
Técnicas de Emulaç̃ao de Operações de Ponto Flutuante em
Sistemas Operacionais Modernos

Lucas C. Villa Real1 , Edson T. Midorikawa2 , Marcelo K. Zuffo 1

1 Escola Politécnica da Universidade de São Paulo
LSI - Laboratório de Sistemas Integráveis

{lucasvr,mkzuffo}@lsi.usp.br

2Escola Politécnica da Universidade de São Paulo
LAHPC - Laboratório de Arquitetura e Computação de Alto Desempenho

edson.midorikawa@poli.usp.br

Abstract. The diversity of platforms based on dedicated processors with diffe-
rent computation capabilities has motivated a great effort in the software market
to make it possible to use modern operating systems on such devices. These ef-
forts include the adequation and generalization of many internal sub-systems,
such as memory and process management and timers. This article presents an
analysis of the features available today in low level software to emulate floating
point operations on FPU-less hardware, focusing the study on the implementa-
tion of the GCC compiler and on the Linux kernel port for ARM processors.

Resumo. A diversidade de plataformas baseadas em processadores dedicados
e com diferentes poderes computacionais propiciou um grande esforço no mer-
cado de software para tornar possı́vel o seu uso em sistemas operacionais mo-
dernos. Estes esforços incluem a adequação e a generalizaç̃ao de sub-sistemas
de gerenciamento de memória, processos, timers e diversos outros. Este traba-
lho apresenta uma análise do suporte existente hoje em softwares básicos para
emular operaç̃oes de ponto flutuante em arquiteturas não dotadas de uma uni-
dade de processamento deste tipo, com um estudo focado no compilador GCC
e no kernel Linux para processadores ARM.

1. Introdução
No mercado de sistemas embarcados, a demanda por computadores dedica-

dos e especializados fez crescer a indústria de sistemas integrados em um únicochip
(SoC) [Lahiri et al. 2000] nos últimos anos. Neste processo surgiram diversas variantes
de processadores com diferentes capacidades computacionais, como unidades desprovi-
das de gerenciamento de memória, DSPs dedicados ou suporte estendido de gerencia-
mento de energia para lidar com a economia de recursos. Muitos deles apresentaram
também variantes quanto à existência ou não de uma unidade de processamento de ponto
flutuante (FPU), visto que muitas aplicações dedicadas não lidam com este tipo de dado.

Integram hoje essa variedade de processadores nomes conhecidos como o Alpha,
ARM, MIPS, PowerPC, S390 e SPARC, presentes em diversos eletrônicos de consumo
comoset-top-boxes, celulares e terminais de cartão de crédito, entre outros1. Garantir o

1Na linha x86, os processadores desprovidos de FPU foram apenas o Intel i386/i486SX e o Cyrix
486DLC, que delegavam todo o processamento de ponto flutuante ao co-processador 387.

828

suporte à essa variedade de processadores sem FPU torna-se, assim, um fator importante
para que um sistema operacional moderno se adeqüe às plataformas embarcadas e tenha
uma maior aceitação entre seus usuários e desenvolvedores.

Entretanto, ao considerar que a maior parte das linguagens de programação per-
mite o tratamento de dados em ponto flutuante (reais), torna-se difı́cil garantir que qual-
quer software ou algoritmo que se deseja rodar nesta plataforma seja desprovido de tais
instruções – salvo casos nos quais eles tenham sido escritos especialmente para este hard-
ware [Iordache and Tang 2003]. Essa garantia torna-se ainda mais difı́cil quando o pro-
cessador prevê, em seu conjunto de instruções, extensões para lidar com ponto flutuante,
deixando, entretanto, sua implementação a cargo dos fabricantes de hardware, que podem
adotá-las ou não.

