
Self-Adaptive Systems Planning with Model Checking using
MAPE-K
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Abstract. This paper presents a model checking-based approach to support the
autonomous planning of adaptation actions in Self-Adaptive Systems, designed
in consonance with the MAPE-K reference architecture. We evaluated our ap-
proach with a case-study aiming at verifying self-healing and self-organizing
properties in a distributed and decentralized traffic monitoring system. Results
show that our approach is able to generate adaptation plans satisfying the go-
als for all expected scenarios in such a case-study, providing a flexible formal
framework where adaptation strategies and goals can be inserted/removed.

Resumo. Este artigo apresenta uma abordagem baseada em verificação de mo-
delos para apoiar o planejamento autônomo de ações de adaptação em sistemas
auto-adaptativos, projetados em consonância com a arquitetura de referência
MAPE-K. Avaliamos nossa abordagem com um estudo de caso com o objetivo
de verificar as propriedades de auto-recuperação e auto-organização em um
sistema de monitoramento de tráfego distribuı́do e descentralizado. Os resulta-
dos mostram que nossa abordagem é capaz de gerar planos de adaptação que
satisfazem as metas para todos os cenários esperados em um estudo de caso,
fornecendo uma estrutura formal flexı́vel onde estratégias e metas de adaptação
podem ser inseridas / removidas.

1. Introduction
Modern software systems are increasingly interacting with operating environments lar-
gely unpredictable and uncontrolled. In this scenario, solutions which adapt themsel-
ves in response to environmental and internal changes have been widely adopted in or-
der to ensure the correct functioning of the system and keep delivering agreed service
levels [Salehie and Tahvildari 2009a]. In dynamic systems, the operating environment
and application’s internal structure and behavior can change while the system is running
[Russell and Norvig 2016].

A Self-Adaptive System (SAS) evaluates its own behavior and modifies itself
whenever its primary purpose is not being effectively fulfilled, a better functionality or
performance can be achieved [Laddaga 1997]. In the context of distributed systems,
self-adaption increases reliability and contributes to endow the system with dependa-
ble capabilities. For example, hardware faults can be compensated by adapting the



system configuration and redistributing responsibilities amongst application components
[Wildermann 2012].

Self-Adaptive System capable of performing self-diagnosis tasks when re-
acting to failures are usually named Self-Healing System (SHS). A system with
many interacting elements with only partial knowledge about the global system
state [Salehie and Tahvildari 2009b] – usually characterized by a decentralized con-
trol mechanism [Wildermann 2012] and an autonomous and decentralized cooperation
[Andrade 2014] – is named a Self-Organizing System (SOS). The properties “self-
healing,” “self-protecting,” “self-stabilizing,” “self-organizing,” and more are in conjunct
are refered as “self-*”properties [Berns and Ghosh 2009].

The MAPE-K model is a reference architecture for SAS design and defines such
systems as a group of four components: Monitor (M), Analyze (A), Plan (P) and Exe-
cute (E). Such components cooperate to implement a feedback loop with the help of a
Knowledge Base (K) component [Kephart and Chess 2003].

Most SAS are critical and, therefore, require rigorous approaches in their develop-
ment stages. The use of formal methods applied to Software Engineering helps the cons-
truction of more reliable software, mostly through formal verification. One widely used
approach to formal verification is model checking – an automated technique that verifies
whether a property specified in a temporal logic is satisfied in a finite state model of the
system, given a particular initial state [Baier and Katoen 2008] [Grumberg et al. 1999].
Under such a perspective, we can verify self-adaptive properties in SAS finite state models
to automatically generate adaptive solutions through a model checking planning problem
characterization in consonance with MAPE-K.

In this work, we characterize the generation of autonomous plans as a planning
problem using a study case to investigate autonomous adaption plans with model chec-
king. We present some results towards an adaptation planning solution in SAS which
autonomously direct their self adaptation from defined scenarios at run-time.

The purpose of this work is to show how to design SAS that satisfy several self-
*properties by the generation of adaptation plans autonomously using model checking.
Although MAPE-K is widely used in SAS projects, it has been little explored in for-
mal models. Our work proposes a solution for SAS specification based on the MAPE-K
architecture, in which it is possible to add/remove adaptation objectives by easily plug-
ging/unplugging self-*properties controllers from the formal model.

