
laco de busca e emulacao se repete até que seja encontrada uma instru¢ao que nao envolva
ponto flutuante, fazendo com que a execucao retorne para o espaco de usuario. As chances
de que haja um agrupamento de instrucdes de ponto flutuante sao grandes, devido aos
esforcos do compilador GCC para otimizar a emulacao.

A emulacao propriamente dita é feita a partir da funcamGl at eAl | (), cha-
mada pela sub-rotinamul at e. Esta fungcao primeiramente verificapcodee, a partir
de sua decodificacao, a emulacao € direcionada para a rotina do co-processador identifi-
cado ou retorna um erro de instrucao invalida caso nao haja suporte para o co-processador
solicitado.

O processo de emulacao para uma operacao de soma usando precisao simples
pode ser resumido pelos seguintes passos, ja dentro da funcao de emulacao chamada pela
Emul ateAl | ():

1. Verificagcao de validade do tamanho do operador (simples, duplo ou duplo esten-

dido);

Configuracao da mascara de arredondamentos, caso tenha sido solicitado;

. Armazenamento da precisao solicitada;

4. Comparacao do tamanho dos operandos, usando o maior para fazer uso de toda a
precisao possivel,

5. Verificacao do tipo de precisao solicitada, encaminhando a emulacao para a funcao
correspondente — por exemplo, par&iangl eCPDOQ() no caso de emulacao
simples.

w N

Esta Gltima rotina faz uso de um vetor de ponteiros para funcdes, indexado pela
instrucao solicitada. Apbs passar por mais uma indirecao, a funcao de emulacao de soma
é finalmente invocada, recebendo os operandos dlagiaformando se a soma deve ser
negada antes de ser retornada.

O processo de emulacao atraves do NWFPE pode ser acompanhado pela Figura
1, que descreve os blocos principais do emulador.

5. Emuladores Implementados em Compiladores

Para arquiteturas que nao suportam ponto flutuante, & possivel instruir o compila-
dor GCC para que ele converta as intru¢cdes de ponto flutuante em chamadas de funcao
que as simulem. Estas funcdes sao implementadas pelo préprio compilador, e ficam dis-
poniveis nd i bgcc depois que o compilador € instalado. Desta forma, a emulacao, antes
feita através de excecodes e tratada felme| pode ser realizada totalmente em espaco
de usuario, sem o sobrecusto de trocas de contexto e decodificacdes eafragais

832

f i Anais do XXVIl Congresso da SBC 30 de junho a 08 de julho de 2007
e WSO o 1Y Workshop de Sistemas Operacionais Riz de Janesiro, R

Entrada do
emulador

Primeiro uso
do emulador?

Inicializa contexto
de emulagao

—)| Decodifica opcode |«

Instrucéo llegal, envia
SIGILL para o processo

/

Emulador reconhece
instrugao?

Operador/Operandos validos?

Emula instrugdo e
atualiza workspace

Y

Prefetch da préxima
instrugao

Retorno normal do
emulador

Instrugdo de ponto flutuante?

Figura 1. Blocos principais do emulador NWFPE.

Este siporte no GCC para o ARM conta hoje com duas implementacdes: uma
inteiramente feita na linguagem C e uma versao otimizada, escritassambly A
implementacao € escolhida durante a execucascdpt de configuracdo do GCC, que
incorpora a sua compilacao fragmentos da maquina alvo. Estes fragmentos sao descri-
tos em arquivos texto e permitem, entre outros parametros, definir a emulacao de ponto
flutuante [Stallman 1999].

Ambas as implementacOes suportam operacdes com precisao simples e du-
pla, representando os tipoBoat e double respectivamente. Assim como o
NWFPE, a implementacao do GCC segue o formato estabelecido pelo IEEE
754 [IEEE Standards Committee 754 1985], exceto para a geracao e manipulacao de
excecdes e para arredondamento de valores. Os segmentos de codigo a seguir ilustram
trechos de um executavel gerado neste modo, para um programa composto apenas de
uma operacao de soma entre dois valores de ponto flutuante [Chamberlain et al. 2004].

