
Analisador e Simulador de Redes de Petri

Felipe G. de Oliveira Lino1, Alexandre Sztajnberg1,2

1Departamento de Informática e Estatística / Instituto de Matemática e Estatística
2Programa de Pós-Graduação em Eletrônica / Faculdade de Engenharia

Universidade do Estado do Rio de Janeiro (UERJ)
felipelino44@gmail.com, alexszt@ime.uerj.com.br

Abstract. Petri Nets can be used on the modeling and verification of several
operation system features such as concurrency and process synchronization,
conflict verification, resource sharing, among others. This paper describes a
tool, on-going development, which allows describing and verifying Petri Nets
with the support of a graphical interface. This tool, based on the ARP, is being
developed in Java and employs modern object oriented techniques and design
patterns. In this way extensions to this tool, such as time constrains and the
introduction of new verification strategies can be easily plugged.

Resumo. As Redes de Petri têm aplicação na modelagem e verificação de
várias características de sistemas operacionais como a concorrência e
sincronização de processos, verificação de conflitos, compartilhamento de
recursos, entre outros. Este artigo descreve uma ferramenta, em
desenvolvimento, que permite a descrição e a verificação de Redes de Petri
com o suporte de uma interface gráfica. Esta ferramenta, baseada no ARP,
está sendo desenvolvida em Java e emprega técnicas modernas de orientação
a objetos e “design patterns”. Desta forma extensões a ferramentas, tais
como, restrições temporais e a introdução de novas estratégias de verificação,
poderão ser plugadas com certa facilidade.

1. Introdução
Neste artigo apresentamos uma ferramenta visual para a descrição, simulação e
verificação de Redes de Petri desenvolvida em Java. O modelo básico da representação
interna de uma rede e as verificações são inspiradas no Analisador de Redes de Petri
(ARP) [Maz90]. Em nossa implementação o modelo de representação interna do ARP
foi adaptado para beneficiar-se da orientação a objetos, e uma interface gráfica foi
proposta para facilitar e aumentar a interatividade em todas as etapas de seu uso.
 Nas próximas seções destacamos os pontos importantes de nossa
implementação, discutimos o modelo de objetos e os pontos possíveis de extensão. Ao
longo do texto apresentamos também exemplos de alguns módulos da interface gráfica.

2. Redes de Petri
Redes de Petri (RP, neste texto) são essencialmente grafos bipartite, compostos por três
elementos principais: lugares, transições e arcos, que inicialmente teve sua aplicação no
estudo de autômatos [Mar05]. Devido ao seu potencial de modelagem sua aplicação se
estendeu para modelagem de sincronização de processos, concorrência, conflitos,
compartilhamento de recursos, entre outros. As RPs modelam basicamente dois

898

aspectos de um sistema: eventos e condições, bem como as relações entre eles. Através
dessas características é possível observar certas condições em cada estado do sistema.
Estas por sua vez, podem possibilitar a ocorrência de eventos que podem alterar o
estado do sistema. (Por uma questão de espaço não discutiremos detalhes sobre a
mecânica de operação das RP)

O formalismo matemático associado às RPs possibilita a verificação de
propriedades dos sistemas modelados. Algumas propriedades são:
1. Uma rede é limitada se para todas as marcações acessíveis, a partir de uma marcação

inicial, o número de fichas em qualquer lugar da rede não exceder K (inteiro).
2. Uma rede é segura se todos os seus lugares são seguros. Um lugar é seguro se seu

número de fichas não exceder a K=1. Segurança é um caso especial da propriedade
de limitação.

3. Uma rede é reinicializável ou própria se para todas as marcações possíveis da rede,
existir uma seqüência de disparos que leve a rede a marcação inicial.

4. Uma rede é conservativa se o número total de fichas na rede se mantém.
5. Uma rede é viva quando todas as transições são vivas. Uma transição é viva se para

toda marcação alcançável, existe uma seqüência de disparos, tal que a mesma torne-
se habilitada.

