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3GÉANT - Pan-European Research and Education Networks

{everson.borges,edgard.pontes}@edu.ufes.br

Abstract. An Open Source routing platform that uses a disaggregated model
fully populated with carrier-class implementation of network protocols is dis-
cussed here. FreeRouter’s architecture allows portability from emulated to
testbed experiments (and on different hardware targets) is briefly explained. In
order to demonstrate its ease of use, installation and entry-level examples are
provided.

Resumo. Um roteador em software que propicia um plano de controle dis-
tribuı́do populado com um grande número de implementações profissionais
de protocolos legados é aqui discutido. Brevemente discutimos também que
a arquitetura particular do FreeRouter, a qual permite ainda a portabilidade
de experimentos emulados para testes (e em diferentes alvos de hardware).
Para demonstrar sua facilidade de uso, também são fornecidos exemplos de
instalação e em nı́vel básico de uso e configuração.

1. Introduction
Network research is becoming more important since the Internet and other computer net-
works have a growing influence on the world. For this area of research, network testbeds
are a crucial tool for experimentation. Network testbeds have been built to support the
networking innovation. They can serve as platforms to experiment new services, as well
as to enhance the use of services and protocols that are currently in production. Usu-
ally, the goal of testbeds is to enable a wide variety of experiments for the development,
deployment, and validation of transformative solutions including clean-slate networking,
protocol design and evaluation, content management, and in-network service deployment
[Both et al. 2019].

The existing network testbeds usually offer a number devices in a laboratory room,
or they may be spaded over wide-area the globe working as a distributed virtual labora-
tory with specific configurations. In contrast, nowadays you can have it all emulated, e.g.
Mininet1, in your personal computer. So, portability of experiments across emulated and

1http://www.mininet.org



physical world is a key feature for modern testbeds. The ideal scenario would be to debug
functional/configuration/operational tests using your own personal computer with a trust-
worthy emulated version of the physical testbed, and only latter book physical resources
of the testbed to do performance tests.

The experimenter’s influence on this setup and its variables depends mainly on
the testbed’s architecture [Leung et al. 2014]. However, the potential innovation of the
solutions is limited by the testbed architecture “ossification” often designed with its un-
derlying closed technologies/boxes or even open approaches that require to re-implement
all the legacy protocols lacking with production reality, losing portability of the experi-
ments. Thus, decoupling control and data planes is a must in architectures for future-proof
testbeds. Note that this also is related to portability since the same network solution (that
could be used in core, edge and access levels) need to be realized using data planes suited
both to the traffic volumes and to the cost constraints of each network domain.

Last but not least, a testbed based on open source is not only necessary for in-
novation and education purposes, but also for reducing cost and ensuring long-term sus-
tainability. When a community is built around it, software reuse can improve learning
curves and innovation processes. Nonetheless, ensuring diversity and trustworthiness of
implementations for network protocols at a carrier-class level. Understood here as a well
tested and proven implementation that is ready to inter-operate with other telecommuni-
cations industry equipment, carrier-class protocol implementation still is a challenge for
the open source networking community. For instance, Quagga2 has been adopted by the
Linux Foundation in order to make the transition of a software router into commercial-
grade level solution3. Note that full cycles involving development, deployment, and val-
idation of open source often goes beyond the interest of academic groups, and startups
are currently trying to figure out alternative long-lasting business models exploiting open
platforms in products, from clouds to networks, such as Vixphy4.

In this work, we briefly introduce FreeRouter (also known as freeRtr)5 as a “pro-
tocoland” in the sense that its control plane, FreeRouter, stands out among similar soft-
ware routers because it immense and outstanding protocol portfolio. In this “land of
protocols” sandboxes can be effortlessly assembled and configured for user to play with
them. Thus, we argue that FreeRouter should be considered not only when thinking of
creating open and portable carrier-class testbed, but also for product prototyping in white
boxes. FreeRouter is also defined as a “swiss army knife” due to its intrinsic capabili-
ties of (re)encapsulating packets on multiple range of interfaces. However, for the net-
working community it not clear where FreeRouter stands in the current set of options for
supporting open testbeds. Currently has been used and developed at RARE (Router for
Academia, Research & Education RARE project)6.

