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Abstract: The increasing demand for embedded multimedia applications 
makes evident the need for end-to-end Quality of Service (QoS) 
provisioning. Particularly, operating systems, despite their location at end 
systems, switches or routers, must guarantee that resources under their 
control are adequately managed to fulfill the application requirements. This 
work proposes the implementation of QoS provisioning in real-time 
embedded systems scheduler. In order to achieve the end-to-end QoS, we 
propose the implementation of the control and management of QoS 
mechanisms in the operating system scheduler. The implementation of such 
mechanisms includes admission control and resource reservation, as well as 
process scheduling control and active monitoring of the delivered QoS. As a 
result, a new scheduling algorithm, named ER-EDF, is proposed and 
compared to previous scheduler solutions. This approach was validated 
through a set of benchmarks and we conclude that ER-EDF adds 
performance and simplified hard real-time support to real-time embedded 
applications. 

1 Introduction 

In the last years, there has been an increase demand for hardware/software platforms 
with multimedia application support. These platforms are increasingly distributed, real-
time, embedded, and must operate under highly unpredictable and changeable 
conditions. 

In order to provide end-to-end Quality of Service (QoS), required by multimedia 
applications, resource management on the whole operation environment is needed. 
Indeed, QoS provisioning requires the implementation of several tasks both in the end-
systems and in the communication provider, including its switches and routers. In the 
end-systems, resources controlled by the operating system, like CPU, memory and 
communication buffers, must be adequately managed to ensure that the interaction of 
various applications will not cause individual QoS violations. 

QoS provisioning has become even harder since new requirements, imposed by new 
types of multimedia application and new codification techniques have emerged. In fact, 
the rapid and inexpensive deployment of services with new QoS requirements has 
become essential to embedded multimedia applications. 

Real-Time Operating Systems (RTOS) services and mechanisms (e.g. scheduling) 
with QoS support emerged to provide predictability to the critical systems. However, 
the current generation of commercial-off-the-shelf RTOS schedulers lacks adequate 
support for applications with stringent QoS requirements. Since processing and 
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communication requirements are distinct for each media type, different QoS guarantees 
are necessaries to maintain synchronization characteristics, temporal constraints, and 
reliability, among others, of an application. 

The computing infrastructure for these systems must be sufficiently flexible to 
support workload variation at different times during an application lifecycle, yet 
maintain highly predictable and dependable behavior. Controlling the real-time behavior 
of such embedded systems is one important dimension of the delivered QoS. 

The recent focus on user control over QoS aspects stems from technology advances 
in historically challenging research areas, such as allocation policies, synchronization of 
streams in embedded multimedia applications, and assured communication in the face 
of high demand. The focus on QoS aspects has led to the development of a number of 
proposed and implemented improvements to commonly available embedded computing 
infrastructures. When coupled with embedded software that can recognize and react to 
environmental changes, these improvements form the basis for constructing appropriate 
adaptive behavior for next-generation embedded real-time systems. 

Two main phases can be identified during the QoS provisioning: negotiation and 
tuning. The QoS negotiation phase involves mechanisms responsible for task (or jobs) 
admission control. An admission characterizes the establishment of a service contract 
(or service agreement) between a task and the QoS provisioning environment. During 
the service offering, both sides can break the previously negotiated contract. The task 
may not respect anymore its initial load and the environment can be no more able to 
maintain the service level agreement, since resources are dynamically shared. The QoS 
tuning phase provides mechanisms responsible for monitoring the flow load and the 
QoS really offered to the application tasks. In case of contract violation, from any side, 
it should fire actions to reestablish the QoS negotiated level. 

The specification of QoS services can involve the choice of scheduling, admission 
and classification algorithms, as well as other configuration parameters, such as tasks 
that will be part of the communication protocol stack or the description of the system 
initial state for the QoS provisioning (e.g. initial partitioning of resources for each 
application class). For this sake, diverse high-level adaptability abstractions have been 
proposed [1] (e.g. reflection, open signaling, active networks, etc). These abstractions 
usually rely on switches and end systems that can be explicitly programmed during 
communication infrastructure operation, demanding, therefore, an operating system 
with sufficient flexibility. Nonetheless, the variety of available embedded RTOS 
(eRTOSs) hampers the deployment of such high-level adaptability abstractions. For 
example, the most used scheduling algorithm for embedded real-time applications, 
which is the Earliest Deadline First (EDF) was not conceived to offer guarantees and 
has an unpredictable behavior when the system is overloaded [2], thus not providing 
predictability of execution. 

