

Proposta de uma infra-estrutura de suporte para serviços
de contexto e descoberta de recursos

Leonardo Cardoso1, Alexandre Sztajnberg2, Orlando Loques1

1Instituto de Computação - Universidade Federal Fluminense
2DICC/IME e PEL/FEN - Universidade do Estado do Rio de Janeiro

{lcardoso, loques}@ic.uff.br, alexszt@ime.uerj.br

Resumo. Aplicações ubíquas e pervasivas são sensíveis ao contexto dos
recursos utilizados, seja em relação à disponibilidade, ou em relação à
qualidade dos mesmos. Tais aplicações podem se utilizar de mecanismos para
descobrir recursos que atendam aos seus requisitos não-funcionais e para
monitorar a qualidade destes recursos durante a execução. Propomos dois
serviços, que devem idealmente integrar a infra-estrutura de suporte para as
aplicações mencionadas: um Serviço de Contexto, que provê acesso às
informações de contexto; e um Serviço de Descoberta, que permite a
descoberta dinâmica de recursos considerando restrições de contexto a serem
satisfeitas.

Abstract. Ubiquitous and pervasive applications are aware of the context of
the used resources, regarding their availability and quality. Such class of
application can benefit from mechanisms to discover resources that meet their
non-functional requirements and mechanisms to monitor the quality of those
resources. We present a proposal for two services that ideally have to be
integrated into the managing infrastructure of the mentioned application: a
Context Service that provides access to context information; and a Discovery
Service, which allows the dynamic discovery of resources, considering context
constraints to be satisfied.

1 Introdução
Sistemas ubíquos e pervasivos [Sah03] são compostos por diversos elementos ou
recursos. Qualquer entidade necessária para a execução do sistema, como por exemplo,
um componente de software ou dispositivo de hardware, pode ser considerada um
recurso. Cada tipo de recurso possui informações específicas de contexto. Por exemplo,
informações de contexto de um computador podem estar relacionadas a sua capacidade
de processamento ou de armazenamento, em determinado momento. No caso de
aplicações pervasivas, pode-se ter uma grande variedade de tipos de recurso, desde uma
sala, uma câmera, um sensor de alarme, ou pessoas presentes em determinada sala. Ao
considerar uma pessoa como recurso do sistema, suas informações de contexto podem
ser a sua localização atual e suas credenciais de segurança.

Informações de contexto normalmente apresentam valores dinâmicos e grande
variabilidade. Na maioria dos casos, é preciso monitorar estes valores para,
eventualmente, fazer adaptações de acordo com o estado atual dos recursos. Por
exemplo, no caso de um sistema de streaming de vídeo, seria possível reduzir a
qualidade da mídia transmitida, quando a largura de banda monitorada torna-se
limitada, mantendo a aplicação em funcionamento com qualidade menor, mas aceitável.

875

Aplicações pervasivas necessitam do suporte de (i) uma instrumentação para
coletar informações do estado de seu ambiente de operação, que chamamos informações
de contexto, e (ii) uma infra-estrutura para a descoberta dinâmica e localização de
recursos. Seria inviável desenvolver sistemas dinâmicos, auto-adaptáveis e sensíveis ao
contexto somente com recursos ligados estaticamente. Neste sentido, seria conveniente
dispor de serviços de suporte para descobrir e ligar recursos dinamicamente durante a
implantação ou mesmo durante a execução destes sistemas. Idealmente, tal serviço
deveria suportar a especificação de restrições de contexto dos recursos. Por exemplo, ao
fazer uso de determinado componente uma aplicação poderia ter restrições específicas,
como a localização de uma pessoa ou a temperatura de uma sala.

Sistemas de middleware e frameworks de suporte ao desenvolvimento de
aplicações distribuídas atuais provêm mecanismos para a especificação de restrições de
qualidade (QoS) e contexto, e gerenciam a adaptação do sistema de acordo com a
variação na disponibilidade dos recursos monitorados. No entanto, o suporte à
descoberta de recursos é limitado, normalmente integrado empiricamente e tem
implementação ad hoc. Outro problema se refere aos mecanismos de monitoração que
usualmente são implementados como hot spots do sistema, não permitindo sua
reutilização, tornando a aplicação dependente de mecanismos usados no baixo nível.

Com estas questões em mente, apresentamos neste trabalho (i) um Serviço de
Contexto de alto nível e independente de tecnologia, que abstrai e coordena os detalhes
de comunicação com os Agentes de Recurso, facilitando as atividades de
monitoramento; (ii) um Serviço de Descoberta que suporta a descoberta de recursos
levando em consideração restrições de contexto a serem satisfeitas. Os serviços
propostos são integrados ao CR-RIO [Cor05], estendendo sua funcionalidade, tornando
possível desenvolver aplicações ubíquas e pervasivas através de sua arquitetura de
software e contratos arquiteturais. Para exemplificar o funcionamento dos serviços
propostos, em conjunto com o CR-RIO, utilizamos uma aplicação pervasiva.