O tratamento deste problema é especialmente importante quando se deseja geren-
ciar a distribuição e a instalação de pacotes binários de software para este tipo de hard-
ware, visto que uma mesma famı́lia de processadores pode ter variantes com e sem FPU.
Desta forma, torna-se necessário detectar ou simular as instruções de ponto flutuante,
evitando a parada do programa que as apresentou devido à execução de uma instrução
desconhecida. Este é o ponto principal abordado por este trabalho, que se organiza con-
forme apresentado na próxima seção.

2. Organizaç̃ao

O artigo, na seção 3, apresenta os processadores ARM e as caracterı́sticas dos
seus co-processadores de ponto flutuante, usados como referência neste trabalho. Estas
seções introduzem termos técnicos e conceitos apresentados no restante do texto e darão
uma base para a compreensão do modelo de implementação de unidades de FPU em
processadores modernos.

A seção 4 trata de emuladores de ponto flutuante orientados a exceções, disparadas
quando o processador decodifica uma instrução não suportada pelo mesmo. Este tipo de
evento acarreta a troca de contexto de execução do processador, que passa a rodar no
modo privilegiado (de sistema), exigindo que a implementação do emulador se concentre
no kerneldo sistema operacional. A referência para esta análise foi o emulador NWFPE
do kernel Linux 2.6.12, com a execução de experimentos sendo feita em um processador
ARM XScale (PXA255).

A próxima seção do artigo lida com a solução do problema no modo usuário,
na implementação do compilador. Nesta situação, o compilador é instruı́do a não gerar
instruções de ponto flutuante no código objeto, substituindo-as por chamadas para funções
internas que as implementam eficientemente através de operações sobre inteiros. Em
tempo de execução do programa estas funções são resolvidas através de uma biblioteca
dinâmica, criada no processo de instalação do compilador, que se torna uma dependência
do executável gerado. A implementação de referência para esta emulação foi o código do
compilador GCC 3.4.5 para processadores ARM.

Em seguida, nas seções 6 e 7, são apresentados resultados de desempenho e
prototipações para cada uma das metodologias abordadas. Uma análise dos impactos
de cada uma delas no sistema acompanha a discussão, mostrando os efeitos colaterais
observados e suas origens.

829

O artigo é então concluı́do, na seção 8, apresentando um resumo das técnicas
abordadas e buscando definir questões dedesignde um sistema operacional que tragam o
menor sobrecusto de implementação, gerência e tratamento dos problemas discutidos.

3. A Arquitetura ARM

O ARM é um processador RISC projetado para permitir implementações de hard-
ware muito pequenas e de alto desempenho [Seal 2000]. Em função deste foco, os pro-
cessadores da sua famı́lia geralmente apresentam um baixı́ssimo consumo de energia,
sendo este um dos principais motivos pela sua presença dominante entre os eletrônicos de
consumo.

Um processador ARM possui 7 possı́veis modos de execução, que regulam e pro-
tegem o acesso aos diversos recursos do sistema. São eles:

• User: modo normal de execução de programas, executa em modo não-
privilegiado;

• FIQ: usado no tratamento rápido de interrupções, para transferências de dados de
alta velocidade;

• IRQ: usado para o tratamento de interrupções de propósito geral;
• Supervisor:modo protegido do sistema operacional;
• Abort: usado na implementação de memória virtual e/ou na proteção de memória;
• Undefined:utilizado para a emulação em software de co-processadores de hard-

ware ausentes;
• System:executa tarefas privilegiadas do sistema operacional (disponı́vel na arqui-

tetura ARMv4 e superiores).

Quanto aos seus registradores, a arquitetura disponibiliza um total de 31 para
propósito geral. Destes, apenas 16 encontram-se visı́veis em um dado instante; o res-
tante é usado para acelerar o processamento de exceções. Estes registradores dividem-se
nos seguintes grupos:

• Unbanked registers:são os registradores R0-R7. Eles sempre referenciam o
mesmo endereço de memória real, independente do modo de execução do pro-
cessador;

• Banked registers:são os registradores R8-R14. Diferentemente dos registradores
R0-R7, os endereços fı́sicos referenciados por elesvariamde acordo com o modo
de execução do processador. Isto permite que cada modo de execução mantenha
um conjunto de trabalho individual, não compartilhado com os outros modos;

• Program counter:associado ao registrador R15.