The key issues of this paper is to discuss and propose an adequate support for QoS 
provisioning and service adaptability that can be built in a general purpose eRTOS. In 
this sense, we present a new scheduling algorithm for QoS provisioning on eRTOS, 
named ER-EDF. In this paper, we mainly focus on the QoS provisioning for hard real-
time tasks. 

In order to validate the proposed approach, three algorithms were implemented in an 
embedded operating system: EDF, Reservation EDF (R-EDF) and Enhanced R-EDF 
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(ER-EDF). The main issue of the ER-EDF is the performance enhancements and 
support for processing reservation for hard real-time tasks, as we will demonstrate in the 
experimental results. 

The remaining of this paper is organized as follows. Section 2 presents the related 
work. Next, in Section 3, the basic concepts of job and task model are explained. 
Section 4 presents the R-EDF algorithm and its limitations. Section 5 presents the new 
algorithm ER-EDF. Section 6 shows the implementation and experiments created to 
validate the proposed algorithm. Finally, Section 7 concludes this work. 

2 Related work 

Resource reservation is a common mechanism to provide separation between real-
time applications and best-effort applications, in an open shared environment 
[3][4][5][6]. This approach allows multimedia application to reserve processor resource 
and guarantees the resource availability to the admitted applications. 

Real-time scheduling algorithms such as Rate Monotonic (RM) and EDF [2][7] are 
designed to guarantee resource availability to real-time applications. Deng et al. [8] 
proposed a scheduling scheme for hard real-time applications in open environment. 
However, these algorithms usually do not work well in a general-purpose open 
environment where soft real-time applications coexist with best-effort applications and 
compete for resource. 

Abeni and Buttazzo [9] introduced the Constant Bandwidth Server (CBS), which 
schedules tasks based on budget reservation. It uses dedicated servers to isolate groups 
of tasks and guarantee protection to other tasks. CBS restricts the execution of tasks to 
its budget to protect other tasks, thus allowing unnecessary deadline misses. 

Zhu et al. [10] proposed the Diff-EDF scheduler, which offers guarantees to tasks by 
changing a task’s deadlines based on its desired miss-rate. Tasks with modified 
deadlines are then put into an EDF queue. Being focused on continuous media soft real-
time applications, Diff-EDF lacks support to multiple classes and hard real-time tasks. 

SMART [11] and Rialto [12] allow applications to specify real-time requirements for 
a computation unit. For example, Rialto uses a primitive BeginConstraint() to specify 
start time, deadline and criticality for a code block. These approaches may incur a large 
overhead, since multimedia applications usually contain a lot of code blocks with timing 
constraints and it is necessary to specify time constraints for each individual code block. 

Yuan et al. [13] introduced the R-EDF algorithm, which targets the mix of soft real-
time multimedia applications and best-effort applications in open shared environment. It 
supports multiple classes of multimedia tasks to reserve CPU resource, based on task 
utilization. The utilization-based reservation is optimistic, and the R-EDF algorithm 
protects overrun, handling it in a predictable time bound. However, some times the 
algorithm can deliver unexpected results for soft real-time applications generating 
undesirable delays. In addition, hard real-time applications are not supported. This work 
improves R-EDF algorithm by hard real-time supporting and a better overall 
performance of the application. 
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3 Job and Task Models 

Models of real-time systems may use the concepts of task and job to represent the 
behavior of applications. A task is a part of an application, since that an application can 
be seen as a set of tasks. A job computes part of a task, having a release time and 
deadline. For example, a task could be mapped to a video decoding function and its jobs 
could be mapped to the processing of each frame, i.e. each frame is a job. 

Figure 1(a) illustrates the job model. Together with the release time and deadline, a 
job has the processing time P and the relative deadline R, which, for this work, it is also 
considered the period of the task. The utilization θ of a job J is θ(J) = P/R. The task T 
is composed by a set of jobs (T = {J1, J2, ..., Jn}, where n ≥ 1), as it is illustrated in 

Figure 1(b). In a task T with n jobs, the utilization of the task is 
n
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current job list (CJL) of a task is the set of jobs that have already been released but not 
yet completed. That is, CJL(T) = {Js, …, Jm}, where Jm is the latest released job. 