6. Ocorre um bloqueio na rede quando uma transição ou conjunto de transições não
dispara. Um caso especial de bloqueio é o deadlock, quando nenhuma transição está
habilitada para disparo.

A capacidade de verificarem-se a presença ou ausência destas propriedades em
uma rede permite a análise do sistema-alvo modelado. Em nossa ferramenta, além do
suporte a edição gráfica de RPs, várias destas propriedades podem ser verificadas.

3. Trabalhos correlatos
Em [PNW06] é mantido um repositório sobre Redes de Petri. Entre as informações,
uma lista abrangente de ferramentas é disponibilizada, juntamente com uma análise das
características relevantes de cada uma delas. A Tabela 1 compara algumas ferramentas
com objetivos e características semelhantes à nossa, ou seja, construídas em Java que
trabalham com RP clássicas.

Tabela 1. Comparação de algumas ferramentas para Redes de Petri

Atributos JARP PetriTool jPNS Nosso trabalho
Composição visual ➼ ➼ ➼ ➼
Simulação interativa ➼ ➼ ➼ ➼
Simulação automática ➼ ➼
Geração de árvore alcançabilidade ➼ ➼
Verificação de propriedades ➼ ➼ ➼
Resultados gráficos ➼
Persistir rede ➼ ➼ ➼ ➼

O Analisador de Redes de Petri (ARP) [Maziero 1990], desenvolvido em Pascal
para o sistema operacional DOS 3.0 contém várias ferramentas para o uso de RP, como
um editor textual, módulos de verificação, e módulos para o uso de temporização e com
temporização estendida. A estrutura do ARP, algoritmos para verificação, e partes do
seu código foram utilizadas como base para a nossa ferramenta.

899

Em nossa ferramenta procuramos aliar a interatividade, desde o editor até o
“token animation game”, com a capacidade de simulação passo a passo, a geração da
árvore de alcançabilidade, e a verificação de várias características. No estado atual,
nossa ferramenta ainda não contempla a simulação e análise de RPs com características
temporais (embora o arcabouço necessário esteja preparado, Seção 4.3), estocásticas ou
de predicados no disparo de transições. Procuramos também facilitar a extensão através
dos mecanismos de herança e reflexão estrutural de Java. As RP editadas são persistidas
em XML, o que facilita também a interoperabilidade com outras ferramentas.

4. Implementação
Nossa implementação é baseada na tecnologia de orientação a objetos fazendo uso de
técnicas como herança, encapsulamento e polimorfismo, com o objetivo de prover
reusabilidade e extensibilidade ao código do programa. Utilizamos a linguagem Java. A
parte gráfica utiliza o pacote Swing e a API Forms fornecida pela JGoodies [JGoodies
2006]. Outra API, também open source, utilizada foi a XStream [XStream 2006], uma
biblioteca simples para serializar objetos (no caso, os objetos representando a RP sendo
editada) em XML, bem como para recompor os objetos a partir de sua representação
“flat” em XML. Para nossa implementação criamos um pequeno framework para
suporte multilíngüe, basicamente fazendo uso de arquivos properties, classes de
interface e uma classe que liga esses elementos. Atualmente o programa possui como
idiomas opcionais o português brasileiro e o inglês.

4.1. Arquitetura e Estrutura do Código
A Figura 1 apresenta a arquitetura geral da ferramenta. A base da ferramenta é o modelo
de objetos, que separa a parte gráfica e a análise. Através dessa separação é possível,
por exemplo, reutilizar a engine de simulação e análise e adaptá-la a outra interface
gráfica, ou utilizar a representação de uma RP com outras ferramentas de análise. O
modelo de uma RP consiste de classes-base para representar os elementos lugar,
transição, arco e Rede de Petri. Através de herança são criadas classes especializadas
com atributos e métodos necessários para a interface gráfica. Este modelo é utilizado
pelos outros módulos da ferramenta.