And its documentation set and entry level examples are scarce. Thus, herein we
try to address those points, focusing on: i) historic context for control and data planes
separation on open networking; and ii) disseminating FreeRouter to the research and ed-

2https://www.quagga.net/
3https://www.frrouting.org/
4http://www.vixphy.com.br
5http://freertr.org
6http://rare.freertr.org



ucation community via an installation and usage examples.

The remainder of this paper is as follows. Section 2 discusses FreeRouter’s archi-
tecture and particular features and relation with GÉANT GN4-3 (RARE). Step-by-step
demonstrations for installing and using FreeRouter are provided in Section 3. Conclu-
sions are drawn and future works are discussed in Section 4.

2. FreeRouter: Wisely Decoupling Control and Data Planes
There were early efforts from the Internet Engineering Task Force (IETF), such as
the Forwarding and Control Element Separation (ForCES) in RFC 3746 in 2004
[Anderson; and Gopal 2004], before the paradigm of Software-Defined Networking
(SDN) took the academic networking community by storm with OpenFlow in 2008
[McKeown et al. 2008]. Note that even changing the distributed to centralized approach
regarding routing decisions was already considered before SDN via Path Computation
Element (PCE)-Based Architecture in RFC 4655 in 2006 [Vasseur; and Ash 2006].

Nevertheless, both academy and industry communities did not succeed in bringing
on a wave of innovation one could expect by such decoupling process of control and data
planes. For the clients, on one hand, giving in the distributed approach to control planes
would potentially decrease the intrinsic reliability already achieved by the internet. On
the other hand, vendors were reluctant on opening access to “the goose that laid golden
eggs” at data planes to their clients. In academy software routers were around for a while,
but nothing would replace performance obtained by dedicated forwarding hardware-based
forwarding engines. But, note that around 2015, a game changing initiative from a mi-
croprocessor vendor aim at openning source of a set of data plane libraries and network
interface controller for direct access to operating system kernel to processes using Data
Plane Development Kit (DPDK)7.

From the perspective of academic groups, the clean-slate approach of SDN made
a lot of sense and created room for research in this networking topic to bloom. But in-
novations, i.e., meeting real needs of carrier and enterprise mobile networks, lagged far
behind the volumes of papers and prototype demonstrations. Note that even for conven-
tional LAN/WAN networks, the roadmap for transitioning the legacy network to SDN
was not clearly planned. For instance, clients did not feel comfortable with the idea of
having now mocked instances of their legacy protocols being re-written from scratch and
ported to “logically centralized controller, which ideally can be physically distributed”
[Tootoonchian and Ganjali 2010][Spalla et al. 2016] and reached by a so-called “secure
channel”, a.k.a. TLS-based asymmetrical encryption over unencrypted TCP connections,
established between a controller and an OpenFlow switch. Moreover, only limited im-
plementations of OpenFlow specifications were supported by most vendors8 and, in the
end, performance (e.g., throughput, latency and scalability) were also very heterogeneous
across vendors and OpenFlow versions, e.g., [Costa et al. 2021], reflecting the lack of
common ground for programmability at ASIC level.

In order to devise an open source business model for SDN related technologies, the
Open Networking Foundation9 (ONF) was created in 2011 and focused on carrier, cloud

7https://www.dpdk.org
8https://blog.ipspace.net/2016/12/q-vendor-openflow-limitations.html
9http://www.opennetworking.org



and mobile operators needs. A huge leap into network function virtualization (NFV)
and its use in real networks was made by the SDN-enabled software switch projects
around OpenFlow. The Open virtual Switch (OvS) was incorporated by The Linux ker-
nel into the kernel in 2012; and it is now a key element in cloud computing software
platforms and virtualization management systems such as OpenStack10. The potential
of solve complex orchestration processes between cloud and physical resources can be
found here [Dominicini et al. 2017], while dynamic reconfigurations required by Ser-
vice Function Chaining (SFC) could be provided by nesting multiple instances of OvS
[Dominicini et al. 2020].