833

©o o] ~ [=2] o e w N [

L =
A W N P O

[
3]

S w N =

Anais do XXVIl Congresso da SBC
IV Workshop de Sistemas Operacionais

30 de junho a 06 de julho de 2007
Rio de Jansiro, RJ

0000848c<mairn>:
848c: ela0c00d mov ip, sp
8490: €92dd810 stmdb sp!, {r4, fp, ip, Ir, pc}
8494: e24cb004 sub fp, ip, #4
8498: €24dd010 sub sp, sp, #16
849c: e50b0014 str ro, [fp, #-20]
84a0: e50b1018 str rl, [fp, #-24]
84a4: e€59f3048 Idr r3, [pc, #72]
84a8: e50b301c str r3, [fp, #-28]
84ac: e59f3044 Idr r3, [pc, #68]
84b0: e50b3020 str r3, [fp, #-32]
84b4: e51b001c Idr ro, [fp, #-28]
84b8: €51b1020 Idr rl, [fp, #-32]
84bc: eb0000e4 bl 8854 <__addsf3>

(..)

Apobs iniciar a funcaorai n() , 0 programa armazena os dois operandos nos regis-
tradoreg O er 1, que em chamadas de fungao no ARM representam o primeiro e segundo
argumentos, respectivamente. Ao invés de apresentar uma operacao de ponto flutuante,
o executavel faz uma chamada a funczeddsf 3(), que ra conter as intrucdes de
emulacao correspondentes a implementacao selecionada durante a configura¢cao do com-
pilador:

00008504« __adddf3>:
8504: €1310003
8508: 0020c002

(..)

teq
eoreq

rl, r3
ip, r0, r2

Desta forma, o Gnico sobrecusto aléem da emulag¢ao propriamente dita & uma cha-
mada de funcao. Este modo de emulac¢ao & muito atraente do ponto de vista de desem-
penho. Os programas compilados com este recurso, entretanto, nao ganham vantagem
quando sao executados em uma maquina dotada de uma FPU, visto que todos os pontos
nos quais haveria instrucdes deste tipo foram substituidos por chamadas de func¢ao para
emula-las através de inteiros.

6. Medicbes e Resultados de Desempenho

Muitos dos softwares que compdem um sistema operacional orientaidsktop
realizam operag0es em ponto flutuante de alguma forma. Com a excecao de bibliotecas
especificas para o processamento de sinais, programas de simulacao e de calculo, a grande
maioria as utiliza de maneira bastante simples, envolvendo apenas as operacdes basicas
com o intuito de calcular médias, porcentagens, funcdesadlg alimentar sementes
aleatorias, etc. Esta classe de programas € o alvo das medicdes de desempenho realizadas,
apresentadas logo a seguir.

Para avaliar o desempenho das opera¢des aritméticas emuladas no ARM, foram
utilizadosbenchmarkslo software LMbench[McVoy and Staelin 1996]. O LMbench
consiste em um conjunto de ferramentas de teste basicos do sistema operacional e do

3http//www.bitmover.com/Imbench

834

30 de junho a 06 de julho de 2007
Rio de Jansiro, RJ

Anais do XXVIl Congresso da SBC
IV Workshop de Sistemas Operacionais

processador, medindo com bastante precisdao dados como datefaigura de banda

de aspectos como leitura/escrita de memoria, troca de contexto, manipulacao de sinais,

comunicacao na rede, entre outros. Ele & bastante popular entre os desenvolvedores de
sistemas operacionais livres, sendo este o outro motivo pela sua escolha para conduzir

estes experimentos [Brown and Seltzer 1997].

Dos testes relacionados a ponto flutuante, foram avaliadas as operacdes de soma,
multiplicacao, divisao e uma combinacao destasr(bg. As seguintes operacdes sao
realizadas pelo laco principal de cada um deles, sendo todas as variaveis fitmatipo
armazenadas em registradonesdi st er fl oat):

e somaf +=f; f += g;
e multiplicagao:f = f; f »= g;

e divisdao:f =g/ f; g=1 1/ gq;

e combo: x[i] = (1.0f + x[i]) *» (1.5Ff - x[i]) / x[i];, em

um laco expandido que manipula 10 posicdes do vetarcada iteracao do laco
principal. O laco expandido & executado 100 vezes a cada iteracao, na tentativa
da simulacado de aumentar a carga computacional para estimar a quantidade de
operacgdes por segundo que o processador & capaz de executar.