A Seção 2 apresenta os conceitos utilizados. A Seção 3 apresenta a proposta dos
serviços de Contexto e Descoberta. Discutimos a integração dos serviços propostos ao
framework CR-RIO na Seção 4, onde mostramos como especificar os contratos em
termos de recursos virtuais que devem ser descobertos dinamicamente. Na Seção 5,
apresentamos uma aplicação de vídeo sob demanda em ambiente pervasivo. A Seção 6
conclui o trabalho.

2 Conceitos Básicos
Nesta seção apresentamos os conceitos e termos básicos utilizados, particularmente, a
conceituação de contexto e de aplicação sensível ao contexto. Maiores detalhes e uma
discussão sobre as principais referências podem ser obtidos em [Szt05 e Car06B].

Contexto. No decorrer do texto utilizamos as definições de contexto e aplicação
sensível ao contexto apresentadas em [Dey00]. Assim, contexto significa: “qualquer
informação que pode ser utilizada para caracterizar o estado de uma entidade.
Consideram-se entidades uma pessoa, lugar ou objeto que seja relevante para a
interação entre o usuário e uma aplicação, incluindo estes próprios”. De forma similar,
uma aplicação sensível ao contexto pode ser definida como: “uma aplicação que utiliza
as informações de contexto de suas entidades para disponibilizar informações ou
serviços adequados para os usuários”.

876

Representação de recursos e atributos de contexto. A representação dos recursos e
seus atributos está ligada diretamente ao monitoramento do contexto e a descoberta
destes recursos. É necessário que o tipo, atributos e características funcionais do recurso
tenham uma representação reconhecida pelos elementos que usam tais informações. As
propostas atuais possuem foco específico, restringindo o tipo de informação associada a
cada recurso. A iniciativa do DMTF denominada Common Information Model (CIM)
[DMTF99] apresenta uma solução geral para a representação de recursos e poderá ser
adotada por sistemas de gerenciamento de aplicações dinâmicas no futuro.

Sistemas de Monitoração. A atividade de monitorar o contexto e os recursos utilizados
é fundamental para a operação de aplicações pervasivas. Ferramentas disponíveis para a
monitoração podem ser utilizadas diretamente pela aplicação para a coleta de
informações de contexto, dentre eles o NWS [Wol99] e Ganglia [Mas04]. Via de regra,
tais ferramentas permitem monitorar recursos como CPU, memória e rede. Algumas
ferramentas são direcionadas a domínios específicos como o GMA [Tie02], orientada
para a monitoração para grades. Mesmo havendo um número razoável de opções, estas
possuem configuração e interface de consulta distintas, tornando a aplicação dependente
de uma tecnologia particular, o que leva ao conceito de Agentes de Recurso.

Agente de Recurso. O Agente de Recurso proposto em nosso trabalho é um elemento,
cuja função é permitir que as aplicações tenham acesso a informações de contexto,
escondendo os detalhes de baixo nível usados no monitoramento e coleta de dados
brutos. Isso é possível através do provimento de uma interface uniforme. Assim, a
aplicação não precisa se preocupar diretamente com o tipo de mecanismo de
monitoramento ou sensor utilizado na coleta dos dados para cada tipo de recurso.

Descoberta de Recursos. Embora seja possível utilizar recursos previamente
(estaticamente) conhecidos, diretamente (sem envolver um catálogo), é fundamental
permitir que os recursos sejam descobertos e ligados dinamicamente. As aplicações de
interesse operam em ambientes que se modificam constantemente e, para isso, precisam
de um serviço de descoberta que localize dinamicamente instâncias de componentes e
recursos que satisfaçam as suas necessidades [Kin02]. Existem atualmente serviços que
suportam a descoberta de recursos, em termos de topologia de rede ou localização
[Zhu05], porém, não foram projetados para considerar especificamente informações
contextuais. Cada serviço geralmente possui um domínio de aplicação e uma linguagem
de consulta específica. Com o objetivo de cobrir estas lacunas, novas arquiteturas têm
sido projetadas. Uma proposta é o ONS [Lee06], uma arquitetura para sistemas de
nomeação ubíquos e pervasivos, que provê às aplicações sensíveis ao contexto,
identificação transparente de contexto e religação de serviços, independente de
mudanças no seu contexto. Outra proposta, Q-Cad [Cap05], permite as aplicações
pervasivas descobrirem e selecionarem recursos considerando o contexto corrente de
execução e os requisitos de QoS. Os exemplos citados oferecem serviços, mecanismos
de localização e representação de recursos distintos.