(a) Job 

 

(b) Task with n dependent jobs 

 
Figure 1: Task and Job Models 

4 R-EDF Concepts and Limitations 

R-EDF is a real-time scheduler, based on the well-known EDF, which proposes to 
add QoS to task scheduling. It is accomplished by reserving the processing time via 
parameterization. R-EDF classifies five types of tasks: 
• Periodic Constant Processing Time (PCPT) jobs have constant processing time 

and relative deadline, resulting in constant utilization. 
• Events are a special kind of PCPT with only one job. 
• Periodic Variable Processing Time (PVPT) jobs have constant relative deadline 

and variable processing time. 
• Aperiodic/Sporadic Constant Utilization (ASCU) jobs have arbitrary relative 

deadlines and processing time, i.e. both parameters may vary at each job. Generally, 
there is no algorithm to meet deadlines for some sporadic jobs. Hence, the support to 
ASCU jobs imposes constraints: the jobs have constant utilization and their relative 
deadline is known at release time. 

• Best-effort tasks have no timing restrictions, but should not starve. 
Utilization θ and peak utilization ψ are defined, as the average utilization of all jobs 
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of a task and the maximum utilization among all jobs of a task, respectively. Each task 
reserves the processing time for all its jobs at the beginning of the task, based on θ for 
soft real-time tasks and ψ for hard real-time tasks. For example, if a soft task has θ = 
20%, a 20% reservation will be effective for the task. When a job exceeds its 
reservation limit, it enters in the overrun state. The job returns to the ready state when 
comes the next release time of the task. Figure 2 illustrates the states that a task can be. 

 
Figure 2: Finite state automata of real-time tasks 

The number 1 defines 100% of the processor capacity. Therefore, a system with M 
processor has capacity M. R-EDF statistically multiplexes the processor capacity 
between real-time and best-effort tasks. The time-sharing capacity CTS is the unreserved 
capacity, which is shared among all best-effort tasks. CTS has a lower bound β, such that 
CTS ≥ β, to protect best-effort tasks from starvation. Real-time capacity CRTp and peak 
capacity PCRTp of a processor p (1 ≤ p ≤ M) are, respectively, the sum of the 
utilizations of the tasks and the sum of peak utilization of tasks bound to a processor. 
That is, )( 
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 -    for the whole system. Otherwise, the system is underloaded. 

Analyzing the R-EDF algorithm’s behavior, a limitation was found, as Figure 3 shows. 

PVPT A  θ(JA1)=1/6 θ(JA2)=2/3 θ(JA3)=2/3    
θ(A)=1/2                       
ψ(A)=2/3  0 1     6   9   12   15  17    

                       
PVPT B  θ(JB1)=2/3 θ(JB2)=1/6 θ(JB3)=1/6    
θ(B)=1/3                       
ψ(B)=2/3  0   3   6      12     17    

                       
  JA1 JB1    JA2 JB1  JA3 JB2JB3    JA3 

Scheduling                    …   
R-EDF  0 1 2    6  8 9 10  12   15 16 17    

  
Figure 3: Reservation in R-EDF with two PVPT tasks 

Two PVPT tasks are illustrated in Figure 3. Task A has a reservation θ(A) = 1/2 and 
task B has reservation θ(B) = 1/3. At the beginning of execution, the job JB1 executes 
after job JA1. However, the job JB1 uses all its reserved time and enters in the overrun 
state. There would be time available to execute the job JB1 in the 3 and 4 time ticks. This 
example shows the restrictive reservation problem present in this algorithm. In the 
proposed algorithm (ER-EDF) we solve this issue by allowing tasks to execute in the 
extra available time (see Section 5). 
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In addition, R-EDF does not support hard real-time tasks, since it assumes that a job 
can miss its deadline when the reservation is reached. In this algorithm, if a task enters 
in the overrun state, it will miss its deadline. 

5 The ER-EDF Algorithm 

Enhanced R-EDF (ER-EDF) is an improvement of R-EDF. It was conceived to 
improve the QoS delivered to soft real-time tasks and provide reservation for hard-real 
time ones. The analysis of R-EDF showed that it can be improved; hence modifications 
were introduced to allow the prevention of restrictive reservations and allow the 
reservation of hard real-time tasks. 

