
Adaptação do Middleware de Grids POP-C++ para Redes de
Sensores sem Fio

Augusto Born de Oliveira, Lucas F. Wanner e Augusto A. Fr̈ohlich

1Laboratório de Integração de Software e Hardware
Universidade Federal de Santa Catarina

CP 476 – 88049-900 – Florianópolis, SC, Brasil

{augusto, lucas, guto}@lisha.ufsc.br

Resumo. O tópico de interaç̃ao entre Redes de Sensores sem Fio (RSSFs) e
outros sistemas computacionais tem recebido relativamente baixa atenção ci-
ent́ıfica, e a interface entre a fonte de dados e as aplicações que usam esses
dados continua um problema para o programador da aplicação. Este trabalho
estende o POP-C++, uma linguagem de programação e sistema de suporte de
tempo de execução para programaç̃ao do Grid para permitir que aplicaç̃oes do
Grid utilizem as capacidades de sensoriamento e processamento das RSSFs de
forma transparente e concorrente.

1. Introdução

Apesar das Redes de Sensores sem Fio (RSSFs) terem sido o foco de muitos
esforços de pesquisa nos anos recentes, o tópico de interação das RSSFs com outros sis-
temas computacionais tem recebido relativamente baixa atenção. Os esforços de pesquisa
que dão atenção a isso, como o TinyDB e o Cougar, abstraem os nodos de sensoriamento
individuais e dão acesso à RSSF como um todo, permitindo que aplicações façam consul-
tas como fariam em uma database; enquanto esse nı́vel de abstração permite a otimização
de consultas, minimizando a quantidade de mensagens a serem enviadas pelo meio sem
fio, ele tira controle do programador de aplicação, já que a exploração da capacidade de
processamento dos nodos da RSSF se torna difı́cil. Além disso, uma solução deste tipo
não esconde a fronteira entre a RSSF e o resto do sistema computacional.

Em contraste com essas estratégias, este trabalho integra RSSFs e o Grid trans-
parentemente sem remover controle do programador da aplicação através da extensão do
POP-C++ [Nguyen and Kuonen 2007]. POP-C++ é uma linguagem de programação e
sistema de suporte de tempo de execução orientada a objetos, capaz de suportar objetos
paralelos distribuı́dos em uma rede. Os objetivos especı́ficos desta extensão são permitir
que:

• Aplicações no Grid comuniquem-se com RSSFs transparentemente: Ao esconder
toda interação com a rede em uma interface de chamada remota de métodos, de-
talhes da pilha de rede e do meio fı́sico se tornam transparentes para a aplicação;

• Uso concorrente das capacidades de sensoriamento das RSSFs por múltiplas
aplicações do Grid: Ao permitir que múltiplos objetos sejam executados em cada
nodo e que cada objeto seja utilizado por múltiplas interfaces, uso concorrente da
RSSF por múltiplas aplicações se torna possı́vel;

904



• Software independente de aplicação nos nodos de sensoriamento: ao permitir que
aplicações usem um conjunto comum de métodos, espera-se minimizar a neces-
sidade de reprogramações custosas da memória de progrma dos nodos e permitir
aplicações adicionais a serem iniciadas após a instalação da RSSF.

2. POP-C++

POP-C++ é uma extensão de C++ criado para suportar objetos distribuı́dos, para-
lelos e orientados a requisitos. No modelo de objetos do POP-C++, objetos paralelos têm
a habilidade de descrever suas necessidades de recurso em tempo de execução e serem
alocados em qualquer um dos nodos do Grid que pode suportar sua execução. O processo
de procura por um nodo adequado e transmissão do código a ser executado é transpa-
rente para o programador. O POP-C++ também tem semânticas especiais de invocação
de métodos, porém a sintaxe de invocação de métodos não difere entre objetos remotos
ou locais. Além disso, objetos paralelos são compartilháveis, isto é, referências para um
objeto podem ser passadas em qualquer método, local ou remoto.

A arquitetura de tempo de execução do POP-C++ consiste em três objetos reais
para cada classe paralela que o usuário implementa: a Interface, o Broker e o Objeto
real. A Interface é um objeto por si só, instanciado no lado do invocador; ela compartilha
a interface de métodos com o Objeto real, provendo transparência de interação para a
aplicação.