The remaining of this paper is organized as follows. Section 2 presents related
work, while Section 3 presents self-adaptive concepts and the MAPE-K reference model.
Section 4 introduces planning with model checking, Section 5 discusses the case-study
about a decentralized traffic monitoring system model checking-based planning and Sec-
tion 6 shows the results of the work. Finally, Section 7 draws the conclusions and oppor-
tunities of future research.

2. Related Work
In this section, we present some related work on SAS model checking approaches,
MAPE-K-based SAS, arbitrary planning from goals specified in a temporal logic, and
planning based on model checking.



In [Iftikhar and Weyns 2012, Weyns 2012], a case-study consisting of a decentra-
lized traffic monitoring SAS is presented. A formal architecture model is proposed and
a group of self-adapting properties are verified using model checking. youThe following
properties are checked: flexibility expressing the ability of the system to dynamically
adapt in response to changing conditions in the environment; and robustness expressing
system’s ability to autonomously deal with errors during execution are verified. Such pro-
perties guarantee the self-healing behavior when a failure occurs in the system. However,
the study does not focus on all failure scenarios and on planning strategies for adapta-
tion. Also, it does not use MAPE-K as a reference model. Our work extends this study
addressing such issues.

In [Arcaini et al. 2017], the authors present a conceptual and methodological fra-
mework for formal modeling, validation, and verification of distributed SAS. The fra-
mework supports formal techniques to validate and verify adaptation scenarios and to
obtain feedback (at design-time) concerning the correctness of the implementation of
the adaptation logic with MAPE-K loops. [Camilli et al. 2015] presents a formal ap-
proach to specify and verify SAS behaviors in real-time using time-based Petri Nets. In
[Iglesia and Weyns 2015], the authors present a set of formal MAPE-K models that com-
prise behavior specification models of different components of a MAPE-K feedback loop
and their interactions, as well as adaptive property specification templates for behavi-
ors formal verification. They define templates for behavior specifications and properties,
concluding that their templates have a balance between generality and usability. In both
studies the planning problem for adaptation is not addressed.

In [Sykes et al. 2007, Sykes et al. 2008] the authors consider the challenges for
providing a standalone system with the ability to direct its own adaptation. They des-
cribe an initial implementation where changes in the software architecture is executed as
a result of the execution of a reactive plan. The adaptation is done at run-time in soft-
ware component configurations that compose the system, according the operations they
execute. The system allows arbitrary dynamic reconfiguration, exploring the presence
of a reactive plans determining the system behavior. Reactive plans are generated with
a planning tool from goals provided by the user, given in CTL [Behrmann et al. 2006]
[Grumberg et al. 1999] temporal logic. A set of condition rules indicates which com-
ponents will be required to execute the plan. Likewise, our study also considers that an
autonomous system must have the ability to direct its own adaptation but we focus in SAS
in general and not on component-based software architecture. We consider the process
of autonomous generation of an adaptation plan with model checking but we do not use
those plans for dynamic system reconfiguration.

In [Giunchiglia and Traverso 1999], the authors present planning problems can be
stated as model checking problems, that formalization can be used to tackle various plan-
ning problems, and how planning as model checking can be implemented. This work
provides a general planning approach and have influenced our investigation about plan-
ning in SAS.

3. Self-Adaptive Systems

SAS evaluate their own behavior, modifying themselves when their primary purpose is not
being effectively fulfilled or a better functionality and/or performance can be achieved



[Laddaga 1997]. Such systems usually adopt a model of themselves and their environ-
ment and adapt their structure and/or behavior as necessary, according to some adaptation
goals [Oreizy et al. 1998].

Andrade [Andrade 2014] listed five motivations for a system to adapt itself: i)
increasing complexity of business rules (problem space), which demands automatic im-
plementation/configuration of solutions; ii) data dynamism, characterized by constant
changes in the nature of the data; iii) dynamism in service demands; iv) dynamism in
the execution environment caused by intentionally partial or uncertain requirements; and
v) inherent self-adaptiveness of scenarios, problem or software’s own functional struc-
ture. In these cases adaptive solutions are desired in order to ensure the system working
properly in response to environment changes [Salehie and Tahvildari 2009a].