The hard real-time reservation is accomplished with the establishment of reservations 
based on worst case [1], i.e. the reservation is the task peak utilization ψ. This allows 
the scheduling of hard real-time, soft real-time and best effort tasks in the same system. 

5.1 Admission Control 

Changes in the admission control were introduced to effect the proposed alterations. 
At the creation time, each task informs the scheduler if it is a soft or hard real-time task. 
The admission control algorithm is presented below. 

Step 1: Initially, the real-time capacity CRTp and peak real-time capacity PCRTp of each processor p are set 
to 0 (1 ≤ p ≤ M), and the time-sharing capacity CTS is set to M. 
 
Step 2: A real-time task with utilization θ and peak utilization ψ requests reservation: 

If the task is hard real-time then (reserve using ψ) 
If the time-sharing capacity can be reduced to admit this task CTS - ψ > β, and a processor p (1< p < 

M) can fulfill the requirement CRTp + ψ ≤ 1 then 
Task is bound to the processor p, with: CRTp = CRTp + ψ; PCRTp = PCRTp + ψ; CTS = CTS - ψ 

Else 
Task is rejected. 

End if 
Else (reserve using utilization θ): 

If the time-sharing capacity can be reduced to admit this task CTS - θ > β and a processor p (1 ≤ p ≤ 
M) can fulfill the requirement CRTp + θ ≤ 1 then 

Task is bound to the processor p, with: CRTp = CRTp + θ; PCRTp = PCRTp + ψ; CTS = CTS - θ 
Else 

Task is rejected 
End if 

End if 
 

Step 3: If a real-time task with utilization θ and peak utilization ψ, bound to a processor p, releases its 
reservation, then: 

If the task is hard real-time, then 
CRTp = CRTp-ψ; PCRTp = PCRTp-ψ; CTS = CTS+ψ. 

Else 
CRTp = CRTp - θ; PCRTp = PCRTp - ψ; CTS = CTS + θ. 

End if 

5.2 Scheduling 

ER-EDF incorporates modifications to allow better use of the processing capacity. 
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These modifications are conceived to allow a task to exit its overrun state and execute in 
the available time. The modifications include: 

1. Forbid a task to enter in the overrun state when there is not any real-time task 
ready; 

2. At the end of a job, remove the task with the earliest deadline from the overrun 
state if no other real-time task is ready to execute. 

Like its predecessor, ER-EDF only activates the overrun protection mechanism when 
the system is overloaded. Consequently, ER-EDF has analogous behavior as the EDF 
algorithm, when the system is under loaded. The ER-EDF algorithm is described next. 
Step 1: Selection a task for execution. 

If any real-time task is ready, then 
Select one whose latest released job has the earliest deadline and execute jobs in the CJL in order; 

Else if there is a task in the overrun state, then 
Select the task in the overrun state whose latest released job has the earliest deadline, put it in the 
ready state and execute jobs in the CJL in order. 

Else 
Invoke the best-effort task scheduler. 

End if 
 

Step 2: The scheduler waits until the next time unit. 
If a running task finishes all its jobs, then 

It enters the waiting state; 
Else if the system is overloaded and the CJL of the current task is not empty and the task used all its 
reserved time, then 

If there is any real-time task ready then 
Current task enters the overrun state. 

Else if the ran utilization of the current task is greater or equal than (1- β), then 
It enters the overrun state. 

Else 
It continues to execute. 
Check all tasks for reached release times and set them to the ready state. 

End if 
End if 

 
Step 3: Go to step 1. 

PVPT A  θ(JA1)=1/6 θ(JA2)=2/3 θ(JA3)=2/3    
θ(A)=1/2                       
ψ(A)=2/3  0 1     6   9   12   15  17    

                       
PVPT B  θ(JB1)=2/3 θ(JB2)=1/6 θ(JB3)=1/6    
θ(B)=1/3                       
ψ(B)=2/3  0   3   6      12     17    

                       
  JA1 JB1    JA2 JB1  JA3 JB2JB3    JA3 

Scheduling                    …   
R-EDF  0 1 2    6  8 9 10  12   15 16 17    

                       
  JA1 JB1  JA2 JB2   JA3 JB3JA3     

Scheduling                       
ER-EDF  0 1   4  6  8 9   12  14 15 16 17    

  
Figure 4: Restrictive reservation in R-EDF and ER-EDF with two PVPT tasks 
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In Figure 4, two PVPT tasks are show executing under R-EDF and ER-EDF 
algorithms according to the example presented in Section 4. While in R-EDF execution 
the job JB1 enters the overrun state, ER-EDF verifies that no other real-time task is 
available to run and allows that job to execute in the 3 and 4 time ticks, passing its 
reserved time. In the time tick 15, the job JA3 enters the overrun state, allowing JB3 to 
execute. Soon after JB3 execution, JA3 exits the overrun state, finishing its execution in 
the remaining available time. 