O Broker é o correspondente da interface no lado do invocado; ele recebe chama-
das de método da rede, desempacota os dados, invoca o método no Objeto real e então
re-empacota os valores de retorno e os envia de volta à Interface. O Objeto real é a
implementação do usuário, com o código que deve ser distribuı́do.

O POP-C++ introduz duas extensões de sintaxe no C++ em adição às declarações
de classes paralelas: Descrições de Requisitos e Semânticas de Métodos.

• Descrições de requisitos: Usando um descritor de objetos associado, o desenvol-
vedor pode expressar requisitos de recursos na forma de um endereço de rede, o
número de MFlops necessário, a quantidade de memória necessária e a largura de
banca necessária para comunicação entre o Objeto e suas Interfaces.

• Semânticas de invocação de métodos: As opções de semânticas de invocação são
definidas em tempo de compilação pelo programador de aplicação e podem ser
classificadas em dois tipos, no lado da Interface ou no lado do Objeto.

– A semântica do lado da interface pode ser Sı́ncrona ou Assı́ncrona; ela
controla em que momento o método do lado da Interface retorna. No
modo sı́ncrono, o invocador espera até que o método no Objeto retorne,
de forma análoga à invocação tradicional. Métodos Assı́ncronos retornam
imediatamente, permitindo que o Invocador continue a execução.

– Semânticas do lado do Objeto podem ser Mutex, Sequencial ou Concor-
rente. Semântica Mutex garante que não exista concorrência no Objeto,
Sequencial garante que não haja concorrência entre os métodos com essa
semântica e a semântica Concorrente permite execução completamente
multi-thread.

905



parclass SensorNode
{

public:
SensorNode(int node, string machine) @{ od.url(machine);};

async seq void setLEDs(char val);
sync conc int getTemperature();

};

Figura 1. Classe POP-C++ SensorNode B ásica

3. Estendendo POP-C++ para RSSFs

Para dar um modelo uniforme com o qual o programador de aplicação possa criar
aplicações do Grid que usem RSSFs, o modelo POP-C++ foi estendido para RSSFs. Isto
significa que não só o programador deve ser capaz de instanciar Interfaces nos nodos
de sensoriamento para Objetos em execução em outros nodos, mas também instanciar
Interfaces para esses Objetos de dentro do Grid. Não deve existir diferença entre chamdas
de métodos “normais” (Grid-para-Grid), e chamadas feitas do Grid para as RSSFs.

A figura 1 ilustra a implementação e instanciação de um Objeto que é executado
na RSSF e recebe chamadas de função do Grid. A implementação tem métodos que lêem
valores do sensor de temperatura e atribui um valor a ser mostrado nos LEDs do nodo.
Qualquer nodo no Grid pode instanciar uma Interface a esse Objeto e transparentemente
fazer chamadas de método a ele.

3.1. Diferenças fundamentais entre o Grid e as RSSFs

Devido à natureza de poucos recursos dos nodos das RSSFs, a implementação do
sistema de suporte de tempo de execução POP-C++ para RSSFs teve de ocupar a menor
quantidade de memória principal e de programa quanto possı́vel. Isto obrigou a realização
de alguma concessões na implementação:

• Protocolos de comunicação constantes: Num ambiente como o Grid, Quanto num
ambiente de Grid, é não só interessante mas necessário suportar protocolos de
comunicação múltiplos, intercambiáveis em tempo de execução. Apesar disso, nas
RSSFs o protocolo de comunicação tem grande chance de ser constante e global.
Portanto, a implementação não suporta múltiplos protocolos de comunicação em
tempo de execução.

• Alocação estática de recursos: No Grid o custo de alocação dinâmica de recursos
é apenas fazer a carga e execução de um binário da rede, re-escrever a memória
de programa nos nodos de uma RSSF é um procedimento custoso em termos de
energia[Dunkels et al. 2006]. Para diminuir a necessidade de reprogramação, os
programadores são encorajados a utilizar funções independentes de aplicação para
possibilitar que novas aplicações sejam exeuctadas utilizando a RSSF após sua
instalação.

• Paralelismo limitado: Em virtude da quantidade muito limitada de memória en-
contrada nos nodos de sensoriamento, a quantidade de threads que podem ser exe-
cutadas concorrentemente num nodo também é bastante pequena. Isto significa

906



1

...

n

1

...

n
Broker de Proxy 1

Grid Estendido

Broker de Proxy n

Grid Tradicional

Figura 2. Brokers de Proxy integram o Grid com fio com os nodos da RSSF

que um número limitado de invocações, independentemente de suas semânticas,
vão poder ser executadas em concorrência real, e as chamadas de métodos recebi-
das posteriormente deverão ser enfileiradas.