Decentralization is often a feature of cooperative self-adaptive or self-organizing
systems, which work with no central authority [Wildermann 2012]. They usually have
a large number of components which interact locally driven by simple rules. The global
behavior of the system emerges from such local interactions. A system with many interac-
ting elements that are either absolutely unaware or have only partial knowledge about the
global system is named a Self-Organizing System [Salehie and Tahvildari 2009b]. Such
systems are characterized by a decentralized control mechanism [Wildermann 2012] and
autonomous/decentralized cooperation of agents [Andrade 2014].

A Self-healing System is a kind of SAS characterized by being aware of its
state and having the ability to detect and recover itself from known or unknown
faults [Momeni et al. 2008]. SHS has the ability to discover, diagnose, and react
to system malfunctioning [Salehie and Tahvildari 2009b] [Al-Zawi et al. 2011], antici-
pating possible problems and, therefore, take appropriate actions to avoid failures
[Salehie and Tahvildari 2009b].

SAS usually implements some kind of feedback loop, which continuously evaluate
the system and the environment, decides about the need of adaptations, and enacts those
changes in the system when appropriate [Naqvi 2012]. A SAS comprises two parts: the
managed system – which deals with the functionality of the application domain; and
the manager system – which addresses managed system adaptations to achieve specific
quality objectives [Weyns et al. 2012]. The manager system is one that implements one
or more feedback loops.

The feedback loop is needed to monitor the system itself and its context, de-
tecting significant changes, deciding how to react, and acting to execute adaptations
[Salehie and Tahvildari 2009b]. A feedback loop MAPE-K is design to perform the fol-
lowing tasks [Iglesia and Weyns 2015][Kephart and Chess 2003]:

• Monitor: collects system and environment data to update knowledge informa-
tion. Monitoring involves the capture of environmental data important for the
self-properties of the system;
• Analyze: determines whether adaptation actions are required based on monito-

ring data;
• Plan: puts together an action plan which drives the system back to its expected

level of service. It takes into account the monitoring data to produce a set of
changes to be made in the managed system;



• Execute: enacts adaptation actions provided by the generated plan;
• Knowledge: provides an abstraction of the managed system and the environment

in which the SAS operates, describing the knowledge related to the questions of
adaptation and representing information of run-time aspects.

4. Planning with Model Checking
Planning is an abstract and explicit deliberation process that chooses and organizes actions
in anticipation from expected outcomes. Planning involves devising a plan of actions to
achieve one’s goals. Automated Planning is a field of Artificial Intelligence (AI) that
studies this process computationally [Ghallab et al. 2004] in order to elaborate plans for
a computational agent to reach its goals [da Silva Ferreira et al. 2018].

A planning approach based on formal methods is very attractive to ensure reli-
able solutions [Pereira and de Barros 2008]. Giunchiglia and Traverso (1999) defines a
planning problem as a model checking problem, where a planning domain is modeled as
a state space model and a planning goal is specified as a property in a temporal logic.
According to this approach, an adaption plan is achieved by verifying whether a temporal
formula which specify an adaptation goal is true in the planning state space when evalu-
ated from a given initial state. The solution for a planning problem is a set of plans, each
one consisting of a sequence of actions that starts from an initial state to a satisfaction
state which represents the planning goal [da Silva Ferreira et al. 2018].

In this work, we adopt the Computation Tree Logic (CTL) formalism to specify
adaptation goals. We reason with CTL on the planning state space, which is a finite
transition graph that can be unfolded from an initial state in an tree with a finite set of
paths, quantifying over such paths. A plan can be defined from a path which satisfies the
adaption goal. The CTL syntax is given by the Backus-Naur form [Huth and Ryan 2004]:

φ ::= >|⊥|p|(¬φ)|(φ ∨ φ)|(φ ∧ φ)|(φ→ φ)|

EXφ|AXφ|EFφ|AFφ|EGφ|AGφ|E[φ ∪ φ]|A[φ ∪ φ]

where p is an atomic propositional formula and ¬, ∧, ∨, and→ are propositional
connectives. The temporal operators X, F, G and U, mean ”next state”, ”eventually in the
future state”, ”in all states (globally)” and ”until a state”, respectively. Each one must be
preceded by a path quantifier A or E, where A means ”for all paths” (inevitably) and E
means ”exist a path”.