Figura 1. Arquitetura da ferramenta

900

Na camada seguinte temos, então, os módulos que operam sobre o modelo de
objetos da rede através da captura de eventos e emissão de notificações para os módulos
de exibição. Assim, temos o Tratador da Área de Edição (PetriNetEditorCanvas),
Tratador da Janela Principal (MenuActionListener, ButtonActionListener,
PlaceActionListener, ArcActionListener e TransActionListener), Simulação
(SimulationAction), Análise (AnalyzerAction).

Na última camada temos os módulos de exibição: Janelas de Simulação e
Resultados da Análise, que apresentam o resultado dos eventos de simulação e análise.

Observa-se que as classes referentes à análise e simulação independem da
interface gráfica e precisam apenas das informações contidas nos objetos-base do
modelo de uma rede. A estrutura do código se divide em quatro tipos: (i) classes-base,
usadas para trafegar informações entre a interface gráfica e a engine; (ii) classes da
interface com usuário; (iii) classes da engine; e (iv) classes mediadoras. Na Figura 2,
por exemplo, temos o diagrama de classes do caso da engine de simulação. As ações
que dirigem a simulação são capturadas através da classe SimulationAction, que
também notifica as ações para a interface gráfica, classe SimulationWindow, e para a
classe que representa a rede estendida, PetriNetGraph (que contém informações de
posicionamento, cor, etc. dos elementos básicos da rede). A simulação, propriamente
dita é realizada pela classe ImplSimulator, que opera sobre a classe ImplPetriNetBase.
Diagrama semelhante se aplica ao caso da análise. Detalhes sobre o código, pacotes
Java e classes podem ser encontrados em [Lin07].

Figura 2. Separação entre a Simulação e o Modelo da Rede

4.2. Interface Gráfica
A Figura 3 apresenta alguns exemplos de uso das ferramentas, destacando-se o editor
gráfico. (a) apresenta detalhes da edição de arcos e transições. (b) e (c) apresentam a
janela principal, com os menus de edição/ação, redes editadas e uma janela de
simulação. (d) apresenta resultado de análise.

4.3. Extensões
As classes que modelam o núcleo de uma Rede de Petri possuem atributos e

métodos atualmente não utilizados pelo aplicativo já visando uma extensão. Por
exemplo, o código já está preparado para Redes de Petri Temporizadas segundo o
modelo de Merlin [Merlin 1976]. A classe TransitionBase possui os atributos:
CurvaDensidade; StaticEarliestFiringTime e StaticLatestFiringTime, facilitando a
configuração destas informações.

901

Novas análises podem ser adicionadas consultando-se a representação matricial
da Rede de Petri, fornecida pelos métodos getInputMatrix, getOutputMatrix e
getIncidenceMatrix. Para mais verificações de propriedades, devem ser alteradas ou
estendidas as classes PetriNetAnalyzer e PetriNetProperties. Todas as verificações
feitas atualmente na rede, são executadas durante a construção da árvore de
alcançabilidade, outras podem ser feitas após a construção da árvore o que exige que ela
seja percorrida algumas vezes. Como as classes de simulação e análise da Rede foram
construídas apenas usando-se a modelagem dos elementos básicos da rede, elas são
completamente reutilizáveis.

(a) (b)

(c) (d)

Figura 3. Interface gráfica, exemplos de uso

O formato do arquivo XML gerado para persistir uma rede editada assemelha-
se à estrutura da classe PetriNetGraph, uma vez que o arquivo persistido é espelho da
classe. Contudo, pelas classes envolvidas na formação de uma RP possuírem apenas os
atributos essenciais, o arquivo gerado torna-se parecido com outras representações de
RP em XML, como PNML por exemplo [PNML 2005]. Assim sendo, é simples capturar
os atributos principais de um arquivo em um formato qualquer e colocá-los na
representação de XML de nossa implementação. O inverso também é possível, mas
sempre dependerá da complexidade do formato do arquivo alvo.

