
Experimental Results Analyzes in Resilient Mechanism for
SDN-Based UAV Network Applied to Environmental

Protection Area Surveillance

Diego S. Pereira12, Vitor G. Santos 1, Luı́s B. P. Nascimento12, Pablo J. Alsina2

1Federal Institute of Education, Science and Technology of Rio Grande do Norte (IFRN)
Parnamirim – RN – Brazil

2Federal University of Rio Grande do Norte (UFRN)
Natal – RN – Brazil

{diego.pereira, vitor.gaboardi}@ifrn.edu.br
luisbrunu@gmail.com, pablo@dca.ufrn.br

Abstract. A surveillance system requires repetitive and uninterrupted actions,
typically related to large extension places, and difficult access. In this context,
a multiple Unmanned Aerial Vehicles (multi-UAV) system is a good alternative
for overcoming the requirements imposed by this application. With this in mind,
the UAVs have to work cooperatively and exchange information to finish the
mission. However, managing and keeping the communication between UAVs
is a challenge that has been investigated. So, the SD-FANET is an SDN
architecture developed to mitigate this communication problem. SD-FANET has
a hierarchical distributed control plane that provides a resilience mechanism to
overcome failures during a mission runtime. The three-step strategy (detection,
election, and recovery) allows the control plane outperforms failures and works
continuously as long as there are nodes in the UAV network. Experimental tests
were performed in three scenarios. In all of them, the controller executed the
resilience mechanism and keep going working. The mean time was 1,94 seconds
to 300 executions. The PDF of results was similar to a normal distribution
demonstrating the behavior of the recovery time.

1. Introduction

Surveillance systems are related to monitoring people, behaviors, activities, area access,
etc. Among some common methods used for surveillance are face-to-face surveillance,
cameras surveillance, GPS tracking surveillance, radio surveillance, satellite surveillance,
and biometric surveillance. Tasks are usually related to environmental monitoring,
area patrol, construction management, power grid inspection, traffic monitoring,
etc [Yue et al. 2018].

A typical environment surveillance system requires repetitive and continuous
tasks to reach a satisfactory result. Moreover, manpower and costs are limiting factors
to keep the system online, mainly in cases where a wide area must be covered by
the surveillance system. An increasingly cheaper, stable, and capable of transporting
powerful embedded systems alternative to overcome these issues is Unmanned Aerial
Vehicles (UAVs) [Li and Savkin 2021].



Surveillance systems have to be resilient. In this way, systems with only one UAV
are usually inappropriate because the mission can be compromised if the UAV fails. In
this perspective, a fleet of UAV introduces robustness and resilience to the system since
they can collect more data and be attached with different sensors and capabilities, solving
more complex missions [Zhou et al. 2020].

In this context, applications involving multiple UAVs, or just multi-UAV, are
planned to use a fleet of UAVs capable of acting cooperatively to achieve a common
objective [Fu et al. 2019]. Actions to explore unknown areas [Tang et al. 2019],
provision of coverage services for telephone networks [Liu et al. 2019], search
and rescue in difficult-to-access regions [Alotaibi et al. 2019], environmental
monitoring [Vazquez-Carmona et al. 2019], and data collection [Binol et al. 2019]
are some examples of applications.

Given the need to exchange information between the aircraft that compose the
multi-UAV system, it is necessary to assign the capacity to create and organize an Flying
Ad hoc Network (FANET) [Bekmezci et al. 2015]. FANET allows flexibility for the
multi-UAV system operation and does not require a prior communication infrastructure,
which is important given the dynamic behavior of the aircraft and the intermittence of
wireless communication links.

Our previous work [Santos et al. 2019] presented a multi-UAV architecture for
monitoring human activity in a Coral Reefs Environmental Protection Area, located in
the state of Rio Grande do Norte/Brazil. The main contributions were establishing an
UAV network to send images, a flight formation strategy to capture images by UAVs, and
evaluating a SSD Neural Network to detect boats in forbidden regions. Figure 1 shows an
example of detected boats that should be sent by the UAV network to the base station.

Figure 1. Boat detection in Coral Reefs Environmental Protection Area (Área de
Proteção Ambiental de Recifes de Corais - APARC) located in the coastal
strip from the cities of Maxaranguape, Rio do Fogo and Touros, State of
Rio Grande do Norte/Brazil. Image provide by IDEMA/RN.