O conjunto de instruções do ARM é dividido em duas partes: uma res-
ponsável pelocore, com instruções aritméticas, de condições, saltos,status, load/store,
movimentação de dados, semáforos e de geração de exceções, e outra que define um con-
junto de instruções para a conversação com co-processadores, escalável até um máximo
de 16. Com isso, a arquitetura ganha flexibilidade, permitindo que ela cresça sem que
o conjunto de instruções se torne muito extenso com a adição de instruções especializa-
das [Sloss et al. 2004].

Assim, fica a cargo de cada co-processador definir seu conjunto de instruções,
mantendo a arquitetura de instruções bastante modular. O ARM disponibiliza 5 instruções

830

como base para este protocolo de comunicação, que permitem realizar a escrita e lei-
tura de registradores do co-processador, operações sobre dados nele armazenados e a
movimentação de dados entre o co-processador e registradores do ARM. Entre os ace-
leradores de ponto flutuante beneficiados por esta arquitetura estão o ARM FPA10, o
FPA11 e o VFP, que representam as opções de co-processadores de FPU disponı́veis nas
implementações de processadores ARM.

A execução de instruções de co-processador funciona com base em um simples
protocolo: ao executar uma delas, o ARM aguarda uma confirmação (ACK) vinda do co-
processador para que ela possa ser executada. Caso nenhuma resposta seja recebida, uma
trap de instrução indefinida ocorre, ocasionando a seguinte seqüência de operações:

1. O endereço da próxima instrução é armazenado no registrador R14 no banco do
modoUndefined;

2. O processador entra no modoUndefined;
3. O estado do processador é definido para o modo ARM2;
4. As interrupções normais são desabilitadas (fast interrupts, ou FIQs, podem ocor-

rer);
5. A execução é desviada para a função definida no vetor de interrupções;
6. A instrução não suportada é emulada;
7. O fluxo da execução continua a partir do endereço salvo previamente.

Nota-se que neste processo as interrupções são desabilitadas; elas geralmente per-
manecem assim até que o tratador datrap decodifique oopcodeda instrução, chame a
rotina pertinente e trate-a. Desta forma, este processo traz uma grande penalidade con-
sigo: o aumento da latência no tratamento de requisições vindas de periféricos integrados
à plataforma.

4. Emuladores Orientados a Exceç̃oes
O NWFPE (NetWinder Floating Point Emulator) é um emulador de operações

matemáticas com ponto flutuante para processadores ARM [Bambrough 2006]. Sua
implementação segue a especificação IEEE 754 [IEEE Standards Committee 754 1985],
dando suporte às operações de ponto flutuante com precisões simples, dupla e dupla esten-
dida. O emulador se situa nokernelLinux, funcionando a partir da geração de exceções,
conforme a seqüência de operações apresentada na seção anterior.

A rotina configurada no vetor de interrupções do ARM Linux para instruções in-
definidas verifica, primeiramente, se existe suporte para emulação da operação solicitada.
Caso haja, ela repassa a instrução completa para a função de emulação, que irá processá-
la em software através do NWFPE, armazenando o resultado no registrador de destino
informado. Neste ponto, okernelrepassa a execução para o modo usuário através de uma
nova troca de contexto, e o programa pode continuar a executar do ponto onde parou.

O retorno do emulador é feito através de dois possı́veis pontos configurados pelo
kernel. Caso a emulação ocorra com sucesso, a execução é desviada para a função
ret from exception(), e okernelse encarrega de retornar o controle da trap para o
código de usuário. Caso o emulador não a tenha emulado com sucesso, ele retorna através
da funçãofpundefinstr(), e okernelencerra o processo com umcore dump.

2O ARM tem dois modos de operação: o modo ARM e o THUMB, que operam em 32 e 16 bits,
respectivamente.