Gerenciamento de Aplicações Sensíveis ao Contexto. A execução e gerência de
aplicações auto-adaptáveis, ubíquas e pervasivas requer um infra-estrutura de suporte
que integre os elementos e características discutidas anteriormente. Esta infra-estrutura
deve permitir a especificação das restrições de qualidade desejadas para a aplicação e
políticas de adaptação para mantê-la em operação, retirando esta responsabilidade da
própria aplicação. Sistemas de suporte para a configuração dinâmica para implantar ou
adaptar a aplicação também devem ser providos. Além disso, é preciso que essa infra-

877

estrutura facilite a integração da monitoração dos recursos utilizados e a descoberta de
novos recursos [Car06A]. Propostas recentes oferecem serviços mais convenientes para
aplicações ubíquas e pervasivas. Por exemplo, o Rainbow [Gar04] permite a
especificação dos elementos a serem monitorados e estratégias de adaptação para
garantir os requisitos de qualidade de uma aplicação. O monitoramento é feito por
probes associadas a propriedades do modelo arquitetural da aplicação. A descoberta de
recursos é feita a partir de operadores usados nas estratégias de adaptação. Na área da
computação ubíqua tem-se o Gaia [Rom02], uma infra-estrutura que trata um “espaço
ativo” e seus dispositivos, de forma análoga a um sistema operacional tradicional,
fornecendo serviços básicos, incluindo eventos, presença de entidades (dispositivos,
usuários e serviços), notificação de contexto e sistema de nomes.

O framework CR-RIO (Contractual Reflective-Reconfigurable Interconnectable
Objects) consiste de uma infra-estrutura de suporte a especificação e gerenciamento de
contratos não-funcionais [Loq04]. Um contrato permite especificar serviços
diferenciados e associá-los a requisitos não-funcionais que expressam níveis desejados
de qualidade. A monitoração desses requisitos é feita por Agentes de Recurso. O CR-
RIO tenta adaptar dinamicamente o sistema para um serviço compatível com os níveis
de recursos atuais quando a qualidade atual não pode ser mais mantida. Detalhes sobre o
CR-RIO e de sua integração com o Serviço de Descoberta serão discutidos na Seção 4.

3 Proposta dos Serviços de Contexto e Descoberta de Recursos
A motivação para a proposta dos serviços de Contexto e de Descoberta é facilitar o
desenvolvimento de aplicações pervasivas, incluindo informações sobre requisitos e
restrições de contexto nestes serviços. Tivemos em mente facilitar a integração destes
serviços em infra-estruturas de suporte a aplicações adaptativas.

3.1 Representação dos Recursos
Em nossa abordagem, cada recurso é associado a um descritor que especifica seu tipo e
propriedades específicas. Para cada propriedade registram-se o nome, o tipo de dado
(eg. numérico, string) e a unidade de medida (eg. %, MB, Mhz). Utilizamos XML para
tal representação1. A Figura 1 apresenta um exemplo de representação de um recurso do
tipo Processing. Nas linhas 5-8 são informadas as propriedades deste recurso com os
seus respectivos tipos e unidades de medida. Por exemplo, a linha 5 informa que este
recurso, tem o atributo CPUClock do tipo float e tem unidade de medida em Mhz.

1 <Resource>
2 <Type>“Processing”</Type>
3 <Description>“Processing Resource”</Description>
4 <Attributes>
5 <Attribute Name=”CPUClock” Type=”float” Units=”Mhz” />
6 <Attribute Name=”MemFree” Type=”float” Units=”MB” />
7 <Attribute Name=”CPUIdle” Type=”float” Units=”%” />
8 <Attribute Name=”OSName” Type=”string” Description=”OS Name” />
9 </Attributes>
10 </Resource>

Figura 1. Representação XML do recurso Processing

A representação dos recursos serve de base para o Serviço de Contexto, que
poderá obter as informações e consultar os valores das propriedades de cada tipo de

1 Os schemas XML, base para as representações, consultas e respostas são definidos em [Car2006B].

878

recurso. De forma similar, o Serviço de Descoberta também utiliza, via Serviço de
Contexto, as informações armazenadas de acordo com essa representação para validar
os registros de recursos e as consultas submetidas. As representações dos recursos
devem ser armazenadas em um Diretório de Recursos. Ao adicionar um novo tipo de
recurso, é necessário, primeiro, registrar e armazenar sua descrição neste Diretório. Na
Figura 2 temos o registro do recurso de acordo com a descrição anterior (Processing,
linha 2). O atributo da linha 4 é estático e não varia para este recurso: a propriedade
CPUClock é 1800 MHz. As propriedades de consumo de CPU e memória (linhas 5-6)
são dinâmicas e devem ser obtidas, sob demanda, através da uma consulta ao Serviço de
Contexto. O elemento URI contém o identificador da localização do recurso, que neste
caso é um endereço IP.

1 <ResourceRegister>
2 <Type> Processing </Type>
3 <Attributes>
4 <Attribute Name=”CPUClock” Val=”1800MHZ” />
5 <Attribute Name=”MemFree” AttrType=”Dynamic” />
6 <Attribute Name=”CPUIdle” AttrType=”Dynamic” />
7 </Attributes>
8 <URI> 192.168.1.102 </URI>
9 </ResourceRegister>

Figura 2. Representação XML de uma instância do recurso Processing

3.2 Serviço de Contexto
O Serviço de Contexto é responsável por disponibilizar informações de contexto e
esconder os detalhes de baixo nível usados na comunicação com os (vários) Agentes de
Recurso. A proposta inclui uma interface de acesso de alto nível. Desta forma, a
aplicação preocupa-se somente com os dados necessários e não como eles são obtidos.