Despite a relative success in niches like campus and data center networks, and also
for WAN adoption by Google [Jain et al. 2013], SDN had its days, and after a decade on
the road OpenFlow could not deliver on its promises. Nevertheless, network programma-
bility is not dead yet. Passing on a legacy baton, in 2014 the Programming Protocol-
Independent Packet Processors (P4) dives into dataplanes’ ASICs and provides expressiv-
ity levels well beyond match-action label-based programmability enabled by OpenFlow.
Which begs the question: is P4 yet another window of opportunity for innovation that
would require rewriting the whole set of legacy protocols of the internet?

In that context, FreeRouter brings an unique contribution in tackling some of the
weakness discussed above regarding strategies for splitting control and forwarding func-
tions. Open source since 2012, more recently FreeRouter framework was combined with
state-of-art data planes, such as DPDK and P4, to produce a decoupled architecture that
sits at the sweet spot by keeping a distributed architecture for control plane with tailored
south-bound interfaces.

Figure 1 provides a simplified diagram for FreeRouter’s framework and its use on
RARE where the data plane portability issue is addressed. Note that testbed users are
as agnostic as possible of the dataplanes in use, and interact with testbed elements via
standard industry-like CLI interfaces for configuration. Carrier-grade open source imple-
mentations a large set of protocols are available. Hidden from users, south-bound inter-
faces are fully responsible for translating control plane of legacy protocols (e.g., forward
information base and into pro communicate them to diverse types data planes.

As far as implementation is concerned, FreeRouter is a user-level application writ-
ten in Java. It consists of a core aplication rtr.jar is working as a control plane software
that natively relies on UNIX UDP socket. One unprivileged JVM process (per Virtual
Device Context: VDC) that does everything a router does and communicates with the
world around it over UDP sockets. Ethernet packets placed back and forth to UDP socket
with socat linux utility. Regarding VDC, other JVM routers or QEMU/KVM images can
be started, UDP socket passes traffic between them. There is also a purpose built libpcap
based C code which signals ethernet up/downs and outperforms socat about 80 %. A
purpose built C code for async HDLC framing. Other helpers or table dumps (to ASICs,
OpenFlow, whatever needed) are easily achievable.

2.1. Carrier-Class Protocol Implementation: Testing and Releasing Procedures
In order to support legacy applications, FreeRouter brings along a densily populated con-
trol plane able to handle: i) diverse encapsulation; ii) cripto; iii) both table-based and also

10http://www.openstack.org



lable-based at L2 and L3 forwarding; iii) diverse tunneling; iv) both IGP and EGP routing
protocols; and v) Policy-Based Routing services, NAT, QoS, and other services. More
detailed list of protocols on different layers (and their combinations) implemented and
tested at the moment (on different data planes) are available in RARE project11.

Before releasing a new protocol (or a new version) feature oriented tests for every
given feature of a given supported protocol. Careful log outputs from the routers are taken
for for further analysis. An object oriented language designs combination/permutation
patterns bigger test cases to test some features together. Moreover, big buck of tests
are dedicated to interop tests, where we test the features against some prominent vendor
virtual images. Finally we have the data plane test cases, where we test the given data
plane is capable of performing the given forwarding feature.

2.2. Portability to Different Dataplanes and GÉANT GN4-3 RARE Project

FreeRouter allows users to spawn an unlimited amount of router processes on the same
host, and interconnect them via UNIX UDP sockets in order to implement a topology and
emulate an entire network just like Mininet. Moreover, as the first portability step, white-
boxe hosts running FreeRouter can turn the emulated network into operational elements.

Regarding performance concerns, Linux’s raw packet handler needs about same
number of cpu cycles as FreeRouter’s forwarding code. JVM7+ uses AES extension of
CPUs, if available, so crypto can perform very well. JVM optimizes branches in real time
so unused code gets optimized out on the fly. For example, NIIF/Hungarnet whitebox
implementation described in FreeRouter’s webpage was able to outperform a vendor’s
BGP stack.

It is important to highlight that FreeRouter is taken even further into the RARE
project (Router for Academia, Research Education)12. It is a GÉANT 4th programme
on routing software platform for Research and Education use cases. Although initially
focused on P4 behavioral language is used to describe the packet processing behavior of
RARE data plane and communication interface between the control plane and data plane:
Interface compliant to P4Runtime specification ensure this function. Advanced data plane
portability is beyond our scope here, more information can be found at RARE’s webpage.