831

Na entrada do emulador, o registradorr10 aponta para uma área privada do pro-
cesso, onde oworkspacede ponto flutuante se encontra – é nesta área que o emulador
salva seus registradores durante as diversas chamadas do processo. O primeirobytedesta
área é usada como umaflag para detectar a primeira vez que o processo usa ponto flu-
tuante. Com isso, o emulador não precisa iniciar sua máquina de emulação novamente,
visto que já existe um contexto salvo e que pode ser restaurado rapidamente.

Para reduzir os custos de troca de contexto, o NWFPE busca por instruções de
ponto flutuante subseqüentes à executada, caso ela tenha sido emulada com sucesso. Esse
laço de busca e emulação se repete até que seja encontrada uma instrução que não envolva
ponto flutuante, fazendo com que a execução retorne para o espaço de usuário. As chances
de que haja um agrupamento de instruções de ponto flutuante são grandes, devido aos
esforços do compilador GCC para otimizar a emulação.

A emulação propriamente dita é feita a partir da função CEmulateAll(), cha-
mada pela sub-rotinaemulate. Esta função primeiramente verifica oopcodee, a partir
de sua decodificação, a emulação é direcionada para a rotina do co-processador identifi-
cado ou retorna um erro de instrução inválida caso não haja suporte para o co-processador
solicitado.

O processo de emulação para uma operação de soma usando precisão simples
pode ser resumido pelos seguintes passos, já dentro da função de emulação chamada pela
EmulateAll():

1. Verificação de validade do tamanho do operador (simples, duplo ou duplo esten-
dido);

2. Configuração da máscara de arredondamentos, caso tenha sido solicitado;
3. Armazenamento da precisão solicitada;
4. Comparação do tamanho dos operandos, usando o maior para fazer uso de toda a

precisão possı́vel;
5. Verificação do tipo de precisão solicitada, encaminhando a emulação para a função

correspondente – por exemplo, para aSingleCPDO() no caso de emulação
simples.

Esta última rotina faz uso de um vetor de ponteiros para funções, indexado pela
instrução solicitada. Após passar por mais uma indireção, a função de emulação de soma
é finalmente invocada, recebendo os operandos e umaflag informando se a soma deve ser
negada antes de ser retornada.

O processo de emulação através do NWFPE pode ser acompanhado pela Figura
1, que descreve os blocos principais do emulador.

5. Emuladores Implementados em Compiladores

Para arquiteturas que não suportam ponto flutuante, é possı́vel instruir o compila-
dor GCC para que ele converta as intruções de ponto flutuante em chamadas de função
que as simulem. Estas funções são implementadas pelo próprio compilador, e ficam dis-
ponı́veis nalibgcc depois que o compilador é instalado. Desta forma, a emulação, antes
feita através de exceções e tratada pelokernel, pode ser realizada totalmente em espaço
de usuário, sem o sobrecusto de trocas de contexto e decodificações extras deopcodes.

832

Figura 1. Blocos principais do emulador NWFPE.

Este suporte no GCC para o ARM conta hoje com duas implementações: uma
inteiramente feita na linguagem C e uma versão otimizada, escrita emassembly. A
implementação é escolhida durante a execução doscript de configuração do GCC, que
incorpora à sua compilação fragmentos da máquina alvo. Estes fragmentos são descri-
tos em arquivos texto e permitem, entre outros parâmetros, definir a emulação de ponto
flutuante [Stallman 1999].

Ambas as implementações suportam operações com precisão simples e du-
pla, representando os tiposfloat e double, respectivamente. Assim como o
NWFPE, a implementação do GCC segue o formato estabelecido pelo IEEE
754 [IEEE Standards Committee 754 1985], exceto para a geração e manipulação de
exceções e para arredondamento de valores. Os segmentos de código a seguir ilustram
trechos de um executável gerado neste modo, para um programa composto apenas de
uma operação de soma entre dois valores de ponto flutuante [Chamberlain et al. 2004].