Serviço de
Contexto

Workstation

Processing Agent

Network Agent

sensorsensor

People Location Service

PeopleLocation Agent

(1) consulta

(8) resposta

sensorsensor

sensorsensor

(2) consulta

(4) consulta

(6) consulta

(3) resposta

(5) resposta

(7) resposta
Figura 3. Arquitetura do Serviço de Contexto

Ao receber uma consulta (Figura 3), o Serviço de Contexto verifica quais
propriedades de contexto são requisitadas de cada um dos recursos. Uma consulta pode
conter um ou mais recursos-alvo, possibilitando monitorar conjuntos de recursos. Após
a interpretação da consulta, o Serviço de Contexto (e não a aplicação) comunica-se com
cada Agente de Recurso remoto envolvido para obter as informações de contexto
individuais. Após coletar as informações, o serviço consolida as mesmas e repassa o
resultado ao solicitante. É possível também instruir nos parâmetros da consulta que
resultados parciais sejam retornados assincronamente assim que estiverem disponíveis.

3.2.1 Consulta de Contexto
A Figura 4 mostra um exemplo de consulta ao Serviço de Contexto. O elemento
Synchronized (linha 2), indica que a aplicação quer os resultados sincronizados. Target
(linha 3) informa o endereço de um dos recursos-alvo da consulta através da

879

propriedade URI. Na linha 4 especifica-se que os próximos atributos são do recurso do
tipo Processing. Nas linhas 5-6 são especificados os atributos de contexto que a
aplicação quer obter: CPUIdle e MemFree. O intervalo mínimo com que os valores dos
atributos devem ter sido coletados pode ser especificado. No exemplo a cada 1 segundo
(linha 7). Note-se que a consulta informa um segundo tipo de recurso (linha 10). Na
linha 12 o operador lógico que informa que a aplicação somente deseja receber os
resultados, caso o atributo userId tenha valor igual a 712.

1 <ContextQuery>
2 <synchronized>true</synchronized>
3 <Target URI=”wokstation.ic.uff.br”>
4 <Attributes From=”Processing”>
5 <Attribute Name=”CPUIdle” />
6 <Attribute Name=”MemFree” />
7 <CollectInterval Min=”1” units=”sec”/>
8 </Attributes>
9 </Target>
10 <Target URI=”PL.ic.uff.br:7895”>
11 <Attributes From=”UserLocation”>
12 <Attribute Name=”userId” op=”==” Val=”712” />
13 <Attribute Name=”currentRoom” />
14 </Attributes>
15 </Target>
16 </ContextQuery>

Figura 4. Representação XML de uma consulta ao Serviço de Contexto

A Figura 5 apresenta a resposta gerada com informações sobre os dois recursos
(linhas 2-8 e 9-14). ResourceInfo informa que os dados foram coletados do recurso
localizado em workstation.ic.uff.br com endereço IP 192.168.1.1, às 12:10 a.m com
intervalo de 1 segundo. Nas linhas de 5-6 temos os atributos com as respectivas
propriedades para este recurso. Por exemplo, na linha 5, um atributo representa a
informação de que a CPU livre (Name=“CPUIdle”) do recurso é de 68% (propriedades
Val=68.0 e Units=“%”). As demais informações seguem a mesma estrutura.

1 <ContextResponse>
2 <ResourceInfo URI=”wokstation.ic.uff.br” IP=”192.168.1.1” Timestamp=”12:10 a.m”
3 Interval=”1” >
4 <Attributes>
5 <Attribute Name=”CPUIdle” Val=”68.0” Type=”float” Units=”%”/>
6 <Attribute Name=”MemFree” Val=”338.8” Type=”float” Units=”MB”/>
7 </Attributes>
8 </ResourceInfo>
9 <ResourceInfo URI =”PL.ic.uff.br” IP=”192.168.1.12” Timestamp=”12:12 a.m”>
10 <Attributes>
11 <Attribute Name=”userId” Val=”712” Type=”int” Units=””/>
12 <Attribute Name=”currentRoom” Val=”12” Type=”int” Units=””/>
13 </Attributes>
14 </ResourceInfo >
15 </ContextResponse>

Figura 5. Representação XML de uma respostado Serviço de Contexto

3.3 Serviço de Descoberta
A arquitetura do Serviço de Descoberta (Figura 6) é composta por três elementos: (i)
Gerenciador; (ii) Diretório de Recursos; e (iii) Serviço de Contexto. Para descobrir um
novo recurso, uma aplicação submete uma consulta ao Serviço de Descoberta e recebe
como resposta uma lista de recursos. Para isso ela informa a classe de recurso desejada e
também as restrições de contexto que este deve satisfazer. Por exemplo, a aplicação
precisa acessar um servidor Web que tenha um atraso de rede fim-a-fim menor que 50
ms. A consulta da aplicação então é repassada ao Gerenciador que a interpreta e obtêm

880

do Diretório de Recursos todas as instâncias de recursos da classe requerida pela
aplicação. Nos casos onde são informadas restrições de contexto, o Gerenciador deve
consultar o Serviço de Contexto obtendo os valores das propriedades de contexto de
todas as instâncias recebidas anteriormente do Diretório de Recursos. Com essas
informações, ele poderá classificar os recursos encontrados e filtrar a resposta,
retornando somente as instâncias que satisfazem a consulta. Depois de descartar os
recursos não satisfatórios, o Gerenciador retorna uma lista de recursos para a aplicação.