However, the hardware components from the proposed architecture have limited
requirements to manage the system operation, such as routing configuration restrictions,
not allowing traffic priority or any quality of service policies, and lacking failure detection
and recovery. These features are essential to offer the possibility of better management.

In this way, we proposed the SD-FANET [Pereira et al. 2019] an SDN-based
architecture to overcome these limitations and improve the UAV network performance.
According to [Foerster et al. 2018] Software-Defined Networking (SDN) decouples the
control plane and data plane, allowing a logically centralized controller to program the
network, making the other switching devices that carry out data forwarding from a flow
table maintained by the controller.

Thus, the objective of this work is to propose a resilience mechanism for the
control plane of the SD-FANET architecture. Besides, we will validate our strategy using
environmental protection area surveillance as a case study, where it is essential to secure
a continued operation of the communication network and an efficient delivery of data to
the ground base station. Therefore, SDN is a good alternative since it supplies flexibility
and scalability.

The main contributions of this paper are the development of a resilient strategy
for a hierarchical distributed SDN controller and an election procedure to select a new
coordinator based on distributed system concepts, and the evaluation of experimental
results using a fleet of UAVs with an embedded system to manage the UAV network.

The remainder of this paper is organized as follows: Section II presents the related
works, Section III addresses an overview of SD-FANET and details our proposed resilient
strategy. Section IV presents the methodology used to validate our solution. Section V
presents some experimental results and Section VI presents conclusions and perspectives
about future works.

2. Related Works

The development of resilience strategies for UAV networks is still a new topic of research.
We will initially evaluate SDN solutions for UAV Networks, and then present some
resiliency solutions for SDN controllers.

2.1. Software-Defined UAV Networks

The use of software-defined networking in UAV networks was initially proposed by
[Gupta et al. 2015]. For the authors, SDN allows greater flexibility to deal with
the dynamic characteristics of this type of networks, such as aircraft movement and
intermittent connectivity links, and the limitation of embedded resources, such as
batteries. Therefore, SDN eases the deployment and management of applications and
services through the ability to program the network.

In this context, we will first present some works concerning research related to
SDN deployment in UAV networks. Next, we will compare them with our SD-FANET
proposal, which was introduced in [Pereira et al. 2019]. This comparison is summarized
in Table 1. Our proposal is the first that presents a resilient strategy with experimental
results.



Table 1. Comparison between UAV network SDN-based architectures.

Architecture Controller
Design

Resilient
Controller

Experimental
Results

SD-UAVNet [Zhao et al. 2019] Centralized No No
VOEI [Cumino et al. 2018] Centralized No No

SDN-Based FASNET [Qi et al. 2017] Distributed No No
STFANET [e Silva et al. 2019] Centralized No No

SUV [Hu et al. 2021] Distributed Yes No
SD-FANET Distributed Yes Yes

The SD-UAVNet [Zhao et al. 2019] architecture uses the network management
from a centralized controller. The paper proposes optimal positions for relay UAVs to
keep surveillance services operational. The controller considers the context information
from a global UAV to optimize the movements of the other UAVs, such as appropriately
selecting routes for the given flows and preventing collisions between aircraft. The goal
is to ensure satisfactory video quality for the service.

Similarly, the VOEI [Cumino et al. 2018] architecture features a cooperative
scheme between UAVs to improve video transmission and overall system energy
efficiency. The main goal is to keep streaming with QoE (Quality of Experience) support.
Decisions are based on a centralized controller node that selects reliable routes, increases
energy efficiency, and detects the appropriate time to replace a UAV, ensuring a higher
system autonomy.

The authors of the STFANET [e Silva et al. 2019] architecture use algorithms to
establish and maintain a FANET that provides a constant and reliable communication
link between independent nodes that are performing individual or collaborative missions.
FANET is composed of relays UAVs that are positioned by a centralized controller, thus
managing the link’s topology and coverage area. For validation purposes, a simulation
was made for military applications.

The SDN-based FASNET [Qi et al. 2017] architecture was designed based on
clustering controllers from hierarchical management. The architecture seeks to secure
specific QoS (Quality of Service) requirements, sensitive to delays and reliability. Thus,
weights are assigned to the flows according to their sensitivity to delay and priority level.
Unlike previous proposals, FASNET has a distributed control plane.

