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Abstract. The purpose of this paper is twofold. The first is to show how to
deploy routing protocols in the FABRIC national-scale testbed, presenting ex-
amples step-by-step from the perspective of a network researcher who needs to
book a slice composed of a topology with multiple paths, diversity of links, nodes
with specific network interfaces (shared or/and programmable NICs) that form
the basis to build a real-world network experiment. The second is to use the
available tools (“metaresearch” API) to demonstrate how reproducible is the
experimentation process, taking the evaluation of OSPF failure recovery and
traffic throughput over dedicated smartNICS as use cases.

Resumo. O objetivo deste artigo é duplo. O primeiro é mostrar como implantar
protocolos de roteamento no testbed FABRIC em escala nacional, apresentando
exemplos passo a passo sob a perspectiva de um pesquisador de redes que pre-
cisa reservar uma fatia composta por uma topologia com múltiplos caminhos,
diversidade de links, nós com interfaces de rede específicas (NICs compartilha-
das e/ou programáveis) que formam a base para construir um experimento de
rede do mundo real. O segundo é usar as ferramentas disponíveis (“metare-
search” API) para demonstrar o quão reprodutível é o processo de experimen-
tação, tendo como casos de uso a avaliação da recuperação de falhas com o
OSPF e a taxa de transferência do tráfego com smartNICS dedicadas.

1. Introduction

Testbeds are experimental platforms designed to facilitate the development, testing, and
evaluation of new technologies and applications in various domains. They typically con-
sist of a collection of hardware and software components, including network infrastruc-
ture, computing resources, and data storage. Usually, the goal of testbeds is to enable a



wide variety of experiments for the development, deployment, and validation of innova-
tive solutions including clean-slate networking, protocol design and evaluation, cyberse-
curity, and in-network service deployment [Both et al. 2019].

Experiments involving networks are difficult to run and depend on the testbed’s ar-
chitecture and tools [Borges et al. 2022b]. Moreover, performing real-world experiments
is considered a prerequisite for a true validation of a protocol, and it requires both repeata-
bility and reproducibility. Repeatability requires that the same experiment runs in similar
conditions several times by the experimenter, producing equivalent results. This is impor-
tant to guarantee that experimental results were fine. Reproducibility is guaranteed if an
experiment can be replicated under differing conditions, while providing sufficiently sim-
ilar results. This is essential to prove that the scientific proposal is robust across various
environments and not only in a particular setup. It is also crucial for allowing researchers
to reproduce experiments, build upon them, and compare their results with previous work.

FABRIC testbed [Baldin et al. 2019] has been designed to provide a unique na-
tional research infrastructure to enable cutting-edge and exploratory research at scale in
networking. They offer “data artifacts” collected by experimenters in distributed stor-
age facilities that can be made available to the wider community. This “metaresearch”
is a feature to support the experiment’s reproducibility, by giving researchers a trove of
data on user actions captured from the experimentation for learning/analytics applications.
This feature needs to be tested/consolidated from the perspective of a network researcher.
Typically, an experimentation plan requires a booked slice. The slice is an instance of
resources (computing nodes, routers, links, and a variety of configurations) to be used in
experiments, collecting and extracting the results.

In this paper, we take the position of a network researcher who has a specific
experimentation requirement. She/he wants a topology composed by multiple paths, with
a diversity of links in terms of capacity and propagation delays, and nodes with specific
network interfaces (shared or/and programmable NICs) that form the elements of his/her
own network experiment. Keeping that requirement in mind, our goal is i) to show how to
deploy routing protocols in the FABRIC national-scale testbed, presenting examples step-
by-step from the perspective of a network researcher, but also ii) to use the available tools
(“metaresearch” API) to demonstrate how reproducible is the experimentation process,
taking the OSPF failure recovery and traffic throughput over dedicated smartNICs as use
cases. All the examples are open and available to the research and education community,
and are shared in a GitHub1 with jupitter notebook.

The remainder of this paper is as follows. Section 2 discusses FABRIC view
and its particular features for slice definition, booking a set of components, configuration
deployment and setup automation. We run experiments using the testbed library and its
support in Section 3. Conclusions are drawn and future works are discussed in Section 4.