The FIG. 1 highlights a remarkable capability that differentiates FreeRouter from
other existing applications, these work only as control plane routing, while FreeRouter
makes it possible to communicate with data plane being able to communicate with differ-
ent data planes like DPDK, XDP, P4 among others[Loui et al. 2022]. This feature makes
it possible to prototype different protocols, as well as perform tests and experiments.

3. Demonstrating FreeRouter: a step-by-step tutorial

This section describes the FreeRouter routing platform. The only requirement to run
Freerouter is the latest version of Java Runtime Environment (JRE)13.

11https://wiki.geant.org/display/RARE/Complete+feature+list
12https://wiki.geant.org/display/RARE/Home
13https://www.liquidweb.com/kb/how-to-install-java-on-ubuntu-windows-

and-macos/
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Figure 1. FreeRouter High Level Architecture

3.1. Configuration of routers and their interconnection network
FreeRouter needs two files in order to run properly:

1. A hardware definition file;
2. A software configuration file.

3.1.1. Hardware Configuration

This file covers the hardware router definition:
• interfaces definition;
• external port translation to FreeRouter port namespace;
• external process launched and watched by FreeRouter.

An example of hardware configuration file can be seen at TABLE 1 in Section 3.3.1.

3.1.2. Software Configuration

The software definition file brings all the configurations of interfaces, services, VRFs,
routable protocols, and routing protocols, among other standard configurations of a
switch/router, with commands similar to the leading suppliers.

An example of software configuration file can be seen at TABLE 2 in Section
3.3.1.

3.2. Launching FreeRouter
After installing the necessary prerequisites and understanding how the hardware and soft-
ware files work, it’s time to run the FreeRouter.

java -jar <path>/rtr.jar routersc <path>/router-hw.txt <path>/
router-sw.txt



3.3. Experimentation

By supporting a large number of standardized routing protocols (e.g. OSPF, RIP, BGP)
as well as Label Switching Protocols such as MPLS, FreeRouter forms a “protocoland”
for experimenters. Note that this is in clear contrast with Mininet emulation tool, where
SDN versions of such protocols would be needed in order to mock such protocols, in case
interaction with legacy protocols are sought. Thus, it is important to highlight that FreeR-
outer’s distributed architecture and carrier-class protocol implementation is an upper hand
when compared to Mininet’s control and data plane SDN-based separation. As a result,
FreeRouter provides a step towards a near production deployment and integration with
other legacy protocols with programmable data planes like no other emulation tool.

3.3.1. Dynamic Full-Mesh Routing with OSPF

In order to introduce Freerouter functionalities, we assume as an use case, an autonomous
system that needs to setup a routing policy in its intra-domain. The OSPF14 is the protocol
selected to run in a full-mesh topology. The reason for its choice is the practical applica-
bility, easily and well-known dynamic routing protocol for both IPv4 and IPv6 networks
to keep the service connectivity. In this configuration, a template feature of FreeRouter
was used to define the router network interfaces in a simpler and faster way.

R1 R2

R3R4

eth1
eth1eth2

eth1

eth3
eth2

eth2
eth2

eth
3

eth
1

eth3
eth3

Figure 2. Full-Mesh Topology

To perform the entire experiment presented in FIG. 2, it is necessary to have a
hardware file and a software file for each router, covering all the interconnection between
the nodes (hardware file), as well as the definitions of each router (software file). In tables
1 and 2, the complete configurations of router 1 are described. To know all the details of
hardware and software files of complet set of routers (R2, R3, R4 ), please access GitHub’s
repository15.

14https://datatracker.ietf.org/doc/html/rfc2328
15https://github.com/eversonscherrer/wtestbeds2022



r1-hw.txt
int eth1 eth 0000.1111.0001 127.0.0.1 26011 127.0.0.1 26021
int eth2 eth 0000.1111.0002 127.0.0.1 26012 127.0.0.1 26031
int eth3 eth 0000.1111.0003 127.0.0.1 26013 127.0.0.1 26042
tcp2vrf 1123 v1 23

3.3.2. Troubleshooting

As it can be seen in FIG. 3a and FIG. 3b, the routing table for each router is shown to IPv4
and IPv6. For instance, the command route v1 shows the routing table in a similar way
with commands used in Cisco, Juniper, etc.