The SUV [Hu et al. 2021] architecture proposes the use of blockchain to enable
a logically centralized control plane but physically distributed, which is responsible
for enabling routing and management of the UAV network. SUV has resilience and
safety, features not found in the previous architectures discussed. The paper presents
the architecture and its components, however, it does not present any results.

The SD-FANET architecture aims to maintain connectivity between UAV network
nodes in surveillance missions. SD-FANET adopts distributed hierarchical controller
to optimize network performance and a control plane with failure recovery capability.
In this process, a relay UAV is promoted to a controller through an election process
among all the UAVs which compose the multi-UAV system. In the next section, we will



present the SD-FANET architecture and detail the resilience mechanisms for failures in
the distributed control plane.

2.2. Resilient SDN Controller
As previously discussed, SDN offers conditions to overcome some challenges imposed on
UAV networks. However, it is important to highlight that a failure in the control plane can
cause interruption of the entire system. Therefore, it is essential to invest in solutions that
mitigate and handle failures in the network controller [Botelho et al. 2014a]. In this way,
we present below some solutions for this purpose. The details are presented in Table 2.

Table 2. Distributed resilient controllers solutions details.

Paper Design Coordinator Metric Results
[Botelho et al. 2014b] Hierarchical Leader - Simulated

[Lakhani and Kothari 2020] Flat Leader Load Simulated
[Moazzeni et al. 2019] Hierarchical Leader Reliability Numerical
[Ammar et al. 2017] Flat Leader Load Simulated

The authors in [Botelho et al. 2014b] present a hierarchical architecture called
SMaRtLight. The solution uses a shared replicated database that stores the entire state
of the network. A smooth transition mechanism is implemented in case of control failures
and avoids the need for an additional coordination service.

The paper of [Lakhani and Kothari 2020] present the Distributed Controller Fault
Tolerance (DCFT) method. It is an election algorithm for control failures in which the
main metric is load balancing between network controllers. The proposed method uses a
flat model.

The reliability improvement of the software-defined networks method is presented
in [Moazzeni et al. 2018]. This strategy splits the network into subnets and assigns a
controller to each of them. This assignment is done by a general coordinator of the
network. The authors also use election algorithms to select a new controller based on
a reliability metric [Moazzeni et al. 2019].

Finally, a dynamic workload distribution for controllers in [Ammar et al. 2017] is
proposed. From the election of a root controller responsible for coordinating the entire
network, a decision-making strategy for load balancing takes place to improve network
performance.

3. RESILIENT CONTROLLER FOR SDN-BASED UAV NETWORK
3.1. SD-FANET Overview
The main feature of the SD-FANET architecture is the implementation of a distributed
hierarchical controller. The control plane is composed of two components: the
BS-Controller (Base Station - BS) and the UAV-Controller. The data plane is composed
of UAVs-Relay. However, the UAV-Controller can also forward data. An illustration of
the SD-FANET architecture is shown in Figure 2.

The BS-Controller manages the control plane, which imposes the need for a global
view of the network and actions to coordinate the other nodes in the distributed controller.



Figure 2. Representation of SD-FANET components: BS-Controller, on the
ground, UAV-Controller and UAVs-Relay, on the air, which composes the
UAV network.

The UAV-Controller acts as a local controller of the aircraft fleet communication network
where it is located. It has the responsibility for the local domain, decentralizing the
network control of the BS-Controller. Finally, the other nodes, called UAV-Relay, act as
switches capable of interacting with a controller and forward data by consulting its flow
table. Table 3 presents the components of the SD-FANET architecture and summarizes
their respective functions.

Table 3. Components of the SD-FANET architecture and their main functions.

Component Function
BS-Controller Maintain a global view of the network

Promote UAV-Controller
Coordinate UAV-Controller
Create traffic priority policies
Failure Handling

UAV-Controller Keep local view of the network
Coordinate UAV-Relay
Execute instructions received from BS-Controller
Create traffic priority policies
Failure Handling

UAV-Relay Forward data according to the flow table

3.2. Resilient Strategy
There are at least two basic strategies that a distributed system can adapt to failure. The
first one is to use a system capable of isolating the fault and keeping the other components
working continuously. The second alternative is to temporarily interrupt the system
operation and take some time to reorganize it. During the reorganization period, the status
of system components can be evaluated, pending tasks can be completed or dropped, and
the crash recovery routine can be triggered. The system reorganization process should be
managed, preferably, by a single node called coordinator, which must be selected among
the active nodes through an election process[Garcia-Molina 1982].