Planning with model checking allows the automatic generation of plans by
controlling the evolution of the system so that system behaviors can satisfy the goal
[da Silva Ferreira et al. 2018].

Definition 1: Planning Domain. A planning domain is a Labelled Transition Sys-
tem (LTS) D = (S, I, A, −→, AP, L), where:

• S is a finite set of states;
• I ⊆ S is the set of initial states;
• A is the actions alphabet;
• −→⊆ S × A× S is the set of transitions state relations;
• AP is a fixed and finite set of atomic propositions used to label the states;



• L: S −→ 2AP is a total function that assigns to each state s ∈ S the set L(s) of
atomic propositions which are true in that state.

Definition 2: Planning Problem. A planning problem P in a planning domain D =
(S, I, A, −→, AP, L) is a tuple 〈D, sp, φ〉, where [Ghallab et al. 2004]:

• D is the planning domain;
• sp is the planning problem’s initial state, where sp ∈ S;
• φ is the adaptation goal, specified in temporal logic.

Definition 3: Plan. A plan in a planning domain D = (S, I, A, −→,
AP, L) for a planning problem P = 〈D, sp, φ〉 is defined as a sequence π =
[〈s0, a1〉, 〈s2, a2〉...〈sk, ak〉], where s0 = sp, si ∈ S, ai ∈ A, 0 ≤ i ≤ k and sk satisfies φ,
i.e. sk is the goal state.

Definition 4: Planning Solution. A planning solution in a planning domain D =
(S, I, A, −→, AP, L) for a planning problem P = 〈D, sp, φ〉 is a subgraph Dπ of D such
that in Dπ all paths from the state sp contain a plan which satisfies the goal φ.

Figura 1. Planning solution (adapted from [Pereira and de Barros 2008]).

Definition 5: Deterministic Planning Problem. A planning problem P =
〈D, sp, φ〉 is deterministic if only if there is only one plan π in the planning solution
Dπ.

For example, in Fig. 1(1), the green state is state inicial and blue state is
goals state, we have a planning domain D modeled by a LTS with the set of states
S = {s0, s1, s2, s3, s4, s5, s6}, the set of initial states I = {s0} and the set of acti-
ons A = {a, b, c, d, e, f, g}. The planning problem solution from the initial state s0
to a goal state s5 is represented in Fig. 1(2) as the domain Dπ which has the plans
π1 = {〈s0, b〉, 〈s2, e〉} and π2 = {〈s0, a〉, 〈s1, d〉 〈s2, e〉}.

Several factors influence the choice of an adaptation plan. Some of these factors
are related to the environment that can be deterministic or non-deterministic. In a determi-
nistic environment next states are completely determined by the current state and the acti-
ons performed by the agent; otherwise, it is non-deterministic [Russell and Norvig 2016].

Given a planning problem, we can distinguish three classes of solutions for non-
deterministic environments: weak, strong and strong-cyclic; each one indicating a diffe-
rent quality of planning [Pereira and de Barros 2008].

Considering a planning problem P = 〈D, s0, φ〉, in a domain D = (S, I, A, −→,
AP, L), a planning solution can be [Pereira and de Barros 2008]:



• A weak solution for P , if not all path in D induce a plan in Dπ;
• A strong solution for P , if all plans in Dπ are acyclic;
• A strong-cyclic solution for P , if in all path in D there is a plan in Dπ.

A weak planning solution can allow the system to achieve the goal state but it is
not guaranteed due to the non-determinism of the environment. A strong solution always
achieves the goal state ensuring that a plan is executed, regardless of non-determinism
of the environment. In a strong-cyclic solution, the goal is achieved under the fairness
assumption that execution will eventually exit regardless the existence of cycles in the
domain model [Pereira and de Barros 2008].

Given G a propositional CTL formula representing an adaptation goal, we can look
for a weak plan by the formula EF G. A strong plan should satisfy the formula AF G and
a strong cyclic plan should satisfy the formula AGEF G [Giunchiglia and Traverso 1999].