3.2. Endereçamento

Para permitir acesso direto para cada nodo de sensoriamento indiviual, o método
de endereçamento de Objetos do POP-C++ teve de ser estendido. Existe a possibilidade
de Interfaces seres instanciadas com um parâmetro de endereço de rede, forçando o Objeto
a ser alocado no nodo com esse endereço. Este método foi estendido para RSSFs, onde
dois endereços são usados:

• Endereço 1 - Ponto de contato entre o Grid e a RSSF: Toda RSSF necessita pelo
menos um ponto de contato com o Grid. O ponto de contato precisa ser capaz de
comunicar-se em ambos os protocolos utilizados pelo Grid e pela RSSF, portanto
ele vai provavelmente precisar de hardware especı́fico como o transceptor de rádio
encontrado nos nodos de sensoriamento. Ao tomar esse endereço como parâmetro,
é possı́vel instanciar um Broker de Proxy no nodo apropriado do Grid, criando a
ponte lógica que encaminha as invocações de métodos direcionadas à RSSF;

• Endereço 2 - Nodo da RSSF: Esse endereço permite que o Broker de Proxy dire-
cione as chamadas de método para o nodo de sensoriamento correto. O formato
dele é deixado em aberto pois métodos diferentes de endereçamento podem ser
usados em diferentes RSSFs.

3.3. Broker de Proxy

Para permitir que chamadas de método sejam direcionadas para dentro da RSSF,
um objeto Broker especial foi criado. Este é um Broker genérico que simplesmente recebe
invocações de métodos do Grid como se fosse o Broker real do Objeto, e então as enca-
minha para o nodo da RSSF. Uma vez que o nodo de sensoriamento retorna da chamada
de método, este Broker encaminha o valor de retorno ao invocador original. Isto cria o
efeito de transparência para as Interfaces deste Objeto; para elas, as invocações nunca
estão deixando o Grid.

A figura 2 mostra o Grid conectado à RSSF através de Brokers de Proxy; vale
notar que podem existir mais de um ponto de contato entre o Grid e cada RSSF.

907



4. Avaliação do POP-C++ em RSSFs

Nesta seção é avaliado o sobrecusto que a implementação do sistema de suporte
de tempo de execução do POP-C++ deste trabalho introduz através da comparação de
duas implementações da seguinte aplicação: atribuir e consultar um valor de 8 bits, a ser
mostrado nos LEDs do nodo. Uma versão da implementação foi feita em POP-C++ e a
outra diretamente sobre o sistema operacional. No caso da implementação sobre o POP-
C++, o cliente instancia uma Interface para um Objeto “SensorNode” que é executado
em outro nodo, e invoca os métodosget() e set() para consultar e atribuir o dado.
Na implementação nativa, o cliente envia pacotes pré-formatados que são abertos pelo
servidor e respondidos com o dado na carga útil.

4.1. Plataforma de Teste: Hardware

Os testes foram realizados usando dois nodos de sensoriamento Mica2 desenvol-
vidos em Berkeley; eles utilizam um rádio CC1000 de um canal, um microcontrolador
Atmel Atmega128 de 8 bits a 8MHz, 4KB de memória principal e 128KB de memória
flash para programa.

4.2. Plataforma de Teste: Software

Para prover o suporte para comunicação, gerência de memória e concorrência
que ambas aplicações necessitam, foi utilizado o Embedded Parallel Operating
System[Fröhlich and Schröder-Preikschat 1999] (EPOS). Ele consiste num framework
baseado em componentes para a geração de suporte de tempo de execução para aplicações
de computação dedicada. Para este teste, o protocolo de controle de acesso ao meio
do EPOS foi configurado para confiabilidade, assegurando a entrega de pacotes através
de ACKs constantes e minimizando o atraso através de um ciclo de atividade “sempre-
ligado”.

4.3. Mediç̃oes de Performance

• Tamanho de Pacote: O tamanho dos pacotes do POP-C++ são maiores por duas
razões:

– Campo objeto: Para permitir que mais de um Objeto seja executado em
cada nodo, os pacotes são individualmente endereçados;

– Campo de Valor de Semântica: Os valores semânticos do método a ser
invocado também são enviados no cabeçalho.