The SD-FANET architecture uses the second option, which temporarily interrupts
the operation of the network to re-establish the operation of the control plane. The time



required to execute this strategy is called recovery time. The mechanism is implemented
in all nodes of the network and is executed when a node detects UAV-Controller failure.
The recovery process is organized in three stages: 1) Detection of the UAV-Controller
failure; 2) Election process for new UAV-Controller; and 3) Reestablishment of the SDN
controller. Following, we will explain each of these steps.
3.2.1. Fault Detection

The UAV-Controller receives periodic messages from each UAV-Relay registered in
its SDN domain. These messages, called keepAlive, informs the status of the
UAV-Relay and the UAV-Controller, and are responsible for transporting information
that feeds the controller statistics, such as battery status, position (GPS coordinates),
and communication links with aircraft neighbors. The sending interval between each
keepAlive message is configurable. By default, it was set to be 4.5 seconds.

Thus, if a UAV-Relay sends a keepAlive message and does not get a response from
the UAV-Controller within the configured time interval, a failure detection occurs, and the
election process for a new UAV-Controller starts. Similarly, if a UAV-Relay does not send
a keepAlive message to the UAV-Controller within this interval, its state is assigned to be
inactive and the aircraft is not considered by the controller’s decision making. This work
will not address resilience to the data plane.

3.2.2. Election Procedure

The Election Procedure starts immediately after detecting a failure in the UAV-Controller.
The UAV-Relay that detected the communication failure with the UAV-Controller will
assume the role of conducting the election and send broadcast an election message to
the network. This information carries the exact datetime the failure was detected and the
identification (ID) number of the issuing node. The datetime value is a timestamp that
ensures that other nodes in the network only respond to the election process started first.
Only the UAV-Relays that have an ID number lower than the one received in the election
message will respond. The node conducting the election will choose the one with the
lowest ID and publicize the winner at the end of the process. The disclosure of the new
UAV-Controller is done through the coordinator message, which is also broadcast on the
network. This election procedure was based on the Bullying algorithm [Sathesh 2015].

Three assumptions are taken into consideration when electing the new
UAV-Controller: there will be no failures in the communication links, the nodes will
always remain active during the entire process, and the clocks of the systems embedded
in the aircraft must be synchronized for the correct timing of events. Thus, if we guarantee
these assumptions, it is also possible to ensure that a single UAV-Controller will be elected
after the conclusion of any election process.

3.2.3. Controller Recovery

The Controller Recovery stage starts after sending a coordinator message with the chosen
UAV-Relay ID. Each UAV-Relay checks if its ID number is the same as the one carried by
the coordinator message. If so, it sends a new broadcast through the response coordinator
message to notify the other nodes that it is active and now waits for the network-info
message from BS-Controller with the information of the nodes registered in the domain
that the new UAV-Controller will be responsible. After retrieving the network state
information, the new UAV-Control assumes the active state. An example of the sequence



Figure 3. Sequence diagram for the proposed resilient strategy.

diagram with the messages exchanged during the performance of the resilience process is
presented in Figure 3.

In this example, UAV-Relay1 sends a keepAlive message to UAV-Controller. For
any unexpected reason, the UAV-Controller fails. So, UAV-Relay1 detects a timeout for
the keepAlive message. After that, UAV-Relay1 sends an election message and waits for a
new timeout. Since there is no UAV-Relay with an ID smaller than UAV-Relay1, no other
UAV-Relay sends a response. UAV-Relay1 sends a coordinator message to propagate the
ID from the new UAV-Controller (which will be UAV-Relay1) when the election timeout
is finished. So, BS-Controller sends a network-info message to UAV-Relay1 and the new
UAV-Controller is activated.

The Algorithm 1 presents the SDN controller’s resilience strategy in a simplified
way. The method has as input the boolean keepAliveTimeout. If the keepAliveTimeout
condition is true, the election procedure starts and returns the ID of the new
UAV-Controller. Then the UAV-Relay is promoted to UAV-Controller and receives its
control plane information from BS-Controller.

4. METHODOLOGY
The proposed resilience strategy was evaluated considering the recovery time in an
experimental setting. Besides, we also performed an analysis of the configuration
keepAlive timeout interference in the control plane performance.