5. Case-Study
Our work is build on top of the case-study of Iftikhar and Weyns
[Iftikhar and Weyns 2012] which consists of a decentralized traffic monitoring SAS
with groups of three cameras. Model checking is used to verify some behavioral
properties and self-adaptive properties for flexibility and robustness, but not focusing on
planning. We extend this case study considering groups of two to five cameras where
– for each group – a camera is added to a group when identifying traffic jam or is
recovered from a fail and a camera is removed from a group when it fails or when it does
not identify more traffic jam. With that, self-adaptation scenarios grown in complexity
allowing us to state such an arrangement as a planning problem, i.e., adaptation plans
are generated to reconfigure groups of cameras when cameras fail/recover or they detect
traffic jam / not traffic jam.

Figura 2. Cameras Groups Scenarios.

The cameras are distributed along a road and each one has a limited viewing range
and is positioned to provide optimal highway coverage with minimal overlap. To have



a decentralized solution, the cameras collaborate in group organizations: if a traffic jam
goes beyond the reach of a camera this camera will form a group with another neighboring
camera, which in turn also identifies the traffic jam. When a group of cameras is formed
each camera monitors if its neighboring camera is properly working.

5.1. Scenario

This study addresses the removal and addition occurrence of cameras in groups formed
by 2, 3, 4, and 5 cameras, according to Fig. 2. G2, G3, G4 and G5 represent such groups
before failures occurrence, respectively. Each working camera is in one of three distinct
roles: (1) a master of a single-member organization; (2) a master of an organization with
slaves; or (3) a slave in an organization. Each role has the corresponding responsibilities:
(1) a master of a single agent organization does not monitor any camera and is not mo-
nitored; (2) a master with slaves in a group monitors the last camera in the group; (3) a
slave of a group monitors its left neighboring camera.

For each possible group, the behavior of the system was analyzed when each one
of the cameras failed or did not identify any more traffic jam (we assume only one camera
failed at a time). We also analyzed the behavior of the groups when each one of the
cameras recovered from fail or began to identify traffic jam again. All scenarios with
more than 5 cameras will fit into some scenario predicted in this study. With groups
of two to five cameras it was possible to map 14 possible scenarios of self-organization
caused by cameras removal and others 14 possible scenarios of self-organization caused
by addition of cameras in a group.

5.2. Modeling

In this work, we have used UPPAAL tool to support planning with model checking. UP-
PAAL is a model checker based on timed automata theory which uses TCTL (Timed
Computation Tree Logic) to specify properties to be checked [Behrmann et al. 2006].

A model in UPPAAL is represented as a directed graph, with nodes and transitions,
such that from each node there is an outgoing transition. In this paper, we refer to the
nodes as states and we refer to a state x as the node named with x and sometimes also the
committed nodes (one with a c inside it) between x and another named node. For example,
in model of Fig. 3 when we refer to SLAVE state we mean the node named SLAVE and
the other two committed nodes which are in the cycle to SLAVE state. Committed nodes
are used to model atomic actions and we use them to model adaptation plans such that
when an adaptation plan is in execution it is not be interrupted by camera failures or
other actions. The initial state of the model is the node with two concentric circles. The
expressions in the transitions can be a boolean expression (guards) which expresses a
condition to a transition be triggered, internal actions (assignments or function calls), or
synchronizing actions (e[m]! and e[m]?) where e[m]! denotes that the message m is sent
by the the communication channel e and e[m]? denotes that the message m is received
from e setting a handshaking communication between models.

MAPE-K based modeling is divided into manager system and managed system.
The managed system in our case-study consists of the organizing controller (Fig. 3),
thus forming the system domain. The manager system consists of MAPE-K self-healing
controller (Fig. 4) and MAPE-K self-organizing controller (Fig. 5). The model that



simulates the operation of the system by triggering traffic jam and faults and other
models that support the solution are omitted from this article. We extended the from
[Iftikhar and Weyns 2012] case study in Fig. 3 and Fig. 4.

Figura 3. Organizing Controller.