Todos os testes foram executados com zero milissegundos de tempaordep
O ambiente de execuc¢ao continha apehesadsde sistema como processos concorrentes
em um sistema mono-usuario (com apenas um processo interativo), no qual cada teste foi
executado 50 vezes, com 500 iteragdes no lago principal.

A plataforma dehardwareconsistiu em um ARM PXA 255, composto por um
processador Intel XScale sem unidade de ponto flutuante. O sistema operacional usado
para os testes foi um GoboLinux embedfdshseado n&ernel2.6.12-mm2 e na Glibc
2.3.6. Esta CPU teve sua frequencia calculada pelo LMbench em 396 MHz, com uma
precisao nalock de 2,5253 nano-segundos. Outras informacoes relevantes incluem sua
TLB e o tamanho da linha de cache, composta de 32 paginas e 32 bytes, respectivamente.

Os resultados obtidos das execucOes realizadas sobre o NWFPE e as
implementacdes do GCC sao vistos na Tabela 1, representados em unidades de nano-
segundos. Os desvios padrao obtidos ficaram dentro de 0,08 nano-segundos para as
operacOes de soma, divisao e multiplicacdo na biblioteca do GCC, contra 1,7 nano-
segundos no NWFPE. Os desvios constatados para as operagdes de combo foram de 2,15
e 8,94 nano-segundos para a libgcc e o NWFPE, respectivamente.

Tabela 1. Tempos de execu¢ &o no XScale, representados em nano-segundos

Soma | Multiplicagcao | Divisao | Combo

LibGCC/ASM 182,68 124,75 355,84 | 866,14
LibGCC/C 650,92 573,94 1013,45| 3098,50
NWFPE(Emulag¢ao) 700,08 939,05 1382,33| 6284,00
NWFPE(Total) | 1090,08] 1329,50 |1772,33| 6674,00

A primeira linha representa as medidas obtidas com a implen@néagssembly
da biblioteca do GCC, seguida pela implementacao original em C. A terceira linha indica

“http//embedded.gobolinux.org

835

Anais do XXVIl Congresso da SBC 30 de junho a 08 de julho de 2007
2BC 200 WSO o IV Workshop de Sistemas Operacionaiz Riz de Janesiro, R

os tempos de emulacao para o NWFEEscmsiderandoo tempo médio de uma troca

de contexto, estimado em 0,39 micro-segundos (390 nano-segundos) através da chamada
de sistemaet ppi d() . A (Gltima linha apresenta o tempo total (real) obtido com o
NWFPE, ou sejaconsiderandms tempos de troca de contexto. A Tabela 2 apresenta

o ganho de desempenho das estratégias implementadas em compilador em relacao ao
NWFPE. Este ganho foi calculado pela diferenca dos tempos de execucao em relacao ao
tempo total do NWFPE em pontos percentuais. Os valores obtidos mostram a diferenca
de desempenho em cada uma das implementagoes.

Tabela 2. Ganhos de desempenho em relag &o ao tempo total do NWFPE (em %)

Soma| Multiplicacao | Divisao | Combo

LibGCC/ASM 83,24 90,61 79,92 | 87,02
LibGCC/C 40,29 56,82 42,82 | 53,57
NWFPE(Emulacao) 35,78 29,36 22,00 | 5,84

Destacam-se nestas tabelas as grandes disparidades entre esimeduilacao.
Nota-se, a partir da comparacao da versao enassemblylo emulador na LibGCC, que
0 processo de otimizacao de codigo do compilador deixa muito a desejar, mesmo quando
configurado para utilizar rotinas especiais do processador alvo. Essa implementacao em
C, por sua vez, contrasta com a implementacao NWFPE do kernel Linux, escrita na
mesma linguagem, mesmo quando desconsiderados os tempos de trocas de contexto. Isto
explica-se de duas formas: o NWFPE tem o custo extra de decodificacapatmesia
instrucao, aléem de apresentar uma implementacao diferente da adotada no GCC.

A Ultima linha da Tabela 2 demonstra qual seria o ganho do emulador NWFPE
caso ele estivesse implementado em espaco de usuario. Nela, a melhora apresentada em
cada operacgao (soma, multiplicacdo, divisao e combo) indica a granularidade do célculo
realizado pelo emulador: quanto menor ela for, maior se torna o impacto das trocas de
contexto no tempo total da emulacao. A exemplo da emulacao de soma em ponto flutu-
ante feita pelo NWFPE, 35,78% do tempo total de execucao constitui-se puramente de
sobrecusto com trocas de contexto.