A adição de funcionalidade equivalente na implementação nativa resultaria num
pacote de tamanho similar, que é justificado pela informação adicional que precisa
ser transferida ao se suportar um conjunto complexo de aplicações.

• Pedidos por Segundo: Para avaliar o sobrecusto de execução que o sistema POP-
C++ adiciona nesta aplicação, foi conduzido um teste de performance que mediu
quantos pedidos por segundo puderam ser feitas do nodo cliente para o nodo ser-
vidor. A implementação POP-C++ foi capaz de realizar 6,875 chamadas remo-
tas de método por segundo, enquanto a implementação nativa fez 7,046 pedidos
por segundo. Esta diferença de 2,42% se deve ao processamento adicional feito
pelo sistema de suporte de tempo de execução POP-C++ quando chamadas de
método chegam da rede, e também aos bytes adicionais que são transmitidos na
implementação POP-C++ da aplicação.

908



5. Trabalhos Relacionados
A TinyDB [Madden et al. 2003], o Cougar [Yao and Gehrke 2002] e outros

esforços de pesquisa [Madden et al. 2002][Bonnet et al. 2001] implementam processado-
res distribuı́dos de consultas, colocando grande esforço em otimização de consultas e ro-
teamento eficiente. Usando estas técnicas, considerável redução em consumo de energia
foi atingido, além da externalização de uma interface similar a SQL mais amigável ao
programador da aplicação. A extensão do POP-C++ apresentada neste trabalho com-
partilha estes objetivos, mas ao invés de ativamente otimizar a comunicação, ela sai do
caminho do programador de aplicação permitindo acesso total ao hardware dos nodos de
sensoriamento.

6. Conclus̃ao
Neste artigo descrevemos uma maneira de usar objetos remotos paralelos para

integrar o Grid e as RSSFs, estendendo o sistema de suporte de tempo de execução do
POP-C++ para as redes de sensores. Acreditamos que usando POP-C++ para realizar
esta integração, permitimos ao programador da aplicação que use a RSSF para múltiplas
aplicações de maneira transparente, usando interfaces instanciadas localmente para obje-
tos que executam nos nodos de sensor.

Quando comparamos aplicações de funcionalidade equivalentes implementadas
com e sem o POP-C++, nosso sistema de suporte de tempo de execução apresentou
apenas um pequeno sobrecusto, que foi justificado pela habilidade de suportar múltiplas
aplicações concorrentemente.

Referências
Bonnet, P., Gehrke, J., and Seshadri, P. (2001). Towards sensor database systems. In

MDM ’01: Proceedings of the Second International Conference on Mobile Data Ma-
nagement, pages 3–14, London, UK. Springer-Verlag.

Dunkels, A., Finne, N., Eriksson, J., and Voigt, T. (2006). Run-time dynamic linking
for reprogramming wireless sensor networks. InSenSys ’06: Proceedings of the 4th
international conference on Embedded networked sensor systems, pages 15–28, New
York, NY, USA. ACM Press.

Fröhlich, A. A. and Schröder-Preikschat, W. (1999). EPOS: an Object-Oriented Operating
System. In2nd ECOOP Workshop on Object-Orientation and Operating Systems,
volume CSR-99-04 ofChemnitzer Informatik-Berichte, pages 38–43, Lisbon, Portugal.

Madden, S., Franklin, M. J., Hellerstein, J. M., and Hong, W. (2002). Tag: a tiny aggre-
gation service for ad-hoc sensor networks.SIGOPS Oper. Syst. Rev., 36(SI):131–146.

Madden, S., Franklin, M. J., Hellerstein, J. M., and Hong, W. (2003). The design of
an acquisitional query processor for sensor networks. InSIGMOD ’03: Proceedings
of the 2003 ACM SIGMOD international conference on Management of data, pages
491–502, New York, NY, USA. ACM Press.

Nguyen, T.-A. and Kuonen, P. (2007). Programming the grid with pop-c++. InFuture
Generation Computer Systems (FGCS), volume 23. N.H. Elsevier.

Yao, Y. and Gehrke, J. (2002). The cougar approach to in-network query processing in
sensor networks.SIGMOD Rec., 31(3):9–18.

909