Managed System: The organizing controller model (Fig. 3) is responsible for defining
the cameras behaviours to be (re) organized into groups. The (re) grouping starts on a
camera, and this camera can request its neighboring camera to be re (organized) as well.
For example, a camera in the MASTERWITHSLAVE state can move to MASTER state
when no longer it has slaves, as for example in case of scenario 13 of Fig. 2; or it can
move to SLAVE state if a new master camera with smaller id requests a new organization,
as in case of scenario 4 of Fig. 2 when the camera 1 is recovered.

A camera can play three different roles. The choice of which role to assume does
not depend exclusively on the camera itself. The dynamic environment allows it to be a
MASTER and depending on its neighboring camera it becomes a MASTERWITHSLAVE or
a SLAVE (Fig. 3), and this can only be determined at run time. In addition to these roles,
a camera may be in the state FAILED (Fig. 4) indicating that a camera has not returned a
ping and then a plan should be executed so that the system continues to function properly.

manager system: The manager system is represented by MAPE-K Self-healing Con-
troller and MAPE-K Self-organizing Controller models. For each controller a feedback
loop was implemented. The monitor of the self-healing controller (Fig. 4) has an ob-
server loop that detects failures, and implements the ping-echo mechanism by sending
life signals to other observed cameras. The MAPE-K analysis task is done from the
(WAITFORRESPONSE state in Fig. 4) by checking if the response time of the neighbo-
ring camera is higher than expected (X > ALIV E TIME). If so, it changes to FAI-
LUREDETECTED state, indicating that a camera in the group failed and an adaptation is
required. The Knowledge (implemented as variables in UPPAAL) has information about
the formation of the group, the camera that failed (ping) and the camera that identified
the failure (id). For the self-organizing controller (Fig. 5) the MAPE-K monitor task



Figura 4. MAPE-K Self-Healing Controller.

was implemented as a loop that collects traffic jam data. The MAPE-K analysis verifies
(ANALYZINGCONGESTION state) whether the camera identifies a change in traffic jam
information. If so, it goes to CHANGECONGESTION state, indicating that an adaptation
is required. The Knowledge has information about whether the state is CONGESTION-
DETECTED or NOCONGESTION. In the first case, it is required a (re) organization of the
group. In the second case, the camera ceases to be a master (MASTERWITHSLAVE state)
or ceases to be a slave (SLAVE state) forcing a search for a plan in order to create a new
group. For both models an adaptation plan is dynamically found through verification of
properties verification over the planning domain model. In the PLANEXECUTED state an
adaptation plan is executed.

Figura 5. MAPE-K Self-Organizing Controller.

5.3. Verification

An adaptation goal, for this case study, must ensure that the adaption plan execution
reconfigures the camera groups so that each group has a camera MASTERWITHSLAVE
and at least one camera SLAVE. For this, two properties were specified in TCTL as can
be seen in Fig. 6.



Property (1) and (2) check, for the case of camera failure and traffic jam detection,
respectively, whether after the execution of an adaptation plan the reconfiguration of the
groups is as expected according scenario S1, considering that the cameras are initially in
configuration G5. It means that for all paths and all states from the current state PLANE-
XECUTED (Fig. 4) the camera 1 has cameras 2 (camera[2].m cam == 1 in Fig. 6) as its
slaves and camera 4 has camera 5 (camera[5].m cam == 4 in Fig. 6) as its slave. This
property specific for scenario S1 might be adapted to other scenarios. Indeed we verified
that in all scenarios the reconfiguration of the groups was as expected.

Property (3) specifies that every camera which identifies a failure, after executing
a plan, becomes a MASTER or a MASTERWITHSLAVE. Finally, the property (4) guaran-
tees that after the execution of the plans the camera that became MASTERWITHSLAVES
necessarily owns slaves. We verified that property (3) and (4) were valid in all scenarios
from PLANEXECUTED state in the model of Fig. 4.

Figura 6. Properties.

6. Case Study Considerations

The generation of autonomous adaptation plans can be seen as a planning problem. Ac-
cording to the planning problem definition presented in Section III, the planning domain
D comprises the managed system and manager system models. The initial state s0 is the
FAILUREDETECTED state of the self-healing controller model (Fig. 4) of camera 4 which
detected the fault. The adaptation goals φ are the temporal logic formulas (1) and (3) (Fig.
6).