Considerando uma implementacao kemnelda LibGCC otimizada, somente o
tempo de trocas de contexto (390 nano-segundos) ja seria maior do que o da propria
emulacao para as operacdes de soma, multiplicacao e divisao; o esfor¢co no porte desta
infra-estrutura para kernelacaba por ndo compensar os possiveis ganhos em relagao ao
NWFPE.

7. Prototipagdes

Durante a concepgao deste trabalho foi implementada uma camada de
instrumentacdo do NWFPE, permitindo o acesso as estatisticas de seu uso através
do sistema de arquivosysf s®. O registro, acessivel através do arquivo
/ sys/ nwf pe/ count er, apresenta a quantidade de inicializacbes do estado da FPU
(revelando o numero de processos que ja utilizaram o emulador) e as instru¢des simula-
das, concentradas em trés grupos:

SDispanivel para download em http://lucasvr.gobolinux.org/arm/2.6.12-nwfpe-sysfs.patch

836

Anais do XXVIl Congresso da SBC 30 de junho a 08 de julho de 2007
2BC 200 WSO o IV Workshop de Sistemas Operacionaiz Riz de Janesiro, R

e CPDQO incrementado a cadapade aritmético monadico e diadico encontrado,
indicando operacOes com um e dois operandos, respectivamente.

e CPDT: incrementado a cadgcodede load/store;

e CPRT: incrementado quando uopcodede conversao, comparagao ou de trans-
feréncia entre registradores & encontrado.

Através da monitoracao deste arquivo foi possivel detectar a quantidade de
operacoes envolvidas nas simulacdes. Ele também permitiu identificar um problema in-
teressante — mesmo quando um programa nao fazia uso explicito de ponto flutuante, a
quantidade de excec¢des geradas aumentava durante sua execugao.

A razao para esta ocorréncia estava na Glibc, que nao havia sido compilada com
asoft-floatdo GCC. Assim, aléem de acessarem o estado de registradores usuais da plata-
forma, as operacddongj np() esetj np() também o faziam para os registradores
de ponto flutuanfe Como esses registradores nao existiam na plataforma de hardware
utilizada, o acesso a eles era emulado pelo NWFPE no kernel, gerando as emulacoes
reportadas pelo monitor desenvolvido.

Esta emulacao, entretanto, & bastante cara. Por serem muito usadas durante o
fluxo de execucao de um programa ocorréncia déraps e trocas de contexto acaba
acontecendo em grande nUmero — impedindo que o processador responda eficientemente
as interrupcdes de hardware em funcao das protecdes que envolvem o emulador NWFPE
no kernel.

O acompanhamento do arquivsys/ nwf pe/ count er indicou que somente
no programacat do software BusyBdk a emulacdo do NWFPE é invocada 7 vezes
devido a estas rotinas. O comansi®h - - hel p exige 38 entradas no NWFPE para
acessar os registradores de ponto flutuante, enquanto uma autenticacao bem sucedida em
um nodo remoto acarreta 43&apspara esta emulacao. A inicializacao do servidor de
janelas Xorg 7.0, através do comarXiaealiza, por sua vez, 54391 acessos deste tipo.

8. Concluses

Este trabalho analisou o desempenho de duas estratégias alternativas para a
implementacao do suporte a emulacao de instru¢cdes de ponto flutuante em processado-
res sem FPU. Foi utilizado como referéncia a familia do processador ARM, devido a sua
grande utilizacao em sistemas embarcados.

Os resultados obtidos com a emulagcao de ponto flutuante no ARM mostram que
o tratamento de algumas operacdes aritméticas basicas, quando feitas pelo compilador,
pode ser feito em um tempo menor do que o0 consumido por uma troca de contexto de
execucao. Isto &€ especialmente interessante quando se observa a grande quantidade de
softwares pré-compilados para esta plataforma que incluem instru¢des de ponto flutuante,
requerendo a existéncia de um emulador baseado em excec¢des, como o NWFPE.