2. FABRIC view from the eyes of a network researcher

Looking at the state-of-the-art of experimental testbeds, there has been a large number of
projects that provide experimental facilities for networking experimentation. The GENI
project was pioneer to build an open and distributed infrastructure at-scale for research

1https://github.com/edgardcunha/wtestbeds2023



and education [Berman et al. 2014]. The OFELIA project [M. et al. 2014] created an
experimental facility that was based on SDN/OpenFlow to control the network envi-
ronment. With a similar goal, Japan had the RISE project, which was an OpenFlow-
based research infrastructure for large-scale network experiments on the Japan Giga-
bit Network [Huang et al. 2017]. In Brazil, the FIBRE project [Salmito et al. 2014]
built federated testbeds to provide a large-scale research platform. Also, FUTEBOL
project [Both et al. 2019] was conceived to enable experimental research on optical, wire-
less, and cloud convergence that has been an enabler to the recent 5G networks architec-
ture 2.

The FABRIC’s ambition is to become a widely distributed instrument both for
computer science research and other science domains that want to explore faster and
more capable distributed computational and data infrastructures. It has been designed
to be highly programmable, with tera-bits-per-second core network nodes interconnect-
ing existing facilities e.g. GENI [Berman et al. 2014], and future resources such as Open
Cloud [Zink et al. 2021], campus networks and clusters, national HPC and data facilities,
dedicated to experimentation but running in parallel to production networks.

From the eyes of a researcher in networking, FABRIC’s core nodes will be de-
ployed with a special footprint of the Department of Energy’s Energy Sciences Network
(ESnet), complemented by programmable edge nodes on campuses and national facilities
to enable network programmability. Figure 2 shows the FABRIC testbed topology with a
diversity of links in terms of capacity, propagation delays and multiplicity of paths. There-
fore, it is a natural step forward to extend our previous work [Borges et al. 2022b], de-
ploying routing protocols in order to experiment different levels of network programma-
bility at a national-scale testbed by using the “metaresearch” provided in FABRIC frame-
work.

In order to run a reproducible experiment, we need first of all to get a slice from the
testbed, deploy all the required configuration, be able to automate the experiment compo-
nents to make it easily repeatable and then run it many times, so that there is a sequence
of steps to be followed: slice definition, nodes and network configuration allowing au-
tomation of the experiment components, test of network connectivity to all the allocated
nodes, enabling nodes to become routers for networking purposes, make use of network
programmability support at the devices to accelerate packets forwarding (e.g. activate
DPDK) and to offload P4 codes at smartNiCS or P4 switches, and finally to execute all
the experiments to get performance results.

2.1. Slice definition: requirements and allocation

After the project and users are properly registered, it is necessary to create asymmetric
access keys. The testbed security policy requires registration and management of these
keys. There are three types of keys to access the testbed: bastion key, sliver key and
project token.

2https://porvir-5g-project.github.io



Figure 1. Topology of FABRIC Testbed

2.1.1. Booking a slice

To book a slice in FABRIC Testbed and use its metaresearch functionalities, the ex-
perimenter needs to import the “FABlib library” (v. 1.4.3) that provides its API primi-
tives. For example, one may query for available testbed resources and settings by using
fablib.list_sites() and then get 3 random sites that are available for experimen-
tation with the command fablib.get_random_sites(count=3). There is also a
geographic location parameter to select sites located between Los Angeles and New York
as shown in Figure 2.

Figure 2. Get 3 random sites with geographic location filter

New components can be added to the slice. For example, a dedicated smartNIC
(command add_component() or a L2 link, see Figure 3. After all the requirements



specified for the experiment components, the request of the slice can be submitted. Note
that the OS can be customized for each slice node. It is even possible to use Docker
containers on the nodes. Currently available operating systems are: CentOS Stream (8
e 9), CentOS (7 e 8), Debian (10 e 11), Fedora (35, 36 e 37), Rocky Linux (8), Ubuntu
(18.04, 20.04 , 21.04 and 22.04), as well as custom versions of Rocky Linux and Ubuntu.
In this example, we use Debian 10 (default_debian_10).

As a result, the slice’s attributes and visualization are shown in Figure 4. For the
sake of simplicity, a tree-node ring will be here used to demonstrate network dynamic
routing reacting to node failure, which was explored in the experiments.

Figure 3. Node and component configuration

Figure 4. Slice visualization: ring topology connected with dedicated smartnics

2.1.2. Components configuration and automation

Once the slice has been allocated, we need to install specific software and set all the
parameters. For example, the operation system must be chosen and the network interfaces
must be properly configured.