6 Implementation/Experiments 

The Spartan-3 Starter Board [14], together with Plasma soft-core processor, was used 
to validate the proposed algorithms. The border contains 1 MiB of SRAM memory, 
displays, leds, serial port and JTAG for bit stream loading. Plasma implements a 
reduced MIPS instruction set. It also is open-source, allowing a flexible hardware 
support. 

The operating system used is EPOS1. EPOS is an application-oriented operating 
system, i.e. it adapts automatically to the application requirements. The two algorithms 
were implemented in this OS and two experiments are shown next. 

In the first experiment, a situation where four real-time tasks are executed is shown. 
Each task has 500 jobs to execute simultaneously. The first three are PCPT tasks, i.e. 
have constant utilization. PCPT tasks have peak utilization equal to task utilization (θ = 
ψ). Thus, PCPT tasks have similar behavior to tasks marked as hard real-time. 

Table 1 presents the parameters used to generate the experiment data. Task 2 is the 
only one marked as hard real-time. However, the reservation is similarly made to the 
first three tasks. Task 4 is a PVPT task where each job receives a generated utilization 
based on a linear mathematical distribution, where the minimum is 10% and the 
maximum is 42%. The system is classified overloaded with %115)T( i

4

1i

=∑
=

Ψ . The total 

reservation of the system is 100%. 

Table 1: Parameters for experiment data generation – first experiment 

 
The deadline miss results for the four tasks of the execution are presented in Figure 5. 

In this experiment, the hard real-time parameter was disabled in R-EDF and ER-EDF to 
verify the similar behavior for PCPT tasks. Even though only the second task is marked 
                                                           
1 Available in http://epos.lisha.ufsc.br/ 

894



as hard real-time, all first three behave similarly, losing 0% of its deadlines. In the 
execution of the EDF algorithm, all tasks miss deadlines. R-EDF and ER-EDF present 
no deadline miss for PCPT tasks, which is therefore compensated in the PVPT task. 
However, ER-EDF presents lower deadline miss rate compared to R-EDF. 

 
Figure 5: Deadline miss comparison for EDF, R-EDF and ER-EDF with/without hard real-

time marks 

The next experiment shows two tasks with different periods executing in an 
overloaded environment. The first task is a hard real-time PCPT with constant 
utilization of 50%. The second is a PVPT with numbers generated by a linear 
distribution. Table 2 shows the parameters provided to generate data to be used in the 
execution. 

Table 2: Parameters for experiment data generation – second experiment 

 
Figure 6 compares EDF, R-EDF and ER-EDF showing their deadline miss rate for 

the execution described in Table 2. EDF presents an undesirable behavior showing 
considerable deadline miss rate for both tasks. R-EDF shows the first task correctly 
being treated as hard real-time with 0% deadline miss. ER-EDF shows analogous 
execution to R-EDF. However, ER-EDF presents an improvement of 30% on the second 
task over R-EDF. 
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Figure 6: Deadline miss comparison for EDF, R-EDF and ER-EDF 

7 Conclusions 

This work introduced a new real-time scheduler algorithm to provide quality of 
service to applications. The new algorithm – Enhanced R-EDF – is based on R-EDF, a 
multiclass real-time scheduler. R-EDF presents some limitations that are overcome by 
the new algorithm. In addition, the support for hard real-time tasks was added, which is 
fundamental to applications that require great responsiveness, and allows the existence 
of hard real-time, soft-real time and best effort tasks in the same system. 

ER-EDF showed significant improvement over its predecessor R-EDF. The addition 
of hard real-time support allows developers to parameterize the application to fulfill 
application’s real-time requirements. However, the enhancement of real-time execution 
costs to the best-effort tasks more starvation time. 
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