4.1. Experimental Setup
We used three DJI Phantom 3 Standard drones for the construction of the experimental
scenario. Each drone has embedded a Raspberry Pi 3 Model B, Digi XBee S2C, and
power bank to supply the Raspberry. The XBee S2C module connects to the Raspberry
board via USB. A similar hardware architecture was validated in our previous work
[Santos et al. 2019]. However, in this work, we used ZigBee as the communication
protocol to encapsulate SD-FANET messages. This choice was made based on the image
transmission system proposed by us in [Pereira et al. 2020]. The aircraft remained in
flight side by side at 30 meters high and 20 meters apart them. We used the digi-xbee
library (version 1.4.0) to develop the source code, available in Python3.7. The UAVs
and the embedded systems are shown in Figure 4. The time recovery was calculated in
BS-Controller through log messages created by the SD-FANET applications.



Algorithm 1: UAV-Controller Replacement
Input: keepAliveT imeout
Output: NewUAV − Controller

1 if keepAliveT imeout = True then
2 nodeState← Election
3 electionStatus← True
4 electionStartT ime← currentdatetime
5 send broadcast(election(nodeID))
6 while responseElection Timer do
7 if receive message(responseElection) then
8 coordinatorID ← remoteNodeID
9 else

10 coordinatorID ← nodeID
11 end
12 end
13 send broadcast(coordinator(coordinatorID))
14 if coordinatorID = nodeID then
15 nodeController ← True
16 UAV − Controller(start)
17 send broadcast(responseCoordinator(nodeID))
18 wait network − info message
19 nodeState← Active

20 else
21 wait responseCoordinator message
22 end
23 else
24 UAV − ControllerState← Active
25 end

To evaluate our proposed methodology, we built three scenarios, where the
difference between them is the keepAlive timeout parameter. In Scenarios A, B, and C
the keepAlive timeout is, respectively, 1.5, 3.0, and 4.5 seconds. As explained in the
previous section, this parameter is the time used to identify a UAV-Controller failure and
it is also used during the election process to await the candidacy of UAVs-Relay. The
smaller the keepAlive timeout value, the greater the number of control messages on the
UAV network.

We ran 100 tests for each scenario, summing up to 300 fail detection. For
comparison purposes, we computed the minimum, maximum, mean, and standard
deviation time. Additionally, we will evaluate the efficiency of the strategy for selecting a
new UAV-Controller and the influence of the keepAlive timeout on the total recovery time.

5. RESULTS
The control plane was reestablished in all tests, demonstrating the efficiency of the
strategy. The experimental results for the recovery time are summarized in Table 4 and
Table 5 and they are showed in Figure 5. Table 4 details each scenario and their respective



Figure 4. Fleet of UAV and the embedded system used in experimental scenarios.

keepAlive timeout. Scenario A (1.5s timeout) with a minimum time of 3.2179s, maximum
time of 3.5816s, mean 3.4266s, and a standard deviation of 0.0622s obtained the best
results. However, it should be noted that these values include the election process timeout,
which is equal to the keepAlive timeout. So, it was expected that the scenario with the
lowest keepAlive would be faster.

Table 4. Experimental Results to Recovery Time

Scenario A B C
Timeout 1.5 3.0 4.5

Minimum 3.2179 4.7021 6.3619
Maximum 3.5816 5.0805 6.6931

Mean 3.4266 4.9371 6.4648
Standard Deviation 0.0622 0.0653 0.0725

To allow a better analysis of the proposed strategy, Table 5 details the recovery
time excluding the election process timeout and thus making a fairer comparison between
the scenarios. In this new analysis, scenario B showed the minimum recovery time value
between all scenarios. The maximum recovery time was 1.9648s in scenario C. Scenario
A is the best case regarding the mean and standard deviation, which are 1.9266 seconds
and 0.0622 seconds, respectively. The results of the recovery time considering both with
and without the Timeout are illustrated in Figure 5.