Gerenciador de
consultas

Serviço de Contexto

Serviço de Descoberta

Diretório de
RecursosAplicação

(1) consulta
(2) obtém lista

de recursos

Instâncias
de Recursos

(3) consulta estado
dos recursos

Figura 6. Arquitetura do Serviço de Descoberta

3.3.1 Consulta de Descoberta
A Figura 7 mostra uma de consulta de descoberta, em que o usuário quer localizar um
recurso do tipo VideoServer (linha 1 - elemento ResourceQuery, propriedade type) e
obter no máximo 5 resultados (linha 2). As linhas 3-10 indicam as restrições de contexto
que devem ser satisfeitas pelos recursos a serem encontrados. Nas linhas 3-6 são
indicadas as restrições do tipo Processing, informando que a CPU deve ter um clock
(CPUClock) de, no mínimo, 1.8Ghz. A linha 5 especifica que o recurso deve ter, no
máximo, 50% de uso de CPU (CPUIDle). Nas linhas 7-10 são indicadas as restrições do
tipo Transport de comunicação do nó onde a aplicação executa até o recurso
encontrado, informando que a largura de banda (Bandwidth) deve ser maior ou igual a
256kbps e o atraso (Delay) menor ou igual a 50ms.

1 <ResourceQuery type=”VideoServer”>
2 <MaxResults>5</MaxResults>
3 <Constraints From=”Processing”>
4 <Attribute Name=”CPUClock” op=”>=” Val=”1800MHZ” />
5 <Attribute Name=”CPUIDle” op=”>=” Val=”50” />
6 </Constraints>
7 <Constraints From=”Transport”>
8 <Attribute Name=”Bandwidth” op=”>=” Val=”256” />
9 <Attribute Name=”Delay” op=”<=” Val=”50” />
10 </Constraints>
11 </ResourceQuery >

Figura 7. Representação XML de uma consulta ao Serviço de Descoberta

Uma resposta à consulta anterior conteria uma lista de recursos, incluindo, para
cada um, o tipo (VideoServer) e suas respectivas propriedades (Processing e Transport).

4 Integração com Framework CR-RIO
Esta seção aborda como o Serviço de Contexto e o Serviço de Descoberta são inseridos
na arquitetura do framework CR-RIO, desenvolvido em nosso grupo, que oferece o
suporte para aplicações pervasivas. O CR-RIO é centrado em um modelo arquitetural e
utiliza uma linguagem de descrição de contratos (CBabel) para expressar os requisitos
não-funcionais das aplicações. Com base nestes elementos, desenvolveu-se uma infra-

881

estrutura de suporte para: (i) interpretar a especificação dos contratos e armazená-la
como meta-informação, associada à aplicação; (ii) prover mecanismos de reflexão e
adaptação dinâmica, que permitem adaptar a configuração da aplicação (incluindo os
seus elementos de suporte), visando atender as exigências de contratos; e (iii) prover
elementos para impor, monitorar e manter os contratos associados à aplicação.

4.1 Ligação e Seleção Dinâmica de Recursos baseadas em Contexto
Quando os recursos a serem utilizados na aplicação são conhecidos com antecedência, a
ligação entre a descrição da arquitetura e os artefatos de software pode ser feita de
forma estática. Neste caso, o projetista especifica, em tempo de projeto, quais recursos
serão usados pela aplicação. A linha (1) descreve que o módulo srvVoD será ligado à
plasmaDisp, uma instância específica de um recurso da classe Display, se os perfis
plsmProf e commProf (que restringem as características do display de plasma e do
conector de comunicação, respectivamente) forem válidos. Se estes perfis não foram
válidos, a ligação não pode ser feita e o serviço não pode ser estabelecido.

(1) link srvVoD to plasmaDisp by commCon with plsmProf, commProf;

No entanto, outras instâncias da classe Display, também satisfazendo as
restrições dos perfis, poderiam estar disponíveis. Neste caso, seria conveniente que uma
referência a um Display “virtual” fosse utilizada na descrição e que, em tempo de
implantação, o Serviço de Descoberta fosse consultado de forma a se obter um Display
registrado que atendesse às restrições descritas. A linha (2) apresenta nossa solução para
a integração destas funcionalidades no nível do contrato, considerando o mesmo
exemplo da linha (1). O módulo videoServ (estaticamente selecionado) deve ser ligado
ao módulo dp, da classe Display. A notação dp = Display informa que dp é uma
referência não-ligada (“virtual”) e que, em tempo de execução uma instância será
dinamicamente obtida através de uma consulta ao Serviço de Descoberta. Ainda, o
domínio da procura deve ser restrito a building (limitando-se a um Serviço de
Descoberta particular). Os perfis plsmProf e commProf serão usados, também, para
limitar os resultados da descoberta de recursos.