Debian OS Upgrade was mandatory to use dedicated NICs (SmartNICs) on
FABRIC3. Automation tools such as Ansible are very useful to reduce the time to in-
stall and deploy all the configurations (more details can be seen in the example of Figure
5). It is worth noting that a configuration error is shown by purpose when accessing router
R2. This automation process via Ansible is helpful in setting the experimental nodes bring
some warnings if the OS packages were correctly updated reporting eventual errors.

Figure 5. Ansible tasks to upgrade Debian

The IP addressing is defined and assigned by creating a set of subnets intercon-
nected by their links that compose the network topology (see Figure 6). We pick the
subnet for the routing links. Each routing link connects a pair of routers. Although these
links have exactly two interfaces, we choose a /24 subnet for easy readability. For each
link we create a subnet and a list of available IPs for that subnet. These will be used later
to configure the router interfaces connected to these links.

2.2. Transforming nodes in routers to support routing protocols

Free Range Routing4 (a.k.a. FRRouting or FRR), is a free and open source Internet rout-
ing protocol suite for Linux and Unix platforms. It implements BGP, OSPF, RIP, IS-IS,

3https://learn.fabric-testbed.net/knowledge-base/portal-slice-
builder-user-guide

4https://frrouting.org/



Figure 6. Route link subnets

PIM, LDP, BFD, Babel, PBR, OpenFabric and VRRP, with alpha support for EIGRP and
NHRP. The FRR provides a flexible, scalable, and robust routing solution for large-scale
networks. FRR has gained significant interest in recent years due to its ability to sup-
port a wide range of network topologies and its support for multiple routing protocols. It
launched in April 2017, when Quagga5 forked. For this work, FRRouting was used on its
version (v. 7.5.1).

The allocated nodes that are so far Linux Debian with some network interfaces
need to become routers to run legacy routing protocols. Figure 8 shows the configu-
ration in each node that uploads and configures the FRRouting routing software. This
complex configuration is handled through a bash script frr_config.sh that will be
available in this shared notebook. The script is executed by, first, uploading the script
with the node.upload_file() FABLib method. Then the script is executed using
the node.execute() FABLib method. Note that the script passes the OS interfaces
names and configured IPs as arguments from the notebook to the script.

Configure the local nodes with addresses from the local subnet available address
list. Add routes to the other local subnets via the local gateway. The example creates the
group network address in 192.168.0.0 and assigns to the specific subnet address of
each router.

Three ranges of subnets are created, using the Python ipaddress library, for
each network established between the SmartNICs in the node configuration (Figure 3).
Each node has two VLAN interfaces to which IPs will be assigned. This configuration
will be performed through a bash script, which will be sent to each node and executed
with the following parameters: interface 1 name and IP, interface 2 name and IP, subnet
to limit the exchange of routes of OSPF and router-id.

Figure 7. Delete slice by name

5https://github.com/Quagga



By default, the slice has a validity of 24 hours unless renewed. The Figure 7
demonstrates how to delete a slice by name. It is an important practice to delete the slice
after the experiments, in order to reduce the idle time of allocated resources.

Figure 8. Upload and execute FRRouting config script

3. Running experiments in FABRIC testbed

The tests were conducted on the FABRIC platform using a Jupyter Notebook. The codes
used in the tests can be accessed from the article’s repository on GitHub6. Each node in
the platform was equipped with 2 cores, 8 GB of RAM, and 10 GB of disk space. The
operating system employed for the tests was Rocky Linux 8.5 (Green Obsidian), while
the interfaces used were dedicated NICs “Mellanox ConnectX-5 Dual Port 10/25GbE”.
iperf37 (v. 3.5) was used to generate the traffic and measure the throughput.

3.1. OSPF: failure recover use case

In order to manage events in this experiment, such as injecting a fault in a network link,
the FABlib API is used through the execute_thread() command of the Node class.
This command enabled us to execute commands in parallel through the routers, and we
were able to disconnect the eth2.100 interface of the R1 router while running the ping
command to generate ICMP packets to be delivered to the eth2.100 interface of router
R3 with IP 192.168.2.2. More specifically, we triggered a link failure in 10 seconds,
while traffic was generated, which caused the OSPF protocol to detect and recover from
the failure by rerouting traffic through the remaining path.