5. Considerações finais
A ferramenta apresentada está em desenvolvimento. O núcleo do código foi estruturado
para facilitar a inclusão de novas características, tanto em relação ao modelo da rede,
quanto às análises e a própria interface gráfica. Como exemplo, estamos trabalhando na
inclusão de características temporais nas RP editadas. Como discutido, outras extensões
como RP estocásticas ou redes coloridas podem ser adicionadas.

902

 A ferramenta desenvolvida está sendo utilizada no curso de Sistemas
Operacionais no DICC/UERJ e no curso de Sistemas Concorrentes do PEL/UERJ.
Através desta ferramenta os alunos simulam e verificam exemplos clássicos como
“produtores-cosumidores”, “leiores-escritores”, “ceia dos filósofos” e outros programas
concorrentes desenvolvidos ao longo do curso. A ferramenta também está sendo
utilizada para simular protocolos de comunicação em que a expressividade das RPs
clássicas é suficiente. Esperamos também atrair novos alunos para continuar o projeto.

O código da ferramenta será aberto para a comunidade interessada em trabalhar
em extensões e, obviamente a ferramenta será disponibilizada livremente. Na medida
em que a ferramenta seja consolidada, iremos disponibilizar a mesma, e seu respectivo
código, através de um sítio na Internet. Contribuições ao projeto serão bem-vindas.

Agradecimentos. Gostaríamos de agradecer o Prof. Carlos Maziero (PUC-PR) pelo
código fonte do ARP e sua documentação. Agradecemos o apoio parcial da Faperj
(APQ1 E-26/171.130/2005).

Referências
Cardoso, J. e Valette, R. (1997). “Redes de Petri”, Editado na UFSC.
de Souza Leão, J. L. (2004). “Programação e Validação de Sistemas Multitarefa –

Capítulo 5 Redes de Petri”, VI , 76 p, 29,7cm (Rio de Janeiro) COPPE/UFRJ,
http://www.gta.ufrj.br/%7Eleao/coe717-2004-1/.

Gamma, E., Helm, R., Johnson, R. e Vlissides, J. (2003) “Design Patterns Elements of
Reusable Object-Oriented Software”, Edited by Addison Wesley.

Lino, F. G (2007). “Implementação de uma ferramenta gráfica para Redes de Petri”,
Monografia de Graduação, DICC/IME – UERJ.

JGoodies (2006). http://www.jgoodies.com.
Marranghello, N. (2005). “Redes de Petri: Conceitos e Aplicações”,

http://www.dcce.ibilce.unesp.br/~norian/cursos/mds/ApostilaRdP-CA.pdf.
Maziero, C. (1990). “ARP - Analisador de Redes de Petri”.

http://www.ppgia.pucpr.br/~maziero/diversos/petri/.
Maziero, C. (1990). “Um ambiente para a análise e simulação de sistemas modelados

por redes de Petri”, Tese de Mestrado, Universidade Federal de Santa Catarina..
Merlin, P.M. e Farber, D.J (1976). “Recoverability of Communication Protocols –

Implication of a Theoretical Study”. IEEE Transactions on Communications,
págs.1036-1043.

Peterson, J. L. (1981). “Petri Net Theory and the Modeling of Systems”, Prentice-Hall,
.J., 1981, ISBN: 0-13-661983-5.

Petri Nets World (2006). http://www.informatik.uni-hamburg.de/TGI/PetriNets/ TGI
group at the University of Hamburg, Germany.

PNML (2005). Software and Systems Engineering – High-level Petri Nets, Part 2:
Transfer Format. International Standard ISO/IEC 15909-2. Working Draft Version
0.9.0, June 2005. (Submitted for a ISO/IEC SC7 WD/CD registration and CD ballot).

XStream (2006). http://xstream.codehaus.org.

903