(a) Routes to router r1 (IPv4) (b) Routes to router r1 (IPv6)

When checking the connectivity from router R1 to router R3 with the following
command ping 3.3.3.1 /vrf v1 /repeat 500, it’s possible to observe through
FIG. 5a that all interfaces are connected and router R1 is forwarding traffic over the eth3.

Figure 4. Testing connectivity

By provoking a failure recovery test, the eth3 interface is shutdown, so it can
be seen through FIG. 5b, that the traffic change to forward to the eth1 interface. Another
failure was provoked now shutdown the interface eth1, again the FreeRouter performs
the fault recovery forwarding the traffic to the eth2, highlighted by FIG. 5c.

As can be seen from FIG. 6 only the eth2 interface is up, even so, the FreeRouter
using OSPF routing protocol allows the recovery of routes, keeping the topology working.

Besides learning and prototyping, FreeRouter enables easy deployment in
testbeds. For instance, in order to create you own testbed (and deploy the experiment



r1-sw.txt
hostname r1
!
vrf definition v1
exit

!
router ospf4 1
vrf v1
router-id 10.1.1.1
area 0 enable
redistribute connected
exit

!
router ospf6 1
vrf v1
router-id 10.6.1.1
area 0 enable
redistribute connected
exit

!
interface template1
no description
lldp enable
vrf forwarding v1
ipv4 address dynamic dynamic
router ospf4 1 enable
shutdown
no log-link-change
exit

!
int lo0
vrf for v1
ipv4 addr 20.20.20.1 /32
ipv6 addr 2020::1 /128
exit

!
interface ethernet1
description r1@eth1 -> r2@eth1
vrf forwarding v1
ipv4 address 1.1.1.1 /24
ipv6 address 1111::1 /64
template template1
router ospf6 1 enable
no shutdown
no log-link-change
exit

!

interface ethernet2
description r1@eth2 -> r3@eth2
vrf forwarding v1
ipv4 address 6.6.6.2 /24
ipv6 address 6666::2 /64
template template1
router ospf6 1 enable
no shutdown
no log-link-change
exit
!
interface ethernet3
description r1@eth3 -> r3@eth1
vrf forwarding v1
ipv4 address 4.4.4.1 /24
ipv6 address 4444::1 /64
template template1
router ospf6 1 enable
no shutdown
no log-link-change
exit
!
server telnet tel
security protocol telnet
exec timeout 10000000
exec colorize prompt
exec logging
no exec authorization
no login authentication
login logging
vrf v1
exit
!
end



(a) Traffic all interfaces up (b) Traffic interfaces, eth3 down (c) Traffic interfaces, only eth2 up

Figure 6. Failure recovery by OSPF

discussed above), one may use containers, Virtual Machines, or even physical servers for
hosting the four different instances of FreeRouter for representing R1-R4. The only mod-
ification from the emulated version is to bind the interfaces of such instances with the
corresponding Ethernet interfaces, (either physical or virtual) to unleash FreeRouter’s the
full potential16. Moreover, R1-R4 can be also Intel Tofino P4 hardware. In that case, in-
stallation guide and how to perform the data plane software installation is also available.17

4. Conclusion

This work provided a short introduction to FreeRouter and provided arguments in favor
of its use when creating open and portable carrier-class testbed. A historic study on
open networking was presented and FreeRouter’s control and data plane unique separation
strategy context put into context. In order to disseminate FreeRouter to the research and
education community, installation and entry-level configurations were presented.

However, FreeRouter has much to improve and welcomes the networking com-
munity worldwide to help developing: i) networking programming/configuration by ex-
amples; ii) strategies to make FreeRouter easy to use also for fostering innovation (i.e,
how can one develop new protocols without close assistance’s of FreeRouter’s only de-
veloper?); iii) clarification for the architecture elements/components; iv) formalization of
protocol test for homologation processes; v) extensive studies for outlining competitive
advantages/disadvantages in comparison to other solutions; vi) exhaustive data plane per-
formance evaluation; and vii) studies on proving strong consistency for table processing
at data planes as a means of representing legacy control plane protocols.
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