833

1 0000848c<main>:
2 848c: e1a0c00d mov ip , sp
3 8490: e92dd810 stmdb sp!, {r4 , fp , ip , lr , pc}
4 8494: e24cb004 sub fp, ip , #4
5 8498: e24dd010 sub sp, sp, #16
6 849c: e50b0014 str r0 , [fp , #−20]
7 84a0: e50b1018 str r1 , [fp , #−24]
8 84a4: e59f3048 ldr r3 , [pc, #72]
9 84a8: e50b301c str r3 , [fp , #−28]

10 84ac: e59f3044 ldr r3 , [pc, #68]
11 84b0: e50b3020 str r3 , [fp , #−32]
12 84b4: e51b001c ldr r0 , [fp , #−28]
13 84b8: e51b1020 ldr r1 , [fp , #−32]
14 84bc: eb0000e4 bl 8854< addsf3>
15 (...)

Após iniciar a funçãomain(), o programa armazena os dois operandos nos regis-
tradoresr0 er1, que em chamadas de função no ARM representam o primeiro e segundo
argumentos, respectivamente. Ao invés de apresentar uma operação de ponto flutuante,
o executável faz uma chamada à funçãoaddsf3(), que irá conter as intruções de
emulação correspondentes à implementação selecionada durante a configuração do com-
pilador:

1 00008504< adddf3>:
2 8504: e1310003 teq r1, r3
3 8508: 0020c002 eoreq ip, r0 , r2
4 (...)

Desta forma, o único sobrecusto além da emulação propriamente dita é uma cha-
mada de função. Este modo de emulação é muito atraente do ponto de vista de desem-
penho. Os programas compilados com este recurso, entretanto, não ganham vantagem
quando são executados em uma máquina dotada de uma FPU, visto que todos os pontos
nos quais haveria instruções deste tipo foram substituı́dos por chamadas de função para
emulá-las através de inteiros.

6. Medições e Resultados de Desempenho

Muitos dos softwares que compõem um sistema operacional orientado aodesktop
realizam operações em ponto flutuante de alguma forma. Com a exceção de bibliotecas
especı́ficas para o processamento de sinais, programas de simulação e de cálculo, a grande
maioria as utiliza de maneira bastante simples, envolvendo apenas as operações básicas
com o intuito de calcular médias, porcentagens, funções dehash, alimentar sementes
aleatórias, etc. Esta classe de programas é o alvo das medições de desempenho realizadas,
apresentadas logo a seguir.

Para avaliar o desempenho das operações aritméticas emuladas no ARM, foram
utilizadosbenchmarksdo software LMbench3 [McVoy and Staelin 1996]. O LMbench
consiste em um conjunto de ferramentas de teste básicos do sistema operacional e do

3http://www.bitmover.com/lmbench

834

processador, medindo com bastante precisão dados como latência e largura de banda
de aspectos como leitura/escrita de memória, troca de contexto, manipulação de sinais,
comunicação na rede, entre outros. Ele é bastante popular entre os desenvolvedores de
sistemas operacionais livres, sendo este o outro motivo pela sua escolha para conduzir
estes experimentos [Brown and Seltzer 1997].

Dos testes relacionados a ponto flutuante, foram avaliadas as operações de soma,
multiplicação, divisão e uma combinação destas (combo). As seguintes operações são
realizadas pelo laço principal de cada um deles, sendo todas as variáveis do tipofloat e
armazenadas em registradores (register float):

• soma:f += f; f += g;
• multiplicação:f *= f; f *= g;
• divisão:f = g / f; g = f / g;
• combo: x[i] = (1.0f + x[i]) * (1.5f - x[i]) / x[i];, em

um laço expandido que manipula 10 posições do vetorx a cada iteração do laço
principal. O laço expandido é executado 100 vezes a cada iteração, na tentativa
da simulação de aumentar a carga computacional para estimar a quantidade de
operações por segundo que o processador é capaz de executar.