(2) link srvVoD to dp = Display at building select(uDispAlone)
 by commCon with plsmProf, commProf;

Observe que o Serviço de Descoberta pode retornar uma ou mais referências a
recursos que satisfaçam as restrições dos perfis. Entretanto, pode ser conveniente
selecionar o recurso mais apto, dentre as referências retornadas. Tal seleção poderia ser
realizada por pesos, lista de preferência ou uma função de utilidade. Com este objetivo,
introduzimos no contrato uma forma para indicar que um filtro de seleção será utilizado
e os critérios de seleção. Na linha (2) a notação select (uDispAlone) informa que um
filtro de seleção deve ser usado e o “perfil de seleção” a ser considerado é uDispAlone.

Um perfil de seleção permite especificar, no nível da arquitetura, para cada
propriedade de um recurso descoberto, indicativos de preferência tais como: se ela deve
ser maximizada ou minimizada; um peso para expressar sua importância relativa e uma
ordem de preferência. A Figura 8 apresenta um exemplo de perfil de seleção onde a
propriedade CPUIdle da categoria (recurso) Processing deve ser maximizada e tem
peso 2. Na linha 3, é especificado que a propriedade MemFree deve ser maximizada
com peso no valor igual a 1. Com estas informações, pode-se inferir, neste exemplo, que
a aplicação tem preferência pelos recursos com maior quantidade de processador livre

882

(CPUIdle). Para as propriedades não numéricas ou enumerações, pode-se estabelecer
uma ordem de preferência, como mostrado na aplicação-exemplo (ver Seção 5.2).

1 selection {
2 Processing.CPUIdle: maximize weight 2;
3 Processing.MemFree: maximize weight 1; } hqRef;

Figura 8. Exemplo de perfil de seleção

5 Aplicação de Vídeo sob Demanda Pervasiva
A aplicação de vídeo sob demanda pervasiva (VodP) apresenta um cenário onde o
usuário transita por várias salas em um prédio, cada uma contendo um conjunto de
recursos. Cada usuário possui um Agente que informa sua localização atual. A aplicação
é implantada sobre o framework CR-RIO, integrado aos serviços propostos. Assim, os
requisitos de contexto e as políticas de adaptação são descritas em um contrato.

Um fluxo de vídeo deve ser reproduzido em um dos dispositivos disponíveis na
sala em que o usuário se encontra. São estabelecidas ordens de preferência do usuário
por certos dispositivos, que variam de acordo com o contexto e levam em conta se o
usuário esta ou não em sua sala e também se ele esta acompanhado de outras pessoas.
No contrato estas preferências são indicadas por perfis de seleção. Por exemplo, sempre
que o usuário estiver em uma sala onde outras pessoas estiverem presentes, o vídeo
deve ser reproduzido no display pessoal do usuário (Figura 9). Para esta aplicação, são
considerados os seguintes dispositivos: Monitor, PDA, TV de Plasma e Projetor.

VideoServer
SalaUsuario Sala2 Sala3

TV Plasmas1Projetor1 Monitor LCD2

M
on

ito
r L

C
D

1

M
on

ito
r L

C
D

3

Pr
oj

et
or

3

Pocket

Pocket

Pocket

em trânsito…

Figura 9. Cenário da aplicação (usuário na sala 2, com outros usuários)

5.1 Definição das Categorias
Identificamos nesta aplicação três tipos de recursos: usuário (User), display (Disp), e
sala (Room). Em CR-RIO recursos são descritos em Categorias (Figura 9). A categoria
User (linhas 5-9) representa um usuário, onde a propriedade id é sua identificação,
userRoom informa a sala de usuário, currentRoom a localização corrente, e envChange
indica se o usuário esta trânsito. Na categoria Room as propriedades nUsers, e number
são utilizadas para informar o número de usuários presentes e o número da sala. A
categoria Disp que contém as propriedades location, type e mobile, usadas para informar
a localização do display, seus possíveis tipos e se ele é um dispositivo móvel.

1 Category Room { 5 Category User {
2 nUsers: numeric in; 6 id: numeric in;
3 number: numeric in; 7 userRoom: numeric in;
4 } 8 currentRoom: numeric in;
 9 envChange: boolean in; }
10 Category Disp {
11 location: numeric in;
12 type: enum (TvPlasma, Projetor, PCMonitor, PDA) out;
13 mobile: boolean in; }

Figura 9. Categorias da Aplicação Vod Pervasiva

883

5.2 Contrato da Aplicação
Na descrição do cenário da aplicação, foram mencionadas situações onde o usuário
encontra-se sozinho ou acompanhado em uma sala e também se ele esta ou não em sua
própria sala. Surge então a necessidade de especificar como são identificadas tais
situações, e o que fazer quando cada uma delas for verdadeira. A Figura 10 apresenta o
contrato VodP para a aplicação e a Figura 11 mostra os perfis utilizados.

Na linha 1 do contrato VodP são recebidas variáveis de contexto no momento de
sua instanciação. As variáveis userId e userRoom são usadas respectivamente para
indicar a identificação e número da sala do usuário para o qual o contrato está sendo
estabelecido e devem ser repassadas ao mesmo para que seja possível instanciá-lo.