Another interesting analysis is that it was possible to compute an overall average
for the 300 executions, resulting in an average of 1.9428 seconds with a 0.0685s standard
deviation. So, disregarding the constant and configurable time of the election process,
the proposed strategy performs the control plane recovery in less than 2 seconds on



Table 5. Experimental Results to Recovery Time Extracting The Election Timeout

Scenario A B C Total
Minimum 1.7179 1.7021 1.8619 1.7021
Maximum 2.0816 2.0805 2.1931 2.1931

Mean 1.9266 1.9371 1.9648 1.9428
Standard Deviation 0.0622 0.0653 0.0725 0.0685

Figure 5. Comparison of results for recovery time with and without timeout.

average. Figure 6 shows a histogram with the number of experiments for some specified
time interval, where the majority of the experiments (over 100 samples) are concentrated
between 1.90 and 1.95 seconds. Besides, we also plot the probability density function
(PDF) of the results, where it is possible to highlight that the behavior of the results is
similar to a normal distribution.

To demonstrate the impact of keepAlive timeout, Figure 7 shows the number of
messages generated for each scenario considering a total time of up to 100 seconds. In this
case, Scenario C would generate 132 messages, while scenarios B and A would generate
198 and 396 messages, respectively. Hence, it is necessary to evaluate the amount of
control information that will traffic on the network in order to make viable the functioning
of the data plane.
6. CONCLUSIONS
Services offered by multi-UAV systems are growing and it is necessary to develop
solutions capable of managing the communication network between aircraft. The use
of SDN allows for extending and making this management more flexible. Furthermore,
resilience strategies must be investigated, as intermittent communication links and the
aircraft’s limitations require the multi-UAV system to be able to recover from failures.

The solution presented in this paper proved to be efficient for the studied scenarios.
In all configurations, the control plane was re-established, where we could achieve an
average time of 1.9428 seconds for the control plane recovery. Also, it was possible to



Figure 6. Recovery time behavior of the SD-FANET architecture from the all
experimental results.

Figure 7. Relationship between the increasing number of messages and selected
keepAlive timeout.

observe that the recovery time is more closely related to the keepAlive timeout due to the
wait time of the election process. When this time was excluded from the analysis, it was
possible to notice a similarity between the results of the three proposed scenarios.

Additionally, the reduction of the keepAlive sending interval causes overhead in
the communication network that can affect the performance of the control plane. Between
Scenarios A and C, there was a difference of 300% in the number of messages sent in the
same interval.

In future works, we plan to carry out performance evaluations in scenarios with
a higher number of nodes, different technologies, and others election algorithms. Also,
we will enhance the SDN controller source code for better system performance and try to
reduce the recovery time.



Acknowledgment
This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de
Nı́vel Superior – Brasil (CAPES) – Finance Code 001.

References
Alotaibi, E. T., AlQefari, S. S., and Koubaa, A. (2019). Lsar: Multi-uav collaboration for

search and rescue missions. IEEE Access.

Ammar, H. A., Nasser, Y., and Kayssi, A. (2017). Dynamic sdn controllers-switches
mapping for load balancing and controller failure handling. In 2017 International
Symposium on Wireless Communication Systems (ISWCS), pages 216–221. IEEE.

Bekmezci, I., Sen, I., and Erkalkan, E. (2015). Flying ad hoc networks (fanet) test bed
implementation. In 2015 7th International Conference on Recent Advances in Space
Technologies (RAST), pages 665–668. IEEE.

Binol, H., Bulut, E., Akkaya, K., and Guvenc, I. (2019). Time optimal multi-uav path
planning for gathering its data from roadside units. In 2018 IEEE 88th Vehicular
Technology Conference (VTC-Fall), pages 1–5. IEEE.

Botelho, F., Bessani, A., Ramos, F., and Ferreira, P. (2014a). Smartlight: A practical
fault-tolerant sdn controller. arXiv preprint arXiv:1407.6062.

Botelho, F., Bessani, A., Ramos, F. M., and Ferreira, P. (2014b). On the design of practical
fault-tolerant sdn controllers. In 2014 third European workshop on software defined
networks, pages 73–78. IEEE.

Cumino, P., Lobato Junior, W., Tavares, T., Santos, H., Rosário, D., Cerqueira, E., Villas,
L., and Gerla, M. (2018). Cooperative uav scheme for enhancing video transmission
and global network energy efficiency. Sensors, 18(12):4155.

e Silva, T. D., de Melo, C. F. E., Cumino, P., Rosario, D., Cerqueira, E., and De Freitas,
E. P. (2019). Stfanet: Sdn-based topology management for flying ad hoc network.
IEEE Access, 7:173499–173514.