We can observe that for each verified scenario there is only one adaptation plan
that meets the specified adaptation goals φ specified in CTL which implies that, in accor-
dance with definition 5, the planning problem of this case study is deterministic.

Adaptation plans will only be defined at runtime because the current state of the
camera that identifies a change is not sufficient to carry out a plan. It is necessary to
know the global behavior (cameras group) which is identified by interactions between
local behaviors (individual cameras).

So, for the generation of a plan it is necessary for a camera to know the current
state of its neighboring camera which in turn must known about its neighboring current
state, and so on. For example, if a camera which is a slave failed and the camera that has



identified it is also a slave different plans can be executed. In scenario S1 of Fig. 2, for
example, two groups were formed, in scenario S2 only one group with only the master
with slaves camera that identified the fault with two slaves and in scenario S3 a group
with the master camera which identified the fault with two slaves.

For illustrating the plan generation, we consider scenario S1 with one master with
slave and four slaves where camera 3 which is a slave failed. The verification of properties
(1) and (3) generated the following plan, with 13 actions:

1.〈FailureDetected, slaveGone[getMaster()]!〉 2.〈MasterWithSlave, slaveGone[id]?〉
3.〈SLAV E,masterGone[id]!〉 4.〈SLAV E,masterGone[id]?〉
5.〈TurningMaster,master[id]!〉 6.〈TurningMaster, request org[getNeighbour()]!〉
7.〈Slave, request org[getNeighbour()]?〉 8.〈Slave,m offer[getMaster()]!〉
9.〈Master,m offer[id]?〉 10.〈Master,masterWithSlave[id]!〉
11.〈Master,masterWithSlave[id]?〉 12.〈Slave, request org(getNeighbour())!〉
13.〈PlanReady, null)〉

The plans generation occur atomically, i.e, we did not consider the occurrence of
camera failures when a plan is in execution. This can at first be seen as a limitation of
our case study, but this restriction was considered for circumvent state space explosion
problem, inherent of model checking, enabling us to achieve our main objective which
was to demonstrate the planning strategy in operation.

In this case study we specify a formal model fully compatible with MAPE-K
reference architecture where the behavior of the manager system is separated from the
behavior of the managed system. Thus, the adaptations are controlled by MAPE-K feed-
back loops, coupled with system domain, making it more flexible to add / remove new
adaptations due to less cohesion between functionalities.

Using MAPE-K architecture, we encapsulated the plans selection strategies in
controller components, leaving the execution of the plans to the system domain. That
is, the adaptation plans belonged to the system domain itself and a MAPE-K controller
selected the adaptation plan autonomously. With this, we defined a flexible formal model
MAPE-K where planning strategies can be inserted or removed.

7. Conclusion
In this paper we presented some results of a SAS planning case study, consisting of a
decentralized traffic monitoring, in which we combined model checking and MAPE-K in
order to find adaptation plans autonomously when interruptions caused by failures occur
or when changing in traffic jam requires re (organization) of groups of cameras.

Model checking has shown to be promising to generate adaptation plans autono-
mously, when the number of possible adaptation plans is great. Formal modeling of SAS
based on the MAPE-K architecture contributes for a reliable design of SAS, facilitating
the generation of adaptation plans that meet more than one self- * property (for exam-
ple, Self-Healing and Self-Organizing), since a feedback loop can be associated for each
self-*property.

The paper presents an experience of using model checking for the generation of
adaptation plans, which can be taken as an example to guide SAS design in order to
generate adaptation plans autonomously satisfying more than one self- * property.



Our approach needs to be further studied in other domains and in other type of
environments since our case study considered a deterministic planning problem. So, we
intend to extend it to non deterministic planning problems.

As far as we know, few studies focus in development of self-adaptive systems
planning with model checking and MAPE-K. We believe that the dynamic environment
of these systems discourages the use of model checking for planning due to state explo-
sion problem and modeling complexity. However, MAPE-K enabled modularization such
that we could focus on modeling aspects related to the adaptation plan rather than the en-
tire system, bypassing the state explosion, and also facilitating modeling. These results
encourage we are investigating a general method for planning of self-adaptive systems
with model checking at run time, which we have already begun to investigate.
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