No primeiro serviço, sOwnRoom, o usuário está em sua própria sala, situação
definida pelo perfil OwnRoom (linha 16). O perfil DispAvail (linha 40) define que
devem ser localizados todos os Displays da sala onde o usuário se encontra. O perfil de
seleção uDispOwnRoom (linha 44) especifica a ordem de preferência dos Displays. Este
é usado para classificar a lista de displays obtida do Serviço de Descoberta e indica que
o Monitor do computador é o preferencial; No segundo serviço, sOtherRoomAlone, o
usuário muda de sala e se encontra sozinho, situação em que o vídeo deve ser mostrado
no Display disponível e de acordo com a preferência do perfil de seleção uDispAlone
(linha 45). Neste perfil tem-se a TV de Plasma como preferencial. Os perfis OtherRoom
e Alone definem o contexto em que o usuário não esta em sua sala, mas sozinho.

1 contract (userId, userRoom){
2 service { link srvVoD to dp = Display select (uDispOwnRoom)
3 with OwnRoom, DispAvail; } sOwnRoom;

4 service { link srvVoD to dp = Display select (uDispAlone)
5 with OtherRoom, Alone, DispAvail; } sOtherRoomAlone;

6 service { link srvVoD to dp = Display select (uDispNotAlone)
7 with OtherRoom, NotAlone, DispAvail; } sOtherRoomNotAlone;

8 service { unlink svVod to dp; } sInTransit;

9 negotiation {
10 sOwnRoom <-> (sOtherRoomAlone || sOtherRoomNotAlone || sInTransit);
11 } } VodP;

Figura 10. Contrato Vod pervasivo

No terceiro serviço sOtherRoomNotAlone (linhas 6-7), o usuário está em outra
sala, porém na companhia de outras pessoas. O perfil NotAlone define esta última
situação. Neste caso, por questões de privacidade, o vídeo deve ser transmitido para o
PDA do usuário de acordo com o perfil de seleção uDispNotAlone (linhas 46); Por fim,
o quarto serviço sInTransit (linha 8), é ativado quando o usuário está transitando de uma
sala para outra. Nestes casos, a transmissão do vídeo deve ser interrompida (unlink), até
que outro serviço possa ser estabelecido.

16 profile {
17 User.id = %userId;
18 User.currentRoom = %userRoom;
19 User.envChange = false;
20 } OwnRoom;

30 profile {
31 User.id = %userId;
32 User.currentRoom != %userRoom;
33 User.envChange = false;
34 } OtherRoom;

21 profile {
22 User.id = %userId;
23 Room.number = User.currentRoom;
24 Room.nUsers = 1;
25 } Alone;

35 profile {
36 User.id = %userId;
37 Room.number = User.currentRoom;
38 Room.nUsers >= 1;
39 } NotAlone;

884

26 profile {
27 User.id = %userId;
28 User.envChange = true;
29 } InTransit;

40 profile {
41 User.id = %userId;
42 Disp.location = User.currentRoom;
43 } DispAvail;

44 selection { Disp.type = (PCMonitor > palm); } uDispOwnRoom;

45 selection { Disp.type = (Plasma > Projetor > monitor > palm); } uDispAlone;

46 selection { Disp.type = (palm); } uDispNotAlone;

Figura 11. Perfis da aplicação Vod pervasivo

5.3 Implantação da Aplicação e Gerência do Contrato
Antes de implantar a aplicação e impor o contrato VodP, é preciso implementar (caso
não existam) os Agentes de Recurso para as categorias User, Room e Displays, e
registrá-los no Diretório de Recursos. Também é necessário especializar os Contractors
que gerenciarão e validarão os perfis em cada nó. Além disso, as instâncias de recursos
(usuários, salas e displays), também devem ser criadas e registradas.

Ao implantar a aplicação o Gerenciador de Contratos do CR-RIO interpreta o
contrato e identifica na cláusula de negociação (Figura 10, linhas 9-10) que sOwnRoom
é o serviço preferencial. Neste serviço existe uma declaração link para ligar o servidor
de vídeo (srvVoD, instanciado estaticamente) ao módulo virtual dp. A partir daí a
seqüência de operações realizada é a descrita na Seção 4.2, parametrizada pelos
serviços, perfis e perfis de seleção do contrato VodP. Caso o Serviço de Descoberta
retorne uma lista contendo mais de uma instância de Display, o Selector escolhe o
melhor deles de acordo com o perfil de seleção uDispOwnRoom (estabelece uma ordem
de preferência, Figura 11, linha 44).

Depois que o serviço estiver implantado, o conjunto de perfis continua sendo
monitorado. Se qualquer Contractor detectar que uma das propriedades viola as
restrições para o serviço corrente (um perfil está inválido), o Gerenciador de Contratos é
notificado, e tenta estabelecer outro serviço, de acordo com a cláusula de negociação.
Por exemplo, se o serviço sOwnRoom é o corrente e o usuário muda de sala, violando a
restrição para esse serviço (Figura 110, linha 3), este não poderá ser mantido. De acordo
com a cláusula de negociação, ele tentará estabelecer o serviço sOtherRoomAlone
iniciando para isso a mesma seqüência de operações.