A principal contribuicao do trabalho foi mostrar que & possivel obter uma sensivel
melhora de desempenho quando a emulagao é realizada em modo usuario, com um ganho

6Ver glibc-2.3.6/sysdeps/armlongjmp.S e arm/fpullongjmp.S
"As ratinasl ongj mp() esetj np() s&o utilizadas para efetuar saltos para enderecos nzo locais
8http://busybox.net

837

M Anaig do XXVIl Congresso da SBC 30 de junho a 06 de julho de 2007
= e WSO o 1Y Workshop de Sistemas Operacionais

Rio de Jansiro, RJ

de desempenho de até 90%. Contudo para usufruir deste reseltet@essario que as
aplicacdes sejam recompiladas de forma a usar a biblioteca de emulacgao.

Apesar de ser negligenciada em muitos projetos de sistemas operacionais, esta
questao mostra-se fundamental quando se pretende garantir um bom desempenho do
software frente a essas arquiteturas de processadores dotadas de diferentes capacidades
computacionais. Uma ma escolhadksignpode tornar o baixo desempenho perceptivel
pelos usuarios, que poderiam encontrar a resposta para seus problemas em um sistema
operacional concorrente.

Como trabalhos futuros, varias alternativas estao sendo estudadas. O primeiro
poderia incluir a avaliagao de aplicacoes inteiras que fazem uso de operacoes de ponto
flutuante, como, por exemplo, para o processamento de sinais. Outro trabalho interes-
sante seria uma analise detalhada das rotinas de emulagcao em C visando estudar pontos
de otimizacao de forma a melhorar o desempenho e se aproximar da versgeesm
bly. Este trabalho também poderia ser realizado no proprio compiladtwackendde
otimizacao do codigo de maquina, na tentativa de melhorar o cédigo gerado para rotinas
como as do emulador NWFPE.

Referéncias

Bambrough, S. (2006). NetWinder Floating Point Emulator. Disponivel em
http://kernel.org/pub/linux/kernel/v2.6/linux-2.6.17 .tar.bz2, acessado em 23 de margo
de 2007.

Brown, A. B. and Seltzer, M. I. (1997). Operating system benchmarking in the wake of
Imbench: A case study of the performance of netbsd on the intel x86 architecture. In
SIGMETRICS '97: Proceedings of the 1997 ACM SIGMETRICS international confe-
rence on Measurement and modeling of computer sysfeages 214-224, New York,

NY, USA. ACM Press.

Chamberlain, S., Eichin, M., Wilson, J., Earnshaw, R., and Pitre, N. (2004). LibGCC
routines for ARM CPU. Disponivel em ftp://ftp.gnu.org/gnu/gcc/gcc-4.0.2/gcc-
4.0.2.tar.bz2, acessado em 23 de marco de 2007.

IEEE Standards Committee 754 (1983EEE standard for binary floating-point arith-
metic Institute of Electrical and Electronics Engineers, New York. Note: Standard
754-1985.

lordache, C. and Tang, P. T. P. (2003). An overview of floating-point support and math
library on the intel "xscale’architecture. IARITH '03: Proceedings of the 16th
IEEE Symposium on Computer Arithmetic (ARITH-16,@&)ge 122, Washington, DC,
USA. IEEE Computer Society.

Lahiri, K., Raghunathan, A., and Dey, S. (2000). Efficient exploration of the soc commu-
nication architecture design spacel@CAD '00: Proceedings of the 2000 IEEE/ACM
international conference on Computer-aided desjgges 424-430, Piscataway, NJ,
USA. |IEEE Press.

McVoy, L. W. and Staelin, C. (1996). Imbench: Portable tools for performance analysis.
In USENIX Annual Technical Conferengages 279-294.

838

fr o Anais do XXVIl Congresso da SBC 30 de junho a 08 de julho de 2007
= e WSO o 1Y Workshop de Sistemas Operacionais Riz de Janesiro, R

Seal, D. (2000).ARM Architecture Reference ManuaAddison-Wesley Longman Pu-
blishing Co., Inc., Boston, MA, USA.

Sloss, A., Symes, D., and Wright, C. (200ARM System Developer’s Guide: Designing
and Optimizing System Softwar®organ Kaufmann Publishers Inc., San Francisco,
CA, USA.

Stallman, R. M. (1999).Using and Porting the GNU Compiler Collection, For GCC
Version 2.95Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA,
Tel: (617) 876-3296, USA.

839