Foerster, K.-T., Schmid, S., and Vissicchio, S. (2018). Survey of consistent
software-defined network updates. IEEE Communications Surveys & Tutorials.

Fu, Z., Mao, Y., He, D., Yu, J., and Xie, G. (2019). Secure multi-uav collaborative task
allocation. IEEE Access, 7:35579–35587.

Garcia-Molina, H. (1982). Elections in a distributed computing system. IEEE Computer
Architecture Letters, 31(01):48–59.

Gupta, L., Jain, R., and Vaszkun, G. (2015). Survey of important issues
in uav communication networks. IEEE Communications Surveys & Tutorials,
18(2):1123–1152.

Hu, N., Tian, Z., Sun, Y., Yin, L., Zhao, B., Du, X., and Guizani, N. (2021). Building agile
and resilient uav networks based on sdn and blockchain. IEEE Network, 35(1):57–63.

Lakhani, G. and Kothari, A. (2020). Coordinator controller election algorithm to provide
failsafe through load balancing in distributed sdn control plane. In International
Conference on Computing Science, Communication and Security, pages 234–250.
Springer.



Li, X. and Savkin, A. V. (2021). Networked unmanned aerial vehicles for surveillance
and monitoring: A survey. Future Internet, 13(7):174.

Liu, C. H., Ma, X., Gao, X., and Tang, J. (2019). Distributed energy-efficient multi-uav
navigation for long-term communication coverage by deep reinforcement learning.
IEEE Transactions on Mobile Computing.

Moazzeni, S., Khayyambashi, M. R., and Movahhedinia, N. (2019). Improving
the reliability of software-defined networks with distributed controllers through
leader election algorithm and colored petri-net. Wireless Personal Communications,
109(1):645–656.

Moazzeni, S., Khayyambashi, M. R., Movahhedinia, N., and Callegati, F. (2018).
On reliability improvement of software-defined networks. Computer Networks,
133:195–211.

Pereira, D., Nascimento, L., Santos, V., Fernandes, D., and Alsina, P. (2019). Sd-fanet:
uma arquitetura para redes aéreas definidas por software aplicadas à varredura de
área. In Anais Estendidos do IX Simpósio Brasileiro de Engenharia de Sistemas
Computacionais, pages 71–76. SBC.

Pereira, D. S., De Morais, M. R., Nascimento, L. B., Alsina, P. J., Santos, V. G.,
Fernandes, D. H., and Silva, M. R. (2020). Zigbee protocol-based communication
network for multi-unmanned aerial vehicle networks. IEEE Access, 8:57762–57771.

Qi, W., Song, Q., Kong, X., and Guo, L. (2017). A traffic-differentiated routing algorithm
in flying ad hoc sensor networks with sdn cluster controllers. Journal of the Franklin
Institute.

Santos, V. G., Pereira, D. S., Alsina, P., Fernandes, D. H., Nascimento, L. B., Leite, D. L.,
Morais, M. R., Silva, M. R., and Souza, E. S. (2019). Multi-uav system architecture
for environmental protection area monitoring. In Proc. Anais do Simpsio Brasileiro de
Automao Inteligente, pages 1–6.

Sathesh, B. (2015). Optimized bully algorithm. International Journal of Computer
Applications, 121(18).

Tang, Y., Hu, Y., Cui, J., Liao, F., Lao, M., Lin, F., and Teo, R. S. (2019). Vision-aided
multi-uav autonomous flocking in gps-denied environment. IEEE Transactions on
Industrial Electronics, 66(1):616–626.

Vazquez-Carmona, E. V., Vasquez-Gomez, J. I., and Herrera-Lozada, J. C. (2019).
Environmental monitoring using embedded systems on uavs. IEEE Latin America
Transactions, 18(02):303–310.

Yue, X., Liu, Y., Wang, J., Song, H., and Cao, H. (2018). Software defined radio and
wireless acoustic networking for amateur drone surveillance. IEEE Communications
Magazine, 56(4):90–97.

Zhao, Z., Cumino, P., Souza, A., Rosário, D., Braun, T., Cerqueira, E., and Gerla,
M. (2019). Software-defined unmanned aerial vehicles networking for video
dissemination services. Ad Hoc Networks, 83:68–77.

Zhou, Y., Rao, B., and Wang, W. (2020). Uav swarm intelligence: Recent advances and
future trends. IEEE Access, 8:183856–183878.