Todos os testes foram executados com zero milissegundos de tempo dewarmup.
O ambiente de execução continha apenasthreadsde sistema como processos concorrentes
em um sistema mono-usuário (com apenas um processo interativo), no qual cada teste foi
executado 50 vezes, com 500 iterações no laço principal.

A plataforma dehardwareconsistiu em um ARM PXA 255, composto por um
processador Intel XScale sem unidade de ponto flutuante. O sistema operacional usado
para os testes foi um GoboLinux embedded4, baseado nokernel2.6.12-mm2 e na Glibc
2.3.6. Esta CPU teve sua freqüencia calculada pelo LMbench em 396 MHz, com uma
precisão noclock de 2,5253 nano-segundos. Outras informações relevantes incluem sua
TLB e o tamanho da linha de cache, composta de 32 páginas e 32 bytes, respectivamente.

Os resultados obtidos das execuções realizadas sobre o NWFPE e as
implementações do GCC são vistos na Tabela 1, representados em unidades de nano-
segundos. Os desvios padrão obtidos ficaram dentro de 0,08 nano-segundos para as
operações de soma, divisão e multiplicação na biblioteca do GCC, contra 1,7 nano-
segundos no NWFPE. Os desvios constatados para as operações de combo foram de 2,15
e 8,94 nano-segundos para a libgcc e o NWFPE, respectivamente.

Tabela 1. Tempos de execuç ão no XScale, representados em nano-segundos

Soma Multiplicação Divisão Combo
LibGCC/ASM 182,68 124,75 355,84 866,14

LibGCC/C 650,92 573,94 1013,45 3098,50
NWFPE(Emulação) 700,08 939,05 1382,33 6284,00

NWFPE(Total) 1090,08 1329,50 1772,33 6674,00

A primeira linha representa as medidas obtidas com a implementação emassembly
da biblioteca do GCC, seguida pela implementação original em C. A terceira linha indica

4http://embedded.gobolinux.org

835

os tempos de emulação para o NWFPE,desconsiderandoo tempo médio de uma troca
de contexto, estimado em 0,39 micro-segundos (390 nano-segundos) através da chamada
de sistemagetppid(). A última linha apresenta o tempo total (real) obtido com o
NWFPE, ou seja,considerandoos tempos de troca de contexto. A Tabela 2 apresenta
o ganho de desempenho das estratégias implementadas em compilador em relação ao
NWFPE. Este ganho foi calculado pela diferença dos tempos de execução em relação ao
tempo total do NWFPE em pontos percentuais. Os valores obtidos mostram a diferença
de desempenho em cada uma das implementações.

Tabela 2. Ganhos de desempenho em relaç ão ao tempo total do NWFPE (em %)

Soma Multiplicação Divisão Combo
LibGCC/ASM 83,24 90,61 79,92 87,02

LibGCC/C 40,29 56,82 42,82 53,57
NWFPE(Emulação) 35,78 29,36 22,00 5,84

Destacam-se nestas tabelas as grandes disparidades entre os modos de emulação.
Nota-se, a partir da comparação da versão em C eassemblydo emulador na LibGCC, que
o processo de otimização de código do compilador deixa muito a desejar, mesmo quando
configurado para utilizar rotinas especiais do processador alvo. Essa implementação em
C, por sua vez, contrasta com a implementação NWFPE do kernel Linux, escrita na
mesma linguagem, mesmo quando desconsiderados os tempos de trocas de contexto. Isto
explica-se de duas formas: o NWFPE tem o custo extra de decodificação dosopcodesda
instrução, além de apresentar uma implementação diferente da adotada no GCC.