As depicted in Figure 9, there was an abrupt increase in RTT due to the route up-
date to the new path. It’s worth noting that no packet loss occurred during this experiment,

6https://github.com/edgardcunha/wtestbeds2023
7https://iperf.fr/



though. Besides, the shortest path (link between routers R1 and R3) was re-established at
20-seconds mark. As a result, after a few seconds at time 27 sec, RTT is reduced to the
same value before the failure.

0 5 10 15 20 25 30

ICMP Packets

30

35

40

45

50

55

60

Ro
un

d 
Tr

ip
 T

im
e 

(m
s) failure signal

recovery signal

Figure 9. RTT with events of path
failure and path recovery

Figure 10. Topology and IP Ad-
dressing

3.2. Throughput use case

This experiment involves the evaluation of the maximum throughput between the routers
network interfaces reaching the capacity of the dedicated smartNICs crossing the paths.
A simple workload of UDP traffic is generated on the directly connected links using
iperf3 for 30 seconds. The existing paths were explored (R1 -> R2, R2 -> R3 and
R3 -> R1) for each different traffic rate, which were: 1, 3, 5 and 10 Gbps. Different
from the previous test, threads were not used for this evaluation, only the execute()
command of the Node class of the FABlib API.

Table 1. Network Adapter Tuning Parameters
Flags Values
ipv4.tcp_mtu_probing 1
core.rmem_max 2147483647
core.wmem_max 2147483647
ipv4.tcp_rmem 4096 87380 2147483647
ipv4.tcp_wmem 4096 65536 2147483647

Figure 11 shows the data obtained from a path R1 -> R2, for which the through-
put achieves around 3 Gbps. All the three paths have been evaluated and essentially they
presented similar performance results with small variations on throughput. Although the
dedicated NIC model NIC_ConnectX_5 indicates that its capacity is of 25 Gbps, by
adjusting certain TCP/IP stack parameters for tuning the network adapter in the hosting
OS, the throughput achieves a rate of near 10 Gbps (see Figure 12). The tuning parame-
ters are described in Table 1, and basically set to limit to the maximum receive buffer size
that applications can request (proc/sys/net/core/rmem_max), and set maximum size of the



Memory Receive Buffer per connection (/proc/sys/net/ipv4/tcp_rmem). They define the
actual memory usage, not only TCP window size8.

Note that this is a raw experiment with the purpose to explore the existing features
of the testbed API with preliminary performance results. There is neither use of DPDK
to accelerate packets forwarding nor the P4 offloading code at the smartNICs that could
be used to increase the maximum throughput available in the network links.
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Figure 11. Default OS/NIC config

0 5 10 15 20 25 30

Time (s)

0

2

4

6

8

10

Th
ro

ug
hp

ut
 (G

bp
s)

~10 Gbps

Figure 12. Tuning configuration

3.3. Lessons Learned

One of the main lessons learned from the FABRIC testbed was the use of Shared and Ded-
icated NICs and bindings to these interfaces, called Network Services. It was necessary to
upgrade OS Debian 10 to Debian 11 for the 25 Gbps Dedicated NIC to work properly. It
is important to point out that this error did not occur when using the OS Rocky Linux, for
example, which was used in the two experiments presented above. Even with extensive
documentation with several practical examples of using the testbed, errors were not men-
tioned when using the Debian OS 10 with Dedicated NICs. In this way, it is necessary to
develop a list containing the results of tests of use and performance of the interfaces in
each OS, with the objective of marking out subsequent tests.

It is noteworthy that when interacting on the platform forum, the FABRIC main-
tainers added Debian 11 to the default list of operating systems available for creating
slices/nodes.

4. Conclusion
This work provided a short introduction to FABRIC testbed with arguments in favor of its
use when creating open and reproducible experiments. A brief context of open testbeds
for networking experimentation was presented. In order to disseminate FABRIC testbed
usability to the research and education community, installation and entry-level configura-
tions were presented.

However, FABRIC testbed has much to improve and welcomes the networking
community worldwide to help developing: i) networking programming/configuration by
examples; i.e. guidelines on how to use programmable dedicated smartNICs devices or
even DPDK technology for packets forwarding acceleration ii) strategies to make it easy
to use also for fostering innovation.

8https://fasterdata.es.net/host-tuning/linux/udp-tuning/



As future work, we envision to deploy PolKA source routing protocol
[Dominicini et al. 2020] and its recent extension for multi-path [Guimarães et al. 2022],
as a next step to advance our previous experience in protocol deployment at testbeds re-
ported in [Borges et al. 2022a, Dominicini et al. 2021].
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