6 Conclusão
Nosso trabalho propõe dois elementos importantes para o suporte aplicações sensíveis
ao contexto: (i) o Serviço de Contexto para coletar informações dos recursos da
aplicação e do ambiente de operação, e (ii) o Serviço de Descoberta, para a descoberta
dinâmica de recursos, considerando-se restrições de contexto. A integração destes
serviços ao CR-RIO resultou em uma infra-estrutura que facilita o desenvolvimento de
aplicações pervasivas que se beneficiem destes serviços, através da especificação de
contratos não-funcionais em alto nível considerando restrições dinâmicas de contexto.

Atualmente estamos trabalhando em um protótipo estruturado dos serviços, já
integrados ao CR-RIO para realizar avaliações de desempenho e escalabilidade. Em
conjunto com estas atividades estamos investigando estilos de interface que permitam
aos usuários customizar seus próprios contratos (a partir de contratos genéricos) em
alto-nível, facilitando a aplicação da proposta. Um outro ponto de pesquisa são as
funções de utilidade, incorporadas em nossa proposta através dos perfis de seleção.
Estamos explorando alternativas, como às propostas em [Hua03], mas no nosso caso
mantendo-se num alto nível de abstração.

885

Bibliografia
Capra. L, Zachariadis, S., Mascolo. C., “Q-CAD: QoS and Context Aware Discovery

Framework for Mobile Systems”, Int. Conf. on Pervasive Services (ICPS'05),
Santorini, Grécia, Julho, 2005.

Cardoso, L. T., Sztajnberg, A.; Loques, O. G., “Self-adaptive applications using ADL
contracts”, 2nd. IEEE International Workshop on Self-Managed Networks, Systems
& Services, 2006, Dublin. LNCS, 2006. Vol. 3996. p. 87-101.

Cardoso, L. T., “Integração de serviços de monitoração e descoberta de recursos a um
suporte para arquiteturas adaptáveis de software”, Dissertação de Mestrado, Instituto
de Computação, UFF, Novembro, 2006.

Corradi, A., “Um Framework de Suporte a Requisitos Não-Funcionais para Serviços de
Nível Alto”, Dissertação de Mestrado, Instituto de Computação, UFF, Agosto, 2005.

Dey, A., “Providing Architectural Support for Context-Aware applications”, Tese de
Doutorado, Georgia Institute of Technology, Novembro 2000.

Distributed Management Task Force, Inc., “Common Information Model
Specification”, Ver. 2.2, Junho, 1999. www.dmtf.org/standards/cim/cim_spec_v22

Garlan, D., Cheng, S.-W., Huang, et al., ”Rainbow: Architecture-Based Self-Adaptation
with Reusable Infrastructure”, IEEE Computer, Vol. 37, No. 10, p. 46–54, 2004.

Huang, A.-C., Steenkiste, P., “Network Sensitive Service Discovery”, USENIX
Symposium on Internet Technologies and Systems, 2003.

Kindberg ,T., Fox, A., “System software for ubiquitous computing”, Pervasive
Computing Magazine, Vol. 1 , No. 1, pp. 70-81, Janeiro, 2002.

Lee, K., Lee, D., Ko, Y. W., et al., “An Objectified Naming System for Provinding
Context Transparent to Context-Aware applications”, 4th. Wksp. on Software
Technologies for Future Embedded and Ubiquitous Systems, 2006.

Loques, O., Sztajnberg, A., Cerqueira, R. C., et al., “A contract-based approach to
describe and deploy non-functional adaptations in software architectures”. JBCS,
Vol. 10, No. 1, pp. 5-18, Julho, 2004.

Massie, M. L, Chun, B. N., Culler, D. E., “The Ganglia Distributed Monitoring System:
Design, Implementation, and Experience”, Parallel Computing, Vol. 30, No. 7, 2004.

Román, M., Hess, C. K., Cerqueira, R., et al., “Gaia: A Middleware Infrastructure to
Enable Active Spaces”, IEEE Pervasive Computing, pp. 74-83, Out-Dez, 2002.

Saha, D., Mukherjee, A., “Pervasive computing: A paradigm for the 21st century”,
IEEE Computer, 36(3): 25–31, 2003.

Sztajnberg, A., Corradi, A. M., Santos, A. L., et al., “Especificação e Suporte de
Requisitos Não-Funcionais para Serviços de Nível Alto”, Minicursos do 23º. SBRC,
pp. 223-279, Fortaleza, CE, 2005.

Tierney, B., Aydt, R., Gunter, D. et al, “A Grid Monitoring Architecture”, Tech. Rep.
GWD-PERF-16-2, Global Grid Forum, Janeiro, 2002.

Wolski, R.; Spring, T. N.; Hayes, J., “The Network Weather Service: A Distributed
Resource Performance Forecasting Service for Metacomputing”, Future Generation
Computer Systems, Vol. 15, No. 5-6, pp. 757-768, 1999.

Zhu, F., Mutkaand, M. W., Ni, L. M., “Service Discovery in Pervasive Computing
Environments”, IEEE Pervasive Computing, Vol. 4, pp. 81-90, 2005.

886