A última linha da Tabela 2 demonstra qual seria o ganho do emulador NWFPE
caso ele estivesse implementado em espaço de usuário. Nela, a melhora apresentada em
cada operação (soma, multiplicação, divisão e combo) indica a granularidade do cálculo
realizado pelo emulador: quanto menor ela for, maior se torna o impacto das trocas de
contexto no tempo total da emulação. A exemplo da emulação de soma em ponto flutu-
ante feita pelo NWFPE, 35,78% do tempo total de execução constitui-se puramente de
sobrecusto com trocas de contexto.

Considerando uma implementação emkernelda LibGCC otimizada, somente o
tempo de trocas de contexto (390 nano-segundos) já seria maior do que o da própria
emulação para as operações de soma, multiplicação e divisão; o esforço no porte desta
infra-estrutura para okernelacaba por não compensar os possı́veis ganhos em relação ao
NWFPE.

7. Prototipações

Durante a concepção deste trabalho foi implementada uma camada de
instrumentação do NWFPE, permitindo o acesso às estatı́sticas de seu uso através
do sistema de arquivossysfs5. O registro, acessı́vel através do arquivo
/sys/nwfpe/counter, apresenta a quantidade de inicializações do estado da FPU
(revelando o número de processos que já utilizaram o emulador) e as instruções simula-
das, concentradas em três grupos:

5Disponı́vel para download em http://lucasvr.gobolinux.org/arm/2.6.12-nwfpe-sysfs.patch

836

• CPDO: incrementado a cadaopcodearitmético monádico e diádico encontrado,
indicando operações com um e dois operandos, respectivamente.

• CPDT: incrementado a cadaopcodede load/store;
• CPRT: incrementado quando umopcodede conversão, comparação ou de trans-

ferência entre registradores é encontrado.

Através da monitoração deste arquivo foi possı́vel detectar a quantidade de
operações envolvidas nas simulações. Ele também permitiu identificar um problema in-
teressante – mesmo quando um programa não fazia uso explı́cito de ponto flutuante, a
quantidade de exceções geradas aumentava durante sua execução.

A razão para esta ocorrência estava na Glibc, que não havia sido compilada com
asoft-floatdo GCC. Assim, além de acessarem o estado de registradores usuais da plata-
forma, as operaçõeslongjmp() esetjmp() também o faziam para os registradores
de ponto flutuante6. Como esses registradores não existiam na plataforma de hardware
utilizada, o acesso a eles era emulado pelo NWFPE no kernel, gerando as emulações
reportadas pelo monitor desenvolvido.

Esta emulação, entretanto, é bastante cara. Por serem muito usadas durante o
fluxo de execução de um programa7, a ocorrência detraps e trocas de contexto acaba
acontecendo em grande número – impedindo que o processador responda eficientemente
às interrupções de hardware em função das proteções que envolvem o emulador NWFPE
no kernel.

O acompanhamento do arquivo/sys/nwfpe/counter indicou que somente
no programacat do software BusyBox8, a emulação do NWFPE é invocada 7 vezes
devido a estas rotinas. O comandossh --help exige 38 entradas no NWFPE para
acessar os registradores de ponto flutuante, enquanto uma autenticação bem sucedida em
um nodo remoto acarreta 435trapspara esta emulação. A inicialização do servidor de
janelas Xorg 7.0, através do comandoX, realiza, por sua vez, 54391 acessos deste tipo.

8. Conclus̃oes

Este trabalho analisou o desempenho de duas estratégias alternativas para a
implementação do suporte a emulação de instruções de ponto flutuante em processado-
res sem FPU. Foi utilizado como referência a famı́lia do processador ARM, devido a sua
grande utilização em sistemas embarcados.

Os resultados obtidos com a emulação de ponto flutuante no ARM mostram que
o tratamento de algumas operações aritméticas básicas, quando feitas pelo compilador,
pode ser feito em um tempo menor do que o consumido por uma troca de contexto de
execução. Isto é especialmente interessante quando se observa a grande quantidade de
softwares pré-compilados para esta plataforma que incluem instruções de ponto flutuante,
requerendo a existência de um emulador baseado em exceções, como o NWFPE.

A principal contribuição do trabalho foi mostrar que é possı́vel obter uma sensı́vel
melhora de desempenho quando a emulação é realizada em modo usuário, com um ganho

6Ver glibc-2.3.6/sysdeps/arm/longjmp.S e arm/fpu/longjmp.S
7As rotinaslongjmp() esetjmp() são utilizadas para efetuar saltos para endereços não locais
8http://busybox.net

837

de desempenho de até 90%. Contudo para usufruir deste resultado ´e necessário que as
aplicações sejam recompiladas de forma a usar a biblioteca de emulação.

Apesar de ser negligenciada em muitos projetos de sistemas operacionais, esta
questão mostra-se fundamental quando se pretende garantir um bom desempenho do
software frente a essas arquiteturas de processadores dotadas de diferentes capacidades
computacionais. Uma má escolha dedesignpode tornar o baixo desempenho perceptı́vel
pelos usuários, que poderiam encontrar a resposta para seus problemas em um sistema
operacional concorrente.

Como trabalhos futuros, várias alternativas estão sendo estudadas. O primeiro
poderia incluir a avaliação de aplicações inteiras que fazem uso de operações de ponto
flutuante, como, por exemplo, para o processamento de sinais. Outro trabalho interes-
sante seria uma análise detalhada das rotinas de emulação em C visando estudar pontos
de otimização de forma a melhorar o desempenho e se aproximar da versão emassem-
bly. Este trabalho também poderia ser realizado no próprio compilador, nobackendde
otimização do código de máquina, na tentativa de melhorar o código gerado para rotinas
como as do emulador NWFPE.

Referências

Bambrough, S. (2006). NetWinder Floating Point Emulator. Disponı́vel em
http://kernel.org/pub/linux/kernel/v2.6/linux-2.6.17.tar.bz2, acessado em 23 de março
de 2007.

Brown, A. B. and Seltzer, M. I. (1997). Operating system benchmarking in the wake of
lmbench: A case study of the performance of netbsd on the intel x86 architecture. In
SIGMETRICS ’97: Proceedings of the 1997 ACM SIGMETRICS international confe-
rence on Measurement and modeling of computer systems, pages 214–224, New York,
NY, USA. ACM Press.

Chamberlain, S., Eichin, M., Wilson, J., Earnshaw, R., and Pitre, N. (2004). LibGCC
routines for ARM CPU. Disponı́vel em ftp://ftp.gnu.org/gnu/gcc/gcc-4.0.2/gcc-
4.0.2.tar.bz2, acessado em 23 de março de 2007.

IEEE Standards Committee 754 (1985).IEEE standard for binary floating-point arith-
metic. Institute of Electrical and Electronics Engineers, New York. Note: Standard
754–1985.

Iordache, C. and Tang, P. T. P. (2003). An overview of floating-point support and math
library on the intel ”xscale”architecture. InARITH ’03: Proceedings of the 16th
IEEE Symposium on Computer Arithmetic (ARITH-16’03), page 122, Washington, DC,
USA. IEEE Computer Society.

Lahiri, K., Raghunathan, A., and Dey, S. (2000). Efficient exploration of the soc commu-
nication architecture design space. InICCAD ’00: Proceedings of the 2000 IEEE/ACM
international conference on Computer-aided design, pages 424–430, Piscataway, NJ,
USA. IEEE Press.

McVoy, L. W. and Staelin, C. (1996). lmbench: Portable tools for performance analysis.
In USENIX Annual Technical Conference, pages 279–294.

838

Seal, D. (2000).ARM Architecture Reference Manual. Addison-Wesley Longman Pu-
blishing Co., Inc., Boston, MA, USA.

Sloss, A., Symes, D., and Wright, C. (2004).ARM System Developer’s Guide: Designing
and Optimizing System Software. Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA.

Stallman, R. M. (1999).Using and Porting the GNU Compiler Collection, For GCC
Version 2.95. Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA,
Tel: (617) 876-3296, USA